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ABSTRACT 
In this paper, nonpolar a-plane GaN-based photonic crystals (PCs) with different defect cavities have been 

demonstrated. By using a micro-photoluminescence (μ-PL) system operated at 77 K, the dominant resonant modes of the 
GaN-based PC defect cavities show high quality factor (Q) values in the light emission performance which can be up to 
4.3×103. Moreover, the degree of polarization (DOP) of the light emission from the nonpolar GaN-based PC defect 
cavities was measured to achieve around 64 % along the m crystalline direction. 
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1. INTRODUCTION 
Photonic crystals (PCs) with defect cavities have been widely investigated and applied in advanced lasing devices 

owing to their significant photonic bandgap effect, which can be sufficiently employed to realize the photon confinement 
in a small mode volume and light emission with high quality factor (Q) values [1-4]. By changing the defect cavity 
parameters such as the cavity types, radius of constituent nanoholes, lattice constants, and the material compositions with 
different refractive indices, specific light emission characteristics could be acquired and employed in many applications 
such as the ultra-low threshold lasers and photonic integrated circuits [5-13].  

Among the great efforts made previously in the development of PC defect cavity lasers, most the studies were reported 
using GaAs and InP-based materials because the suspended thin membrane structures which are beneficial to achieve high 
Q values can be easily made by selective chemical etching to remove the underneath sacrificial layer [1,2]. However, some 
unwanted damages and composites cannot be avoided during the reaction process. Recently, GaN-based materials have 
attracted much attention and been considered as a competitive material for exploring next-generation optoelectronic 
devices. GaN-based materials exhibit many promising properties such as high exciton binding energy and oscillator 
strength which is beneficial for supporting high efficiency light emission and exciton-photon coupling capabilities. 
However, the PC defect cavity lasers based on the use of GaN-based materials were seldom addressed because of the 
relative challenging etching process in the thin membrane structures fabrications. Several feasible methods have been 
proposed such as the photo-electro-chemical (PEC) etching of InGaN sacrificial layers [14-17], selective chemical wet-
etching of InGaN layers grown on Si substrate [18,19] and selective thermal decomposition of GaN layers [20]. 
Nevertheless, it is still a challenge to fabricate GaN-based membrane structures due to the complex etching process of 
particular epitaxial structures. 

Although the fabrication of a thin membrane structure is relatively difficult in the GaN-based system, the quest to 
demonstrate a GaN-based PC defect nanocavity laser is still fascinating, especially for the nonpolar GaN-based materials. 
The main characteristic of nonpolar GaN is free of polarization fields in the quantum wells which can lead to high internal 
quantum efficiency and fabrication flexibility [21-26]. Furthermore, nonpolar GaN-based materials can exhibit the 
anisotropic gain in the m-axis or a-axis which is beneficial for development of low threshold and high power lasers [27-29]. 
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In this letter, the nonpolar a-plane GaN-based photonic crystals with different defect nano-cavities have been fabricated. 
The patterns were defined by an e-beam lithography (EBL) system and the thin membrane structures of the PC defect 
cavities were fabricated by using the focused ion beam (FIB) milling technique [30-32]. Via a micro-photoluminescence 
(μ-PL) system operated at 77 K, the light emission from the PC defect cavities has been characterized and demonstrated 
with high Q values in the light emission performance. Finally, the numerical calculation results were in a good agreement 
with the experimental results. 

2. SIMULATION 
The layer structure of the nonpolar a-plane GaN-based photonic crystals with defect cavities is schematically shown in 

Fig. 1(a), while the corresponding patterns of hexagonal H2 and linear L7 defect cavities which were performed in the 
simulations are represented Fig. 1(b). Numerical simulations were carried out with the three-dimensional (3D) finite 
difference time domain (FDTD) method and the simulation parameters such as the radius (r) of nanoholes, lattice constant 
(a) and the thin membrane thicknesses were extracted from the real devices. In the simulation model, the direction of a-
plane PC L7 cavities was designed to parallel the c-axis. Also, according to the work done by E. Matioli, et. al. [33], the 
quantum mechanical dipole moments are well described by electric oscillating dipole moments from classic 
electromagnetism, radiating an electric field ܧሬԦ mostly parallel to the m direction for the a-plane GaN. Therefore, electric 
dipoles were placed in the m-axis direction to represent the sample grown on the a-plane GaN as it indicated at the bottom 
of Fig. 1(b). 

