
ELSEVIER Information and Software Technology 38 (1996) 419-434

An executable specification language for specification understanding in
object-oriented specification reuse

Shih-Chien Chou, Jen-Yen Chen*, Chyan-Goei Chug

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu.
30050 Taiwan

Received 26 January 1995; revised 23 August 1995; accepted 21 September 1995

Abstract

System analysis time can be reduced through specification reuse which, however, requires specification understanding. This paper
presents an object-oriented executable specification language which reduces understanding time through executing specifications. In
addition to being executable, the specification language hides as many classes as possible within subsystems, and explicitly specifies
relationships between specification components. This facilitates specification modification. Moreover, the language explicitly specifies
interface parameters of specification components. This facilitates specification composition.

Keywords: Specification reuse; Specification behavior; Executable specification language

1. Introduction

Software reuse can tremendously improve software

development productivity and software quality [l-3].
Currently, many program code reuse techniques [4- 1 l]

are available. With these techniques, however, software
developers must specify a system’s specification and

design document before they can reuse program code.

To enhance the power of software reuse, some techni-

ques for reusing design documents [12- 171, and for reus-
ing specifications [19-211 have been developed.

Techniques for reusing specifications, for reusing design
documents, and for reusing program code can be inte-
grated to support a reuse-based software development

paradigm which will substantially reduce software devel-

opment time.
The object-oriented (00) software development

approach enhances software reusability through infor-

mation hiding (encapsulation), modularity, abstraction,

inheritance, and so on [22]. Reusability is thus one of the

most important promises of the 00 approach [23-251.
Despite the fact that many 00 software reuse techniques
have been developed [8-9,16,24,26-271, few successful
techniques for reusing 00 specifications are available.

* Corresponding author. Phone: 886-35-712121 Ext. 54726 Fax: 886-
35-724176 email:jychen@csie.nctu.edu.tw.

0950-5849/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDI 0950-5849(95)01080-7

This prompted us to work on an 00 specification

reuse technique.

A specification primarily specifies functions, data, and

behavior of a software system [28], where the system
behavior is shown by the system’s state changes. Since

executing a system’s functions will change its states, a
system’s behavior can be exhibited by executing its func-

tions. Functions and data are thus major components in

a specification. According to this, specifications with

functions and data similar to those of an intended system
are reusable. On the other hand, specifications with simi-
lar functions but different data may still be reusable. This

reuse can be accomplished by changing data. However,

specifications with different functions cannot be reused.
In this sense, specifications with functions similar to

those of the intended system are reusable. As the execu-

tion of a specification’s functions exhibits the specifica-

tion’s behavior, specifications with similar functions
have similar behaviors, and specifications with totally

different behaviors have no similar functions. Therefore,

specifications with behaviors similar to that of an
intended system may have functions similar to those of
the system and hence may be reusable. Such specifica-
tions are thus considered candidates for reuse.

Existent specifications are retrieved from a repository
for reuse. In a retrieval, there may be many specifications
retrieved, where some are reusable and others not. An

420 S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434

analyst should understand the retrieved specifications
before he or she can identify the reusable ones. Nor-
mally, the analyst browses and reads the retrieved speci-
fications in detail for the understanding. To save the
understanding time, the retrieved specifications which
are unreusable should be neither browsed nor read.
They should be filtered out before the browsing and
reading. As specifications with behaviors similar to that
of an intended system are considered candidates for
reuse, the retrieved ones with behaviors dissimilar to
that of the intended system can be filtered out. Behaviors
of the retrieved specifications should thus be understood
for the filtering.

Normally, a system’s behavior can be understood by
observing the system’s state changes. Understanding a
system’s behaviour by observing all its state changes,
however, may be difficult, because the system’s states
may be complex. Since behavior understanding in our
technique is just for filtering out unreusable specifica-
tions, understanding detailed behaviors is not necces-
sary. Thus, in this paper, ‘behavior’ refers to the input/
output data transformations and object state changes
during execution of a specification’s functions. In under-
standing this behavior, an executable specification lang-
uage is needed. This paper presents a specification
language for the understanding.

In addition to being executable, our specification lang-
uage facilitates modification and composition of specifi-
cations, because specifications may need to be modified
before being reused, and the reused specifications should
be properly composed to form a specification for the
intended system. In the remainder of this paper, the pro-
cess and issues of our 00 specification reuse technique
are described first. Next, the model of the executable
specification language and the language itself are respec-
tively described. Then, an example is used to illustrate
the usage of the language. Finally, conclusions are given.

2. Process and issues of our 00 specification reuse
technique

Our 00 specification reuse technique is based on the
following considerations:

(1) Specifications with behaviors similar to that of an
intended system are considered candidates for reuse.

As mentioned above, systems with similar behav-
iors may have similar functions. Specifications with
behaviors similar to that of an intended system may
thus be reusable. Accordingly, in a specification
retrieval, retrieved specifications with dissimilar
behaviors are not reusable and hence should be fil-
tered out. Note that in this paper, a specijication’s
behavior denotes the behavior of the system specified
by the specification.

(2) In addition to classes, subspecifications, or even
entire specifications, are considered candidates for
reuse.

Most 00 software reuse techniques [8-9, 24,261
reuse only classes, which are usually primitive units
in software systems. Applying such techniques is
often time-consuming because they tend to compose
existent classes to form subsystems and then compose
subsystems to form a software system. To remedy
that, our technique reuses classes as well as subspeci-
fications, or even entire specifications. As an 00
specification or subspecification is composed of sev-
eral classes and their relationships, reusing it corre-
sponds to reusing all those classes and relationships.
As classes in the same (sub)specification seem closely
related and related information tends to be reused
together [23], reusing (sub)specifications is more
efficient than reusing classes alone. Moreover, reus-
ing relationships among classes reduces the time for
structuring classes, because classes should be struc-
tured by their relationships. According to the above
description, reusing classes as well as (sub)specifica-
tions makes our technique more time-saving than
those that reuse classes alone.

(3) A software system may be specified by reusing var-
ious existent (sub)specifications.

Normally, a software system can be partitioned
into several subsystems. There is a possibility that
some subsystems of a software system are similar to
those of some existent (sub)specifications, and other
subsystems are similar to those of other existent (sub)-
specifications. A software system may thus be speci-
fied by reusing various existent (sub)specifications.

Existent 00 specifications should be classified and
stored in a repository before being retrieved for reuse.
They can be classified by facets [29], features [30], seman-
tic networks [31] and so on. According to the considera-
tions given above, our 00 specification reuse process is
outlined below.

(1) When an analyst wants to specify a (sub)system (or a
class), he or she describes its requirements in a query.
The query format should be the same as those for
classifying specifications. For example, if specifica-
tions are classified by semantic networks, the query
should be a semantic network.

(2) A reuse support tool retrieves (sub)specifications (or
classes) from the repository according to the query.
The retrieved ones are candidate reusable (sub)speci-
Jications (or classes).

