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Abstract

Shape memory alloys (SMAs) have been extensively used in sensors and actuators. Their behavior is dominated by the microstruc-

tures. Observations show that martensite twins usually form laminated patterns with interfaces that satisfy the compatibility equa-

tion to minimize the total energy. However, due to high nonlinearity of the material, the relationship between the overall response

and microstructure has not yet been revealed. In this study, we identify the set of possible twin structures and the paths along which

the microstructure evolves continuously between austenite and martensite phases under loads. The variational principle is used to

capture the dissipative nature of interface motion in microstructures when phase transformation occurs. The model is applied to

study superelasticity effect in Cu-Al-Ni single crystals. Many subtle features are explained.
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1. Introduction

Shape memory alloys (SMAs) have gained increasingly interest because of their outstanding properties, such as

superelasticity. The origin of these properties is the phase transformation and the ability to minimize the overall

energy of the crystal by phase twinning [1]. The topology of the twin structures is a crucial factor that strongly

influences material response and macroscopic properties in SMAs. Thus, it is important for the design of engineering

components. Microstructures in SMAs have been extensively studied in recent decades. The formation of the twin

patterns is well explained by the constrained theory [2,3]. The orientation of a compatible interface separating distinct

phases are also rigorously studied by Bhattacharya [1].

A wide variety of techniques is used for modeling microstructures in SMAs. For instance, phase field approaches

can predict the topology of microstructures. They typically use the time-dependent Ginzburg-Landau (TDGL) equa-

tions, and describe the microstructure by the order parameter [4–6]. In contrast, sharp interface approach treats phase

boundaries as diffuse interfaces, sharp interface approaches treat a phase boundary as a discontinuity, across which

the strain may jump. This gives a significant saving of computation. However, particular twin arrangements are com-

monly assumed [7–9]. For engineering design purposes, larger scale models are needed. Thus, we adopt the sharp
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Fig. 1. Eight types of austenite and martensite mixed laminate patterns in the orthorhombic crystal system.

interface approach, but still capture the key microstructural features of SMAs by considering the transition states of

microstructure connecting the pure austenite phase and the martensite twins. These states are identified by the non-

linear compatibility theory[1]. As the results, the possible microstructural evolution paths for compatible laminates

can be revealed. The variational principle is then used to determine which paths are energetically favorable by the

applied load. The evolution of microstructure can be modeled, and the macroscopic response can also be predicted. In

the current work, we apply the model to simulate the superelasticity effect in Cu-Al-Ni orthorhombic single crystals

for illustration purposes. Several subtle features of the response are simulated. The model is ready to extend to other

mechanism in SMAs, such as shape memory effect. The results can provide guidelines to engineer the microstructures

and to optimize the performance of the applications of SMAs.

2. Theory and methodology

2.1. The austenite-martensite twin patterns in the orthorhombic crystal system

According to the deformation of the lattices, distinct crystal variants can be specified. Take the cubic-orthorhombic

crystal system as an example, there are seven phases in total with deformation U(i) (i = 1, . . . , 7), given by:

U(1,2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β 0 0

0 α ±γ
0 ±γ α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , U(3,4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0 β 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , U(7) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Parameters α, β, and γ are material properties characterize the martensitic transformation strain. Phases “1”. . . “6” are

the orthorhombic martensite variants and phase “7” is the unstrained austenite. Consider a pair of phases (i, j) with

deformation Ui, U j. A compatible interface with unit normal vector n satisfies the compatibility equation [1,3]:

Q1Ui −Q2U j = a ⊗ n (2)

for arbitrary vector a and rotation matrix Q1 and Q2. A compatible interface can be formed whenever a unit vector n
can be found that satisfies Eqn. (2).

We now assume that the crystal adopts the low energy multi-rank laminates with flat compatible interfaces through-

out the procedure of the phase transformation. By solving Eqn. (2) with the concept of tree diagram, which have been

commonly used to represent the composition of laminate patterns [8], all possible martensite-martensite and austenite-

twinned martensite (A-M) interfaces can be determined. There are in total 96 distinct solutions of pattern in cubic

to orthorhombic transformation [10]. However, by removing rigid rotations, reflections and inversions according to

the symmetry operations, there are only eight types of A-M pattern, as shown in Fig. 1. As the results, eight types of

possible microstructural evolution path connecting pure austenite and martensite twin microstructures are considered

in the current study.

2.2. The variational approach

Now consider a single crystal shape memory alloy containing twin structures which can evolve with time according

to given boundary conditions. The system can be described by a variational functional

Π = Ġ + Ψ (3)
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where Ġ is the rate of change of Gibbs free energy, and Ψ is a rate potential associated with the dissipative kinetic

process. The Gibbs free energy comprises internal energy and potential energy due to boundary loads.