 

 
 

Figure 1 Schematic diagram of the nonpolar GaN-based PC defect cavities. (a) The layer structure of the nonpolar GaN-
based PC defect cavities. (b) The corresponding patterns of hexagonal H2 and linear L7 defect cavities performed in the FDTD 
simulations. The simulation parameters such as the lattice constants (a) and the radius (r) of constituent nanoholes were 
extracted from the real sample devices. 

 

3. EXPERIMENT 
The nonpolar a-plane GaN-based structures were epitaxially grown on a r-plane sapphire substrate via the metal-

organic chemical vapor deposition (MOCVD) method, including a six pair InGaN/GaN multiple quantum wells (MQWs) 
layer of about 60 nm sandwiched between a 2 μm- and a 30 nm-thick un-doped GaN layers as the schematic fabrication 
process flow represented in Fig. 2(a). To etch the photonic crystal patterns with defect cavities onto the above GaN-based 
structures, a 200 nm-thick SiNx dielectric layer was first deposited on the top of the grown GaN-based samples as a hard 
mask using a plasma-enhanced chemical vapor deposition (PECVD) system and followed by a spin-coated poly-methyl 
methacrylate (PMMA) photoresist layer. Subsequently, the photonic crystal patterns with required defect cavities were 
defined by the electron-beam lithography (EBL) method, transferred to the SiNx hard mask and etched through the GaN 
and MQWs layers using reactive-ion etching (RIE) and the induced-coupled plasma (ICP) methods, respectively. At the 
end of the fabrication process, the focused-ion beam (FIB) milling was utilized by tilting the samples to fabricate the thin 
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membrane structure at the bottom of the GaN-based photonic crystal defect cavities, generating a free-standing-like thin 
film with a large air-gap as indicated in Fig. 2(h). 

Figures 3(a) and 3(b) show the scanning electron microscope (SEM) images of the patterned nonpolar a-plane GaN-
based PC with a hexagonal H2 and a linear L7 defect cavities, respectively. The radius (r) of constituent nanoholes and the 
lattice constant (a) in the PC H2 defect cavity were measured to be 26.5 nm and 105 nm, giving the r/a ratio of the 
photonic crystal is around 0.257. For the sample parameters extracted in the nonpolar GaN-based PC L7 defect cavity, the 
radius and lattice constant are 29 nm and 122 nm, respectively. Figure 3(c) shows the membrane area of the nonpolar GaN 
layer in a tilted angle view. The whole membrane area is estimated to be 10 μm2. As an enlarged image shows in Fig. 3(d), 
the thickness of the cleaved thin membrane layer is about 235 nm. 

 

 
Figure 2 Fabrication process flow for the nonpolar a-plane GaN-based PC defect cavities. Via the above fabrication 
process, the nonpolar a-plane GaN-based PC with designed defect cavities can be accomplished. By the FIB milling technique, 
the thin membrane structure of the PC defect cavity can be obtained to achieve high Q value in light emission performance. 
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Figure 3 SEM images of the fabricated nonpolar a-plane GaN-based PC defect cavities. The SEM images of nonpolar 
GaN-based PCs with (a) hexagonal H2 and (b) linear L7 defect cavities. (c) and (d) are the titled angle views of the nonpolar 
GaN membrane layer. The whole area and the thickness of the membrane thin film is about 10 μm2 and 235 nm, respectively. 

 

To investigate the light emission properties of the fabricated GaN-based nonpolar PC with defect cavities, the 
micro-photoluminescence (μ-PL) measurements were conducted at 77 K using a 325 nm He-Cd continuous wave 
(CW) laser as an optical pumping source in the measurement system. The laser beam was normally incident onto the 
devices with a spot size of around 15 μm in diameter, covering the whole photonic crystal patterns. The reflected μ-PL 
emission signal was collected by a 15X objective lens normal to the sample surface, then passed through a multiple 
mode fiber with a 600μm core and fed into a charge-couple device (Jobin-Yvon iHR320 spectrometer). The spectral 
resolution was about 0.07 nm for spectral measurements. 