(3) The analyst executes the retrieved candidates and fil-
ters out those with behaviors dissimilar to that of the
intended (sub)system (or class). He or she then
browses and reads the details of the other candidates
and selects some for reuse. Normally, those with the
most similar behaviors are selected. If the selected

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 421

ones do not exactly fit the intended (sub)system (or
class), they should be modified.

(4) If no candidates are retrieved in step (2) or no
retrieved candidates are selected for reuse, the
intended (sub)system (or class) cannot reuse any exis-
tent (sub)specification (or class). The analyst should
thus specify the (sub)system (or class) from scratch.

(5) After specifying all subsystems and classes of the
intended system, the analyst composes the reused
(sub)specifications and classes into a specification
for the intended system

According to the process outlined above, major issues
for our 00 specification reuse technique are:

(1) classification and retrieval of specifications;
(2) understanding of specification behaviors; and
(3) modification and composition of specifications.

The classification and retrieval technique for our 00
specification reuse technique has been described elsewhere
[32]. This paper presents an 00 executable specification
language which facilitates the understanding of specifica-
tion behaviors and facilitates the modification and com-
position of specifications.

3. Model of the specification language

The specification language is based on an object-
oriented analysis (OOA) model. The following subsec-
tions respectively describe the design philosophy of the
model, the model itself, and a specification example
represented in the model.

3.1. Design philosophy of the model

A software system responds to a set of stimuli, or
events, which occur in the external environment or in
the internal of the system [33,34]. An external event
can be a user command, an interrupt from another sys-
tem, etc. For example, a library system responds to such
external event as ‘A borrower wants to borrow a book’.
An internal event may occur periodically inside the sys-
tem. For example, a supermarket system may periodi-
cally check and print the stock levels of its selling
items. The response of an event corresponds to a part
of the system’s behavior. For example, suppose that a
library system responds to the event ‘A borrower wants
to borrow a book’ by lending the book to the borrower.
Then, one will know that the library system will lend
books to borrowers, which is a part of the system’s
behavior. In this sense, a system’s behavior can be
observed by checking its event responses. A system’s
event responses are referred to as its system functions in
this paper. Under this circumstance, executing a system’s
system functions exhibits the system’s behavior. As

existent specifications with behaviors similar to that of
an intended system are considered candidates for reuse,
the reusability of a specification can be determined by
checking its system functions.

Major components in an 00 specification are classes
and their relationships [22]. Classes are domain-oriented.
They encapsulate attributes and operations, and instan-
tiate objects that exhibit specific behaviors. A class
operation is referred to as a class service in this paper.
Class services can be separated into two types: (1) query
services (Qservices), which retrieve attribute values
from objects, and (2) state transition services (STservices),
which change object states. This separation will reduce
the couplings among class services and hence makes
classes easier to modify. The relationships among classes
include association, inheritance, aggregation, using
(invocation) relationships, and so on [22].

In an 00 specification, objects instantiated from
classes and the instantiated objects’ class services are
used by system functions, which are outside the classes.
When a system function is executed, some objects are
triggered. The triggered object(s) may trigger still other
object(s), and the triggering continues until the system
function is completed. For example, when executing the
system function ‘Borrow a book’, -- the library system
triggers the object ‘Book’ to change its status from
‘In-library’ to ‘Borrowed’, and triggers the object
‘Borrower’ to increase his or her borrowed amount.
The triggered objects will execute their class services.
This in turn will accomplish a system function. There-
fore, in an 00 specification, system functions can be
identified by tracing class services and invocation rela-
tionships among the services.

Some OOA methods [35] do not explicitly specify sys-
tem functions in specifications. Anyone who wants to
understand the behaviors of such specifications may
need to trace class services and invocation relationships
among the services in order to identify and check system
functions, because a specification’s behavior is exhibited
by executing its system functions. Behaviors of such 00
specifications are thus not easy to understand. On the
other hand, if an 00 specification explicitly specifies
system functions, and describes how the system functions
are accomplished by class services, the specification’s
behavior would be easier to understand. Since our
specification language must facilitate the understanding
of specification behaviors, it should be based on an OOA
model that explicitly specifies system functions. The next
subsection describes our OOA model. Only the model is
described, but not the OOA process.

3.2. The OOA model

Our OOA model is composed of two sub-models: (1)
the class sub-model that specifies classes and relation-
ships among classes, and (2) the function sub-model

422 S.-C. Chou et aLlInformation and Software Technology 38 (1996) 419-434

Name (instance limit)

Attribute (value limit)

[NY [tyPeI j

Type of services = ‘ST for STservices
‘Q’ for Qservices

Fig. 1. Notation for a class.

that specifies system functions. In the class sub-model, a
class encapsulates attributes and services, and instan-
tiates objects that exhibit specific behavior. Class services
are separated into Qservices and STservices. Relation-
ships among classes specified in our model include asso-
ciation, inheritance, aggregation, and invocation (using)
relationships.

Fig. 1 shows the notation for representing a class
which is divided into three fields. The first field specifies
the name and instance limit of the class, where the
instance limit limits the number of objects instantiated
from the class. The second field specifies class attributes
and their value limits. And the last field specifies class
services. Each class service is associated with a mini-spec
that describes its detailed operations. To prevent
information overload, class service mini-specs are not

Y \
Generalization
class

shown in the notation, but described in the specification
document instead. As for the relationships among
classes, they are represented by the notations shown in
Fig. 2. Classes and their relationships constitute the class
sub-model of our OOA model. Fig. 3 illustrates an exam-
ple of a class sub-model for a simplified library system
which will be described shortly.

In the function sub-model, system functions are
explicitly specified. Each system function is associated
with a mini-spec that describes its detailed operations.
Since system functions are accomplished by invoking
class services, their mini-specs are described by class ser-
vice invocations which are structured by these control
structures: sequences, selections, and iterations. For
example, the mini-spec of the system function
‘Borrow_a_book’ can be described in pseudo code as
shown in Fig. 4.

When there are quite a few system functions, the list of
system functions is so long that it may jeopardize read-
ability of the specification: Thus, several system func-
tions should be grouped into a subsystem. System
functions which invoke services of the same classes are
candidates to be grouped together. System functions are
not specified alone in the function sub-model. Instead,
they are listed in the subsystems to which they belong.
System functions in a subsystem will invoke classes for
services (i.e. invoke their class services). The invoked
classes show the relationships between the system func-
tions and the classes. Those classes are thus listed in the
subsystem to which those system functions belong. Fig. 5

Whole

Fig. 2. Notations for relationships among classes: (a) Notation for an inheritance relationship; (b) Notation for an aggregation relationship;
(c) Notation for an invocation relationship; (d) Notation for an association relationship.