G =
1

2

∫
V

(φ + εLp cpqε
L
q )dV +

∫
V

(−σpεp)dV p, q = 1...6 (4)

where φ is the free energy density of phases in stress-free states; εLp is the elastic energy due to the linear elastic strain

field; V is the volume of the crystal; cpq is the elastic stiffness matrix. The applied stress is σp; εp is the total strain of

each material point.

A rate potential Ψ is associated with the movement of all the domain walls present in the crystal, given by [11]

Ψ =

∫
A

∫ v

0

F(ζ)dζdA (5)

where F(v) is a mobility function, that is a function of its velocity, v, in the current configuration. The surface integral

in Eqn. (5) is carried out over the area of all interfaces. The system evolves along a path which makes the functional

Π stationary with respect to the interface velocities v [12], that is:

∂Ψ

∂v
= −∂Ġ
∂v

(6)

The interface velocities v can be obtained by solving Eqn. (6). Here we assume the crystal will adopt the laminate

patterns with greatest velocity of interface movement. Hence the path of evolution of the laminate pattern can be

found.

3. The simulation of superelasticity in shape memory alloys

The superelasticity response of a Cu-Al-Ni single crystal subjected to a tensile stress σ along the direction of

(0.925, 0.380, 0), motivated by the numeric calculation done by Stupkiewicz and Petryk [10]. The tensile stress is

in the form of sin wave with frequency of 1Hz with amplitude of 114MPa, and applied for a half cycle only. The

elastic constants of the Cu-Al-Ni single crystal are used as those in the literature. The chemical energy density of

austenite phase (variant 7) is set to be zero (φA = 0) for simplicity; those of martensite phases (variant 1. . . 6) can

then be written as a function of temperature φM = 0.1436(T − 278)MJ/m3 [10]. For the simulations, an increment

δar =
1

1000
was used to estimate ∂Ġ

∂v . The velocity of the interface at the current time t can then be obtained directly.

The governing equations were numerically integrated using a forward Euler scheme with time step δt = 1
1000

s.

Figure 2 shows the stress and strain curve of the superelasticity effect, where the solid line represents the result

generated by the current model and the dotted line represents that in the literature [10]. Figure 2(a)–(f) are the patterns

present in the crystal generated by the current model. It starts from the pure austenite phase (Fig. 2(a)) and the unset

of the austenite to martensite transformation occurs when the magnitude of stress reaches 103MPa. The applied load

induces four A-M patterns in the crystal: two of them consist variants “1”, “3”, “7” and the others consist variants “2”,

“3”, “7”, as shown in Fig. 2(b). They are in good agreement with those in the literature. At point (c) in the stress and

strain curve, austenite phase vanishes; the A-M phase transformation is completed. It is worth noting that variant “3”

(colored in brown) is energetically favored by the applied load compared with variants “1” and “2”, and thus further

M-M phase transformation takes place resulting in a de-twinned, single phase state as shown in Fig. 2(d). However,

the model in the literature (dotted line) assumes there is no further de-twin process. Thus, the dotted line saturated

at point (c) with maximum strain of the crystal less than 5% while the solid line has maximum strain around 5.7% .

As the magnitude of the stress decreases, the current model suggests that the crystal adopts a different microstructural

evolution path and only two patterns are present (Fig. 2(e)). Finally, the austenite phase (variant “7”) grows gradually

by consuming the martensite variants “1”, “2” and “3”, and the microstructure returns to its initial state (Fig. 2(a)). It

can be observed that there is a significant difference between the two strain and stress curves when the applied stress

decreases. This is because the model in the literature assumes the crystal adopts the same evolution path for both A

to M and M to A phase transformations.
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Fig. 2. The predicted stress and strain curve for the superelasticity effect, where the solid line represents the result generated by the current model;

the dotted line represents that shown in the literature [10] and the corresponding microstructural evolution. Where different colors in the unit cell

represent the distinct crystal variants.

4. Conclusions

A kinetic model of laminate microstructure evolution in shape memory alloy single crystals has been developed,

based on non-linear compatibility theory, evolving according to the variational principle. Eight transitional patterns

which connect pure austenite and martensite twins are identified. The model was applied to study the response of

superelasticity in Cu-Al-Ni single crystals. The results reproduce and explain several significant features. The model

provides a rapid estimate of the microstructural evolution in SMAs and is ready to extend to study other crystal

systems and other materials.
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