 

4. RESULTS AND DISCUSSIONS 
Figures 4(a) and 4(b) reveal the μ-PL emission spectra of the nonpolar a-plane GaN-based photonic crystals with 

hexagonal H2 and linear L7 defect cavities, respectively. The dominated resonant mode is found about 388 nm for the PC 
H2 defect cavity, while located at around 419 nm for the PC L7 device. The locations of these two resonant modes are 
correspondent with the r/a ratio and still occurred in the photonic band gap range. To estimate the Q values of the resonant 
modes, we performed the Lorentz fitting on the measured data sets and represented the fitting results as the red curves 
shown in the figures. The light emission characteristics of the nonpolar a-plane GaN-based PC H2 and L7 defect cavities 
are estimated to be 4300 and 2000, respectively. The high Q factor in the nonpolar GaN PC defect cavities indicates good 
optical confinement provided by photonic bandgap in the lateral direction and total internal reflection in the vertical 
direction. Moreover, the Q values of our nonpolar GaN PC defect cavities are comparable to the previous studies of PC 
defect cavities grown on c-plane GaN, demonstrating that the FIB milling technique is capable to create the smooth surface 
of the thin membrane layer. In order to confirm the resonant modes observed in the photonic crystals with defect cavities, a 
series of numerical analyses was conducted as described above. The results are shown in Fig. 4(c) and 4(d) for the 
photonic crystals with H2 and L7 defect cavities respectively, showing that the calculated resonant wavelengths are located 
at 380 nm and 412 nm. The results are correspondent with the one obtained in experiments. 
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Figure 4 Resonant modes of the nonpolar a-plane GaN-based PC defect cavities. (a) and (b) show the measured PL results 
of the nonpolar a-plane GaN-based PC with H2 and L7 defect cavities, respectively. (c) and (d) represent the corresponding 
simulation results of the two types of PC defect cavities. 

 
Figures 5(a) and 5(b) show the polarization characteristics of the nonopolar a-plane GaN-based photonic crystals with 

H2 and L7 defect cavities, respectively. The degree of polarization (DOP) is defined as (Imax-Imin)/(Imax+Imin), where the Imax 
and Imin are the maximum and the minimum intensity of the resonant mode peak. The measured DOP was calculated to be 
64 % for the PC H2 defect cavity and 52 % for the PC L7 device. In order to understand the enhanced DOP value in the 
PC cavities, theoretical simulations were conducted to calculate the mode pattern at the corresponding resonant 
wavelengths as shown in Fig. 5(c) and 5(d). Both the figures show the square of electric field patterns in the nonpolar GaN 
PC cavities. They can be observed that the electric fields are oscillating along the m-axis. The high DOP value of the 
nonpolar GaN PC cavities could be attributed to the specific electric field distribution along the m-axis enhancing the 
dipole oscillation. 
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Figure 5 The polar plot of the resonant peak intensities for the nonpolar a-plane GaN-based PC defect cavities. (a) and 
(b) show the DOP performance of the nonpolar a-plane GaN-based PC H2 and L7 defect cavities, respectively. (c) and (d) 
represent the simulation results of the corresponding electric field distribution on the surface of the defect cavity devices.  

 

5. CONCLUSION 
In conclusion, the light emission characteristics between the nonopolar a-plane GaN-based photonic crystals with 

hexagonal H2 and linear L7 defect cavities have been demonstrated and analyzed. The μ-PL emission spectra indicated 
that dominated resonant modes of each PC defect cavity device occurred at 388 nm and 419 nm at 77 K. Q values of the 
corresponding resonant modes in the nonpolar a-plane GaN-based PC H2 and PC L7 defect cavities were estimated to be 
4.3×103 and 2×103, respectively. Moreover, the DOP values of the nonpolar a-plane GaN PC H2 and L7 defect cavities 
were estimated to be 64 % and 52 %, which were both higher than that of the c-plane GaN device. It suggests that the 
nonpolar a-plane GaN-based PC with defect cavities can be potential for the development of high quality and high 
efficiency optoelectronic devices. 
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