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 423

Book \

Status
Title
Identifier
Author

Create[STj
Rernove[ST]
Borrow(STj
Retum[ST)
Reserve[S_rl
Get_status[Q]
c /

I Borrower

Identifier
Borrowed-amount
Borrowing-right
Amount-limit

Create[Sq
Remove[STj

) Increase_borrowed_amount[STl
Decrease_borrowed_arnount[ST
Suspend_borrowing_rigM[STJ
Resume_borrowing_rigMtST]
Get_borrowing_right[Q]

/

Fig. 3. Class sub-model for a simplified library system

shows the notation for representing a subsystem which is
divided into three fields. The first field specifies the sub-
system name. The second field specifies classes invoked
by the subsystem (actually, they are invoked by the sub-
system’s system functions). And the last field specifies the
subsystem’s system functions. Again, to prevent infor-
mation overload, system function mini-specs are not
shown in the notation, but described in the specification
document instead.

After grouping system functions into subsystems,
further grouping of those subsystems into even larger
subsystems may be needed if there are many subsystems.
Thus, the grouping activity will result in a hierarchy
structure, called a system-subsystem hierarchy in this
paper. The grouping ends when there is only one node
(i.e. the system) in the root of the hierarchy. The hierar-
chy constitutes the function sub-model of our OOA
model. Fig. 6 illustrates an example of a function sub-
model for a simplified library system which will be
described shortly.

In a system-subsystem hierarchy, the system or some
of its subsystems may not directly contain system func-
tions and classes (e.g. the root node in Fig. 6), because
they are obtained by grouping subsystems. In this case,
the (sub)systems indirectly contain all the system
functions and classes of their subsystems. For example,

in Fig. 6, the root node (i.e. the library system) indirectly
contains all the classes and system functions that are in
its two subsystems.

The system-subsystem hierarchy (i.e. the function sub-
model) is used as a structure for large-scale model
partitioning [36], and hence is a guidance for reading
or checking the specification. When someone reads a
specification, he or she first browses through its system-
subsystem hierarchy to identify system functions. Then
he or she checks each system function mini-spec and each
class invoked by the system function.

Note that in Fig. 6, a class with the annotation ‘[PI’
means it is a private class for the subsystem. That is, the
class is invoked by no subsystems other than that sub-
system. Conversely, a class with the annotation ‘[S]’
means it is shared (or invoked) by several subsystems.
These annotations are used for information hiding,
which will be described in the next subsection.

3.3. Information hiding in the model

Modification is necessary when the reused (sub)speci-
fications (or classes) do not exactly fit the intended (sub)-
system (or class). As most software engineers agree,
information hiding is a good feature to improve modi-
fiability [37]. In our technique, classes, subsystems and

IF the book is in library, the borrower’s borrowing right is YES’,
and the borrower’s borrowed amount is not over limit THEN

Invoke the service ‘Borrow’ of the class Book’ to
borrow the book to the borrower.

Invoke the service ‘Increase borrowed_amount’ of the class Borrower’ to
increase the borrowe?s borrowed amount.

ENDIF

Fig. 4. Pseudo code for the mini-spec of the system function ‘Borrow_a_book’.

424 S.-C. Chou et al./lnformation and Software Technology 38 (1996) 419-434

Name

Class

System function

Fig. 5. Notation for a (sub)system.

even entire system specifications are subjected to reuse,
classes and subsystem specifications (including system
specifications) should thus possess the information hid-
ing feature.

Classes in our model possess information hiding
feature, but not subsystems. We thus rearrange subsys-
tems’ contents, hoping that they will possess this feature.
Basic considerations for this rearrangement are to: (1)
hide the classes invoked by a subsystem within it, and
(2) access those classes by means of the subsystem’s sys-
tem functions. However, this rearrangement will fail
when several subsystems invoke the same classes,
because the shared classes cannot be hidden within any
subsystem. For example, in Fig. 6, the class ‘Borrower’
are invoked by both the subsystems ‘Book-management’
and ‘Borrower-management’. To remedy that, we loosen
the requirements for information hiding in subsystems so

Library-system

F

that classes can be either hidden within subsystems or
shared by several subsystems. If a class is invoked by
only one subsystem, the class is hidden. Conversely, if
a classes is invoked by several subsystems, it is considered
shared and cannot be hidden. With this rearrangement,
subsystems can possess partial information hiding feature,
and hence improve their modifiability.

3.4. An example

A simplified library system is used as an example here.
Its functional requirements are described in brief below:

A library system should manage both book and
borrower status. Books in the library can be borrowed
by borrowers. Borrowed books can be returned. If
necessary, books can be reserved. Reserved books can-
not be borrowed. When a borrower borrows books,
his or her borrowed amount should be increased by the
number borrowed. On the other hand, when the
borrower returns books, the borrowed amount should
be decreased. Borrowed amounts are limited. New
books can be added and obsolete books can be
discarded.

A borrower’s borrowing right can be suspended. A
suspended right can be resumed. New borrowers can
be added and current borrowers can be removed.

Fig. 3 shows the class sub-model of the system’s
specification where two classes, ‘Book’ and ‘Borrower’,
are specified. An association relationship between those
classes connects a borrower and the books he or she

Book-management

Book[P]
Borrower[S]

Borrow_a_book
Return-a-book
Add-a-book
Remove_a_book
Reserve-a-book

Borrower-management

Borrower[S]

Add_a_borrower
Remove_a_borrower
Suspend_a_borrowing_rigM
Resume_a_borrowing_right

Fig. 6. Function sub-model for a simplified library system.

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 425

borrows. Moreover, there is an invocation relationship The analyst then executes system functions of the
between the two classes, because when books are bor- subsystem. If the subsystem contains other subsys-
rowed or returned by a borrower, the borrower’s bor- tem(s), system functions of the subsystem(s) should
rowed amount should be increased or decreased. That is, also be executed, because the subsystem indirectly
the services ‘Borrow’ and ‘Return’ of the class ‘Book’ contains all system functions of its subsystem(s).
invoke the services ‘Increase_borrowed_amount’ and After system functions of all the specification’s sub-
‘Decrease_borrowed_amount’ of the class ‘Borrower’, systems are executed, the specification has been
respectively. executed.

Fig. 6 shows the function sub-model of the system
specification. Here we partition the library system into
two subsystems: one is ‘Book-management’ and the
other is ‘Borrower-management’. The former sub-
system’s system functions are: ‘Borrow_a_book’,
‘Return a book’, -- and so on. They are accomplished by
invoking services of the classes ‘Book’ and ‘Borrower’.
For example, the system function ‘Borrow a book’ is
accomplished by invoking the service ‘Borrow’ of the
class ‘Book’ and the service ‘Increase_borrowed_
amount’ of the class ‘Borrower’. The latter subsystem’s
system functions are: ‘Add_a_borrower’, ‘Remove-a_
borrower’, and so on. They are accomplished by invok-
ing services of the class ‘Borrower’. Each system function
is associated with a mini-spec. For example, the mini-
spec of the system function ‘Borrow a book’ is shown --
in Fig. 4. Note that in Fig. 6, the library system indirectly
contains all the system functions and classes of its two
subsystems.

(2) It should facilitate specification modification.
Our OOA model allows subsystems to hide as

many classes as possible so that modifiability of
specifications can be improved. Our specification
language further enhances this modifiability by pro-
viding statements to explicitly declare the relation-
ships among classes and for declaring the classes
invoked by subsystems. With this declarations, the
dependency relationships among classes and those
between system functions and classes can be con-
structed. From these dependency relationships, one
can identify the system functions and classes that
should be modified accordingly when some classes
are modified. For example, in Fig. 3, the class
‘Book’ depends on the class ‘Borrower’, because the
former’s services invokes the latter’s. Thus, when the
latter is modified, the former may need to be
modified.

4. The specification language

This specification language provides statements to
specify (sub)systems (including their system functions)
and classes in an 00 specification. A (sub)system or
class specified in this language is partitioned into two
parts: (1) its declaration which primarily specifies inter-
faces, and (2) its body which specifies specification
details. In the following subsections, basic considerations
of this language are first described. Then, (sub)system
specifications and class specifications are respectively
described. Furthermore, Appendix A specifies the
simplified library system in this language.

(3) It should facilitate specification composition.
Composing software components into software

systems can be facilitated by clear component inter-
faces. Composing (sub)specifications is not an excep-
tion. This language thus provides statements for
explicitly declaring the interfaces of class services
and those of system functions in order to facilitate
specification composition.

4.2. (Sub)system spec$cations

4.1. Basic considerations of the language

As shown in Fig. 7, a (sub)system’s specification starts
with a ‘SUBSYSTEM’ statement which specifies its
name. Its declaration and body are then respectively
specified. The declaration delcares classes hidden in the
(sub)system, shared classes, the (sub)system’s subsystems
and system functions, and interfaces of the system func-
tions. The body specifies the detailed operations of the
system functions.

The specification language is based on the following
considerations:

In a (sub)system declaration (see Fig. 8) the following
statements are used:

(1) It should facilitate specification behavior understand-
ing.

As mentioned above, a specification’s behavior can
be understood by executing its system functions. Sys-
tem functions are thus executable units in our speci-
fication language. When executing a specification, an
analyst follows the specification’s system-subsystem
hierarchy to locate a subsystem for the execution.

(1) ‘PRIVATE_CLASSES’ statement for declaring
classes hidden in the (sub)system.

(2) ‘SHARED-CLASSES’ statement for declaring
shared classes.

(3) ‘DOMINATED_SUBSYSTEMS’ statement.
This statement declares the (sub)system’s subsystems,
hence it can be used to declare the system-subsystem
hierarchy of a specification.

426 S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434

SUBSYSTEM subsystem-name

SUBSYSTEM_DECLARATION
P subsystem declaration is here *I

END_SUBSYSTEM_DECLARATlON

SUBSYSTEM-BODY
/’ subsystem body is here “I

END_SUBSYSTEM_BODY

END-SUBSYSTEM

Fig. 7. (Sub)system specification template.

(4) ‘SYSTEM_FUNCTIONS’ statement.
This statement is used to declare the (sub) system’s
system functions and their input/ output parameters.
It thus facilitates specification composition.
Parameter types are also declared here.

A (sub)system’s body (see Fig. 9) specifies detailed
operations of the (sub)system’s system functions. Refer-
ring to Fig. 4, system functions’ detailed operations are
described by class service invocations, which are struc-
tured by these control structures: sequences, selections,
and iterations. Thus, service invocation statements, con-
dition statements, and loop statements are needed for
specifying system functions. Major statements for speci-
fying system functions are described below:

(1) Service invoking statements.
A service invoking statement has the following
syntax:
class name.service_name(parameter, . . . , parameter);
If theinvoked service is an STservice (state transition
service), no values will be returned. If the invoked
service is a Qservice (query service), attribute values
will be returned by means of the parameters.

A service invoking statement invokes a class ser-
vice. Since a class may instantiate many objects,
invoking the class’s services may affect more than
one of its objects. For example, suppose that the
class ‘Book’ has instantiated two objects with the
same title ‘Software engineering’. .And, the service
‘Borrow’ of the class ‘Book’ lends books with a cer-
tain title to a borrower. Then, if a borrower wants to
borrow a book with the title ‘Software engineering’,
the service ‘Borrow’ will lend both books to the bor-
rower. However, the invocation of a class service
should normally affect only one of the class’s objects.
Thus, a class should have attribute(s) that can be used
as a key so that the class’s objects can be uniquely
identified by their key values. Such attribute(s) are
called key attribute(s). Key attributes should be
passed as parameters to class services so that invok-
ing a class service will affect only one of the class’s
objects.

END_SUBSYSTEM_DECLARATlON

SUBSYSTEM_DECLARATlON

PRIVATE_ClASSES class-name, class_name, . . . ;
SHARED-CLASSES class_name, class_name, . . . ;
DOMINATED-SUBSYSTEMS subsystem_name, . . . ;
SYSTEM-FUNCTIONS {

system_function_name (parameter[l or 0 or IO]:typa, . . .);

1

Fig. 8. (Sub)system declaration.

(2) Condition statement.
A condition statement has one of the following syntax:

IF condition THEN statements ELSE statements
ENDIF
IF condition THEN statements ENDIF

where ‘statements’ is a sequence of statements.
(3) Loop statement.

A loop statement has the following syntax:

WHILE condition DO statements ENDDO

(4) Object retrieving statement.
Sometimes system functions must access objects. For
example, to create/dissolve aggregation relationships
among objects (see below), system functions must
access objects. Objects must be retrieved before
being accessed. Their key attributes are used to
retrieve them. The following statement is used to
retrieve an object from a class:

RETRIEVE object name FROM class-name
WITH-KEY key-attributes;

The retrieved object is assigned to the variable
‘object-name’, which can then be used to access the
object.

(5) Relationship creating/dissolving statement.
During runtime, an object of a component class can
exist without being attached to an aggregated object.
An aggregated object can also be created without its
component objects. Moreover, an object can exist
without associating with any other objects. There-
fore, aggregation and association relationships are
dynamic relationships during runtime, hence state-
ments are needed for creating and dissolving these
relationships. An aggregation relationship between
two objects is created by this statement:

object-1 PART-OF object_2;

where ‘object-l’ and ‘object_2’ are objects retrieved
by the object retrieving statement as described above.

An association relationship between two objects is

SUBSYSTEM-BODY

system-function-name (parameter, . . .)
1

statement;
statement;

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 427

(3) ‘ASSOCIATED_CLASSES’ statement.
This statement is used to declare association relation-
hips among classes. Cardinalities of such relationships
are also declared. For example, in the class declara-
tion of the class ‘Book’, the statement ‘ASSOCIA-
TED-CLASSES Borrower (0 : 1, 0 : 10)’ declares that
there is an association relationship between the
classes ‘Book’ and ‘Borrower’, and a borrower can
borrow at most 10 books and a book can be bor-
rowed by a borrower at a time. system-function-name (parameter, . . .)

1

END_SUBSYSTEM_BODY

Fig. 9. (Sub)system body.

created by the statement

object-1 ASSOCIATION_OF object_2;

A relationship between two objects are dissolved
by this statement

DISCONNECT object-l, object_2;

(4) ‘INVOKED_CLASSES’ statement.
This statement declares the classes whose services are
invoked by the class being specified. It can thus be
used to declare invocation relationships among classes.

(5) ‘ATTRIBUTES’ statement.
This statement is used to declare class attributes, their
value limits, and their types. For example, the state-
ment ‘ATTRIBUTES Status (‘Y’,‘N’) : CHAR’
declares that the class being specified has the attribute
‘Status’ with the type ‘CHAR’, and the attribute
value must be either ‘Y’ or ‘N’.

(6) ‘KEY-ATTRIBUTES’ statement for declaring the
class’s key attributes.

4.3. Class specijkations

As shown in Fig. 10, a class’s specification starts with a
‘CLASS’ statement that specifies its name and instance
limit. Its declaration and body are then respectively
specified. The declaration declares class attributes, class
services, class service interfaces, and the relationships
between the class and other classes. The body specifies
the detailed operations of the class’s STservices.
Qservices do not need to be specified in the body, because
the only operation of such services is to retrieve attribute
values.

(7) ‘PROVIDED_STSERVICES’ statement.
This statement is used to declare the class’s
STservices and their parameters (interfaces). Key
attributes should be included in the parameters to
uniquely identify objects. Parameter types should
also be declared. All the parameters are for input,
because STservices return no values.

(8) ‘PROVIDED_QSERVICES’ statement.
This statement is used to declare the class’s Qservices
and their parameters. Parameter types should also be
declared. Key attributes should be included in the
parameters. They are solely for input. Other param-
eters are for retrieving attribute values. They are for
output.

(9) ‘REQUIRED_SERVICES’ statement for declaring
class services invoked by the class being specified.

In a class declaration (see Fig. 1 l), the following state-
ments are used:

(1) ‘SUPER_CLASSES’ statement.
This statement declares the class’s super-classes. It
can thus be used to declare inheritance relationships
among classes.

(2) ‘PART-CLASSES’ statement

The last three statements are used to explicitly specify
class interfaces, hence facilitate specification composition.

A class body (see Fig. 12) specifies detailed operations
of the class’s STservices. STservices of a class change
states of the class’s objects. They are thus specified
according to the objects’ state transitions. That is, the
detailed operations of an STservice is composed of sev-
eral state transitions. A state transition has this syntax:

This statement declares the class’s part classes. It can
thus be used to declare aggregation relationships
among classes. Cardinalities of those relationships
are also declared. For example, in the class declara-
tion of the class ‘Car’, the statement ‘PART_
CLASSES Wheel(O.4)’ declares that the class
‘Wheel’ is a part class of the class ‘Car’, and a car
can have at most four wheels.

current-state:
statements;

where ‘current-state’ denotes the state of the class’s
objects whose states will be changed after the STservice
is executed, and ‘statements’ is a sequence of statements
that specifies the operations of the state transition. When
an STservice of a class is executed, states of the class’s

428 S.-C. Chou et aLlInformation and Software Technology 38 (19%) 419-434

CLASS class_name(instance_limit)

CLASS_DECM?ATlON
p class declaration is here l /

END_CLASS_DECLARATION

CLASS-BODY
F class body is here *I

END_CLASS_BODY

END-CLASS

Fig. 10. Class specification template.

objects are checked. The object with the same state as
that specified in a state transition’s current state (i.e.
‘current-state’ above) are first identified. The statements
specified in the state transition are then executed to
change the identified object’s state.

The current state in a state transition (i.e.
‘current-state’ as described above) takes the form:

(expression_l,expression_2, . . .)

where the values of ‘expression-l’, ‘expression_2’, etc.
correspond to the values of the first, second, etc. attri-
butes of the object, respectively. In general, the values of
all attributes constitute an object state. However, in some
STservices, not all attributes are needed to specify the
state transitions. The ‘USED-ATTRIBUTES statement

is used to define the attributes used in an STservice.
Attributes that can be used by a class’s STservices
include attributes of its own and those of its super-
classes. To ensure that the invocation of a class service
will change the state of only one of the class’s objects, key
attributes should be included in the used attributes.

There is a special current state used in STservice
specifications: ‘()‘. It means null state. That is, the object
is not existent. This state is used to specify the STservices
that create or remove an object.

A state transition is composed of a state change opera-
tion and some other operations (e.g. operations to
invoke other services). Thus, to specify state transitions
in STservices, all the statements for specifying system
functions mentioned above can be used. Moreover, this
language provides a state change statement for
STservices. It has the following syntax:

NEW-STATE-IS new-state;

where ‘new-state’ takes the same form as ‘current-state’
described above.

5. Usage of the specikation language

The process to specify a car rental system by reusing
existent specifications is used to illustrate the usage of the
specification language. Functional requirements of the

CLASS_DECLARATION

SUPER-CLASSES class_nama, class_name, . . . ;
PART-CLASSES class_name(cardinality), class_name(cardinality), . . . ;
ASSOClATED_CLASSES class_name(cardinalii), class_name(cardinality), . . . ;
INVOKED_ClASSES class-name, class_name,...;
ATTRIBUTES attribute_name(value_limit): type, attribute_name(value_limit): type, . . . ;
KEY-ATTRIBUTES attribute_name,atbibute_name,...;

PROVIDED_STSERVICES {
STservice_name(parameter: type, parameter: type, . ..).
STservice_name(. . .)

PROVIDED_QSERVICES {
Qservice_name(parameter@ or 01: type, paratneterfl or 0): type, . ..).
Qservice_name(. . .)

REQUlRED_SERVlCES (
class_name.service_name, class_name.serviae_name,...;

)

END_CLASS_DECLARATlON

Fig. 11. Class declaration.

CLASS-BODY

STservice_name(parameter, . ..)
1

USED_ATfRIBUTES: sttribute_name, attribute-name,

current_stat_l:
statements;

current_state_2:
statements;

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 429

‘Borrow_a_book’ is shown in the figure. After the
execution of this system function, the state of the object
‘Book’ with identifier ‘1001’ is changed from ‘(1001,
:‘In_library”)’ to ‘(1001, “Borrowed”)’ and the state of
the object ‘Borrower’ with identifier ‘1001’ is changed
from ‘(1001,O)’ to ‘(1001,l)‘. After observing the output
data and state changes due to the execution of all the
specification’s system functions, the analyst can under-
stand the specification’s behavior to a certain degree of
detail.

STsenrice_name(paramster,...)
(

END_CLASS_BODY

Fig. 12. Class body.

car rental system are described in brief below:

The car rental system manages both car and custo-
mer status. Cars in the system can be rented by custo-
mers. Rented cars can be returned. Moreover, cars can
be sold. When a customer rents cars, his or her rental
amount should be increased by the number rented. On
the other hand, when the customer returns cars, the
rental amount should be decreased. New cars can be
added and obsolete cars can be discarded.

A customer’s renting right can be suspended. A sus-
pended right can be resumed. New customers can be
added and current customers can be removed. The
system also manages its employee’s status, such as sal-
aries and work times. New employees can be added
and current employees can be removed.

After understanding the behaviors of the retrieved
candidates and filtering out the unreusable ones, the
analyst reads the other candidates and selects some for
reuse. If the reused ones do not exactly fit the intended
system, they should be modified. For example, suppose
that the library system specification is reused for the car
rental system. Then, the following modifications should
be performed: (1) the class ‘Borrower’ of the library sys-
tem should be renamed to be ‘Customer’, (2) the class
‘Book’ should be renamed to be ‘Car’, (3) attributes of
the reused classes should be modified, for example, the
attribute ‘Author’ should not be an attribute of the
class ‘Car’ and hence should be deleted from the reused
class ‘Book’, (4) services of the reused classes should be
modified, for example, the service ‘Sell’ should be a
service of the class ‘Car’ and hence should be added,
and (5) system functions should be modified, for
example, a new system function ‘Sell_a_car’ should
be added.

In the reuse process, suppose that after specification
retrieval, the library system specification (see Figs. 3 and
6, and Appendix A) and some other specifications are
retrieved as candidate reusable specifications. For these
candidates, the analyst executes them to observe their
behaviors so that the unreusable ones can be filtered
out. When executing a specification, the analyst first
follows the system-subsystem hierarchy to select a
subsystem. He or she then executes the subsystem’s
system functions. When executing a system function,
the analyst first keys in its input data, then observes the
output data and object state changes after the execution.
Fig. 13 shows the execution of the library system
specification (as specified in Appendix A) where the
subsystem ‘Book-management’ is selected to execute.
The execution of the subsystem’s system function

After specifying all subsystems of the car rental sys-
tem, the analyst composes the subsystems to form a com-
plete specification for the system. The composition can
be accomplished by defining relationships among classes
and constructing the system-subsystem hierarchy. For
example, suppose that the analyst reuses the library sys-
tem and an employee management subsystem of a par-
ticular specification to specify the car rental system,
where the employee management subsystem contains
the class ‘Employee’. Then, the specification of the car
rental system is depicted in’Figs. 14 and 15, where the
former figure shows the class sub-model and the latter
shows the function sub-model.

6. Conclusions

Techniques for specification reuse, design document
reuse, and program code reuse can be integrated to sup-
port a reuse-based software development paradigm,
which can tremendously improve software development
productivity and software quality. Object-oriented devel-
opment further fosters software reuse.

In specification reuse, candidate reusable specifica-
tions are retrieved from a repository, where some are
reusable and others not. The unreusable ones should be
filtered out before an analyst reads the candidates to

430 S.-C. Chou et al./Information and Sojiware Technology 38 (1996) 419-434

ir c
se1 Cusr/choulX LengInt

Specification to be executed: Library-system

i Th e specification ‘Library-system has these subsystems:
I
I Book_management Borrower-management

j Select a subsystem to execute: Book-management

The subsystem ‘Book_management’ has these system functions:

Borrow_a_book
Bdd_a_book
Reserve_a_book

Return-a-book
Rerove_a_book

i Select a system function to execute: Borrow_a_book

Key in input data:
Book-identifier: 1001

Borrower-identifier: 1001

Execution results:

1 Output data:

/ Object state changes:
I Book: <1001.“In_library”> -> <lOOl.“Borrowed”>

Borrower: <lOOl.O> -> <lOOl,l>

The subsystem ‘Book_management’ has these system functions:

Borrow_a_book

Rdd_a_book
Reserve-a-book

Return-a-book
Rerove_a_book

Select a system function to execute: 0

i -_- - v_-. -

Fig. 13. Execution of the library system specification.

understand them. This filtering can be accomplished by
observing the candidates’ behaviors, because specifica-
tions with behaviors dissimilar to that of the intended
system cannot be reused and hence can be filtered out.
A specification’s behavior can be easily observed by
executing the specification. To make specifications
executable, an executable specification language is

needed. This paper presents an executable specification
language for specification behavior understanding in 00
specification reuse. Since a specification’s behavior can
be understood by executing its system functions, this
language is based on an OOA model that, in addition
to classes, explicitly specifies system functions, which are
further grouped into subsystems.

/car
Customer f

Employee

Status
Identifier
Rental-amount identifier

Model
Identifier

Renting-right Salary
Work-time

Owner Create[Sq
Remove[ST] Create[STj

Create[STl Increase_rental_arnount[Sq Remove[STl
Rernove[Sq d Decrease_rental_amount]S~ Increase_salary[Sq
Rent[ST] Suspend_renting_right[STj Uecrease_salary[ST]
Return[STJ Update_work_time[ST)
Sell[ST]

Resume_renting_right[ST]
Get_renting_right[Q] Get_satary[Q]

Get_status[Q]
\ t_rental_amount[Q] Get_work_time[Q]

Fig. 14. Class sub-model for a car rental system.

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 431

Car_rental_systern

Car-management

Car[P]
Customer[S]

Rent-a-car
Return-a-car
Add-a-car
Remove-a-car
Sell-a-car

I
Customer_management 1

Customer[S]

Add-a-customer
Remove_a_customer
Suspend-a-renting-right
Resume-a-renting-right

Employee-management

Employee[P]

Add-an-employee
Remove-an-employee
Update-salary
Update_work_time

Fig. 15. Function sub-model for a car rental system.

This language offers the following features: Council, ROC, under project number NSCSl-040%
1009-542.

(1) It facilitates specification behavior understanding.
This language provides executable statements for
specifying system functions. A specification’s behav-
ior can thus be understood by executing its system
functions. Since system functions will invoke class
services during execution, this language also provide
executable statements for specifying class services.

Appendix A

The simplified library system’s specification written in
the proposed specification language is listed below.

(2) It facilitates specification modification.
To facilitate specification modification, this language
hides as many classes as possible within subsystems
so that they possess partial information hiding fea-
ture. In addition, this language provides statements
for explicitly declaring the relationships among
classes and for declaring the classes invoked by sub-
systems. This allows the language interpreter to con-
struct dependency relationships both among classes
and between system functions and classes. From the
dependency relationships, one can identify the system
functions and classes that should be modified accord-
ingly when some classes are modified.

(3) It facilitates specification composition.
Composing software components into software sys-
tems can be facilitated by clear component interfaces.
Composing(sub)specifications is not an exception.
This language thus provides statements for explicitly
declaring the interfaces of class services and those of
system functions to facilitate specification composition.

Acknowledgment

SUBSYSTEM Library-system
SUBSYSTEM_DECLARATION

DOMINATED_SUBSYSTEMS
Book-management, Borrower-management;

END_SUBSY STEM-DECLARATION
END-SUBSYSTEM

SUBSYSTEM Book-management
SUBSYSTEM_DECLARATION

PRIVATE-CLASSES Book;
SHARED-CLASSES Borrower;
SYSTEM_FUNCTIONS {

Borrow_a_book
(Book_identifier[I]:INTEGER,
Borrower_identifier[I]:INTEGER);
Return-a-book
(Book_identifier[I]:INTEGER,
Borrower_identifier[I]:INTEGER);
Reserve_a_book(Identifier[I]:INTEGER);
Add_a_book(Identifier[I]:INTEGER,
Status[I]:STRING, Title[I]:STRING,
Author[I]:STRING);
Remove_a_book(Identifier[I]:INTEGER);

I
This research is supported by the National Science END_SUBSY STEM-DECLARATION

432 S.-C. Chou et aLlInformation and Software Technology 38 (1996) 419-434

SUBSYSTEM-BODY
Borrow_a_book(Book_identifier,
Borrower-identifier) {

Borrower.Get_borrowed_amount
(Borrower_identifier,amount);
Borrower.Get_amount_limit
(Borrower_identifier,limit);
Borrower.Get_borrowing_right
(Borrower_identifieqright);
Book.Get_status(Book_identifier,status);
IF((status = = “In-library”) AND
(amount < limit) AND (right = = ‘Y’))THEN

Book.Borrow(Book_identifier,
Borrower-identifier);
RETRIEVE book FROM Book
WITH-KEY Book-identifier;
RETRIEVE borrower FROM Borrow&
WITH-KEY Borrower-identifier;
book ASSOCIATION_OF borrower;

ENDIF

>

Return_a_book(Book_identifier,
Borrower-identifier) {

Book. Return(Book_identifier,
Borrower-identifier);
RETRIEVE book FROM Book
WITH-KEY Book-identifier;
RETRIEVE borrower FROM Borrower
WITH-KEY Borrower-identifier;
DISCONNECT book,borrower;

>

Reserve_a_book(Identifier) {
Book.Reserve(Identifier);

1

Add_a_book(Identifier,Status,Title,Author) {
Book.Create(Identifier,Status,Title,Author);

>

Remove_a_book(Identifier) {
Book.Remove(Identifier);

1
END_SUBSY STEM-BODY

END_SUBSY STEM

SUBSYSTEM Borrower-management
SUBSYSTEM_DECLARATION

SHARED_CLASSSES Borrower;
SY STEM_FUNCTIONS {

Add_a_borrower(Identifier[I]:INTEGER, Borro-
wed_amount[I]:INTEGER,

Borrowing_right[Ij:CHAR,
Amount_limit[I]:INTEGER);

Remove_a_borrower

(Identifier[I]:INTEGER);
Suspend_a_borrowing_right
(Borrower_identifier[I]:INTEGER);
Resume_a_borrowing_right
(Borrower_identifier[I]:INTEGER);

>
END_SUBSY STEM-DECLARATION

SUBSYSTEM-BODY
Add-a-borrower
(Identifier,Borrowed_amount,
Borrowing_right,Amount_limit) {

Borrower.Create(Identer,
Borrowed amount, Borrowing-right,
Amount-limit);

>

Remove_a_borrower(Identifier) {
Borrower.Remove(Identifier);

1

Suspend_a_borrowing_right
(Borrower-identifier) (

Borrower.Suspend_borrowing_right
(Borrower-identifier);

1

Resume_a_borrowing_right
(Borrower-identifier) {

Borrower.Resume_borrowing_right
(Borrower-identifier);

1
END_SUBSYSTEM_BODY

END-SUBSYSTEM

CLASS Book
CLASS_DECLARATION

ASSOCIATED_CLASSES
Borrower(0: 1 ,O: 10);
ATTRIBUTES IdentifierINTEGER,
Status:STRING,Title:STRING,
Author:STRING;
KEY-ATTRIBUTES Identifier;
PROVIDED_STSERVICES {

Create(Id:INTEGER,Sta:STRING,
Tit:STRING,Aut:STRING);
Remove(Id:INTEGER);
Borrower(Book_id:INTEGER,
Borrower_id:INTEGER);
Return(Book_id:INTEGER,
Borrower_id:INTEGER);
Reserve(Id:INTEGER);

>
PROVIDED_QSERVICES {

Get_status(Identifier[Ij:INTEGER,
Status[O];STRING);

S.-C. Chou et al./Information and Software Technology 38 (1996) 419-434 433

1
REQUIRED_SERVICES {

Borrower.Increase_borrowed_amount,
Borrower.Decrease_borrowed_amount;

1
END_CLASS_DECLARATION

CLASS-BODY
Create(Id,Sta,Tit,Aut) {

USED-ATTRIBUTES IdentifierStatus,
Title,Author;
<>:

NEW_STATE_IS(Id,Sta,Tit,Aut);

>
Remove(Id) {

USED-ATTRIBUTES Identifier;
(Id):

NEW-STATE-IS<>;

>

Borrow(Book_id,Borrower_id) {
USED-ATTRIBUTES IdentifierStatus;
(Book_id,Status):
Borrower.Increase_borrowed_amount
(Borrower-id);
NEW_STATE_IS(Book_id,“Borrowed”);

>

Return(Book_id,Borrower_id) {
USED-ATTRIBUTES IdentifierStatus;
(Book_id,Status):
Borrower.Decrease_borrowed_amount
(Borrower-id);
NEW_STATE_IS(Book_id,“In_library”);

I

Reserve(Id) {
USED-ATTRIBUTES IdentifierStatus;
(Id,Status):NEW_STATE_IS
(Id,“Reserved”) ;

1
END-CLASS-BODY

END-CLASS

CLASS Borrower
CLASS_DECLARATION

ASSOCIATED_CLASSES Book(0: 10,O: 1);
ATTRIBUTES Identifier:INTEGER,
Borrowed_amount:INTEGER,

Borrowing_right:CHAR,
Amount_limit:INTEGER;

KEY-ATTRIBUTES Identifier;
PROVIDED_STSERVICES {

Create(Id:INTEGER,B_amount:INTEGER,
B_right:CHAR,A_limit:INTEGER);
Remove(Id:INTEGER);

Increase_borrowed_amount
(B_id:INTEGER);
Decrease_borrowed_amount
(B_id:INTEGER);
Suspend_borrowing_right
(B_id:INTEGER);
Resume_borrowing_right
(B_id:INTEGER);

>
PROVIDED_QSERVICES {

Get_borrowed_amount
(Identifier[I]:INTEGER,
Borrowed_amount[O]:INTEGER);
Get-borrowing-right
(Identifier[I]:INTEGER,
Borrowing_right[O]:CHAR);
Get_amount_limit(Identifier[I]:INTEGER,
Amount_limit[O];INTEGER);

>
END_CLASS_DECLARATION

CLASS-BODY
Create(Id,B_amount,B_;_ight,A_limit) {

USED-ATTRIBUTES Identifier,
Borrowed amount,Borrowing_right,
Amount_limit;
<>:

NEW-STATE-IS
(Id,B_amount,B_right,A_limit);

I

Remove(Id) {
USED-ATTRIBUTES Identifier;
(Id):
NEW-STATE-IS< >;

1

Increase_borrowed_amount(B_id) {
USED-ATTRIBUTES Identifier,
Borrowed_amount;
(B_id,Borrowed_amount):
NEW-STATE-IS
(B_id,Borrowed_amount+l);

Decrease_borrowed_amount(B_id) {
USED-ATTRIBUTES Identifier,
Borrowed_amount;
(B_id,Borrowed_amount) :
NEW-STATE-IS
(B_id,Borrowed_amount-1);

I

Suspend_borrowing_right(B_id) {
USED-ATTRIBUTES Identifier,
Borrowing-right;

434 S.-C. Chou et aLlInformation and Software Technology 38 (1996) 419-434

(B_id,Borrowing_right);
NEW_STATE_IS(B_id,‘N’);

>

Resume_borrowing_right(B_id) {
USED-ATTRIBUTES Identifier,
Borrowing-right;
(B_id,Borrowing_right):
NEW_STATE_IS(B_id,‘Y’);

END-CLASS-BODY
END-CLASS

References

PI

PI

[31

[41

[51

[61

[71

[81

[91

HOI

1111

[121

[131

[141

[151

T. Biggerstaff and C. Richter, Reusability framework assessment,
and directions, IEEE Software, 4 (March 1987) 41-49.
V.R. Basili and H.D. Rombach, Support for comprehensive reuse,
Software Eng. J., 6 (1991) 303-316.
WC. Lim, Effects of reuse on quality, productivity, and eco-
nomics, IEEE Software, 11 (September 1994) 23-30.
G. Fischer, S. Henninger and D. Redmiles, Cognitive tools for
locating and comprehending software objects for reuse, in Proc.
13th Int. Conf. on Soft. Eng., 1991, pp. 318-328.
B.A. Burton, R.W. Aragon, S.A. Bailey, K.D. Koehler and L.A.
Mayes, The reusable software library, IEEE Software, 4 (July
1987) 25-33.
M. Lenz, H.A. S&mid and P.F. Wolf, Software reuse through
building blocks, IEEE Software, 4 (July 1987) 34-42.
D.-J. Chen and P.J. Lee, On the study of software reuse using
reusable C++ components, J. Syst. Software, 20 (1993) 19-36.
B.M. Kennedy, Design for object-oriented reuse in the OATH
library, J. Object-Oriented Progr., 5 (July/August 1992) 51-57.
P. Johnson and C. Rees, Reusability through fine-grain inheri-
tance, Software Pratt. Experi., 22 (1992) 1049-1068.
A. Podgurski and L. Pierce, Retrieving reusable software by
sampling behavior, ACM Trans. Softw. Eng. Methodol., 2
(1993) 286-303.
S. Henninger Using iterative refinement to find reusable software,
IEEE Software, 11 (September 1994) 48-59.
M.D. Lubars, The IDeA design environment, in Proc. 1 lth Int.
Conf. on Soft. Eng., 1989, pp. 23-32.
M.D. Lubars and M.T. Harandi, Knowledge-based software
design using design schemas, in Proc. 9th Int. Conf. on Soft.
Eng., 1987, pp. 253-262.
S. Katz, CA. Richter and K.-S. The, PARIS: a system for reusing
partially interpreted schemas, in Proc. 9th Int. Conf. on Soft. Eng.,
1987, pp. 377-385.
G. Arango, E. Schoen and R. Pettengill, A process for consolidat-
ing and reusing design knowledge, in Proc. 15th Int. Conf. on Soft.
Eng., 1993, pp. 231-242.

M

[171

[181

[191

[201

[211

[221

[231

[241

v51

PI

[271

PI

PI

[301

[311

1321

[331

[341

[351

[361

[371

D.J. Chen and D.T.K. Chen, An experimental study of using
reusable software design frameworks to achieve software reuse,
J. Object-Oriented Progr., 7 (1994) 56-67.
S. Khajenoori, D.G. Linton and CA. Morris, Enhancing software
reusability through effective use of the essential modelling
approach, Inf. and Soft. Technol., 36 (1994) 495-501.
N. Maiden, Analogy as a paradigm for specification reuse,
Software Eng. J., 6 (1991) 3-15.
A. Finkelstein, Reuse of formatted requirements specifications,
Software Eng. J., 3 (1988) 186-197.
N.A.M. Maiden, Saving reuse from the noose: reuse of analogous
specifications through human involvement in reuse process, Inf.
and Soft. Technol., 33 (1991) 780-790.
N.A. Maiden and A.G. Sutcliffe, Exploiting reusable specifica-
tions through analogy, Comm. ACM, 35 (1992) 55-64.
G. Booth, Object Oriented Analysis and Design with Applica-
tions, 2nd edn., Benjamin/Cummings, 1994.
B. Meyer, Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, NJ, 1988.
B. Meyer, Reusability: the case for object-oriented design, IEEE
Software, 4 (March 1987) 50-64.
J.A. Lewis, S.M. Henry, D.G. Kafura and R.S. Schulman, An
empirical study of the object-oriented paradigm and software
reuse, in Proc. OOPSAL’91, 1991, pp. 184-196.
R. Helm and Y.S. Maarek, Integrating information retrieval
and domain specific approaches for browsing and retrieval
in object-oriented class libraries, in Proc. OOPSAL’91, 1991,
pp. 47-61.
P. Coad, Object-oriented patterns, Comm. ACM, 35 (1992) 152-
159.
R.S. Pressman, Software Engineering: A Practitioner’s Approach,
3rd edn, McGraw-Hill, 1992.
R.P. Diaz and P. Freeman, Classifying software for reusability,
IEEE Software, 4 (January 1987) 6-16.
E. Ostertag, J. Hendler, R.P. Diaz and C. Braun, Computing
similarity in a reuse library system: an AI-based approach,
ACM Trans. Soft. Eng. Methodol., 1 (1992) 205-228.
P. Devanbu, R.J. Brachman, P.G. Selfridge and B.W. Ballard,
LaSSIE: a knowledge-based software information system, in
Proc. 12th Int. Conf. on Soft. Eng., 1990, pp. 249-261.
S.-C. Chou and J.-Y. Chen, A behavior-based classification and
retrieval technique for object-oriented specification reuse, sub-
mitted to Software Pratt. Exper. for publication.
S.M. McMenamin and J.F. Palmer, Essential Systems Analysis,
Yourdon Press, New York, 1984.
E. Yourdon, Modern Structured Analysis, Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.
P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edn,
Prentice-Hall, Englewood Cliffs, NJ, 1991.
R.G, Fichman and C.F. Kemerer, Object-oriented and conven-
tional analysis and design methodologies, comparison and
critique, IEEE Comput., 25 (1992) 22-39.
D.L. Parnas, On the criteria to be used in decomposing systems
into modules, Comm. ACM, 15 (1972) 1053-1058.

