
 

  
 

Abstract—One of the most important issues about cloud 

computing is how to achieve load balancing among thousands of 

virtual machines (VMs) in a large datacenter. In this paper, we 

propose a novel decentralized load balancing architecture, called 

tldlb (two-level decentralized load balancer). This distributed load 

balancer takes advantage of the decentralized architecture for 

providing scalability and high availability capabilities to service 

more cloud users. We also propose a neural network-based 

dynamic load balancing algorithm, called nn-dwrr (neural 

network-based dynamic weighted round-robin), to dispatch a large 

number of requests to different VMs, which are actually 

providing services. In nn-dwrr, we combine VM load metrics 

(CPU, memory, network bandwidth, and disk I/O utilizations) 

monitoring and neural network-based load prediction to adjust 

the weight of each VM. Experimental results support that our 

proposed load balancing algorithm, nn-dwrr, can be applied to a 

large cloud datacenter, and it is 1.86 times faster than the wrr, 

1.49 times faster than the Capacity-based, and 1.21 times faster 

than the ANN-based load balancing algorithms in terms of 

average response time. In addition, tldlb can reduce the SLA 

(service-level agreement) violation rate via in-time activating VMs 

from a spare VM pool. 
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I. INTRODUCTION 

Cloud computing is the delivery of computing as a service 

rather than a product, whereby shared resources, software, and 

information are provided to computers and other devices as a 

utility (like the electricity grid) over a network (typically the 

Internet) [1]. Cloud Computing has been envisioned as the 

next-generation architecture of IT enterprises. Therefore, it 

rapidly grows in recent years. We can clearly find that the 

number of users which use cloud computing grows very fast, as 

shown in Figure 1. We can see the growth of average daily 

instance launch counts in Amazon EC2 is very fast. 

The load of a cloud computing system is highly dynamic. 

Different users may require different services, and it may lead 

to load unbalance between the servers (virtual machines, VMs) 

in a cloud datacenter.    To conquer this problem, user requests 

are sent to a load balancer and the load balancer then forwards 

them to the appropriate VMs for processing in cloud 

datacenters. The function of load balancing aims to realize a 

high  ratio  of  user  satisfaction   and   facilitate  high  resource  

 
 

 

 

utilization in the cloud [3]. Improper allocation rules might 

cause the inefficiency of the cloud system [4]. Therefore, we 

need a load balancer in a cloud computing system to receive 

user requests and forward them to appropriate servers (or VMs) 

to service the user requests [5][6]. 

 

 
Figure 1. The cloud scales: Amazon EC2 growth [2]. 

 

 

User

Internet

Load 

Balancer

WAN/LAN

VM1

VM2 VMn

. . . . . . .

Cloud Computing 

Environment

 
Figure 2. A classic load balancer architecture in a cloud 

datacenter. 

 

Figure 2 illustrates a classic load balancer architecture in a 

cloud datacenter. All user requests will be connected to a load 

balancer. Obviously, we cannot expect one load balancer to 

deal with the burden of the entire cloud datacenter. We can use 

a technique which is similar to Amazon’s Auto Scaling. When 

one load balancer is overloaded, it will start another load 

balancer to share the load of user requests. 
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A service-level agreement (SLA) is a part of a service 

contract where the level of service is formally defined [7]. The 

SLA will typically have a technical definition in terms of 

response time, throughput, or similar measurable details [7]. In 

this paper, we aim to reduce the SLA violation rate while 

designing a load balancing architecture and algorithm. 

In section II, we review architecture and algorithms of 

existing load balancer designs in cloud computing 

environments and depict the differences between centralized 

and distributed load balancer designs. In section III, we propose 

a new architecture, called an SLA-aware two-level 

decentralized load balancer (tldlb), to support dynamic load 

balancing in cloud datacenters and also proposes a novel load 

balancing algorithm, called neural network-based dynamic 

weighted round-robin (nn-dwrr), to dispatch requests to 

appropriate VMs. Experimental results and the comparison of 

different load balancing algorithms are discussed in section IV. 

Finally, section V gives concluding remarks. 

II. RELATED WORK 

There are several load balancing architectures in cloud 

computing environments [3][8][9][10]. All these architectures 

broadly implement load balancing algorithms, which can be 

static or dynamic, and also use centralized or decentralized 

control [8]. Therefore we roughly divide load balancing 

architectures into two categories, centralized and decentralized. 

The centralized load balancer architecture has a single load 

balancer which receives an incoming request and then selects a 

proper VM to serve the request by a scheduling algorithm. In 

this architecture, the load balancer may become a bottleneck in 

cloud environments if the request rate grows to exceed the 

capacity of the load balancer. That is, this architecture lacks 

scalability in cloud environments. The decentralized load 

balancer architecture has several load balancers in cloud 

environments. Incoming requests will be dispatched to load 

balancers randomly or adjacent load balancers. Although the 

decentralized load balancer architecture has more scalability 

than the centralized load balancer architecture, it needs more 

communication cost to share load information among load 

balancers. 

We review two existing load balancing algorithms and then 

propose a neural network-based dynamic weighted round-robin 

(nn-dwrr) scheduling algorithm. The first existing scheduling 

algorithm is called the weighted round-robin scheduling 

algorithm (wrr) [10].  It assigns a fixed weight to each VM 

depending on the VM’s processing capacity at the startup. The 

second capacity-based scheduling algorithm (Capacity-based) 

monitors the resources of each VM and distributes more 

requests to the VM which has more remaining resources [12]. 

The main concept is distributing requests to a VM which has 

the most remaining capacity. In contrast, the proposed neural 

network-based dynamic weighted round-robin algorithm 

(nn-dwrr) adjusts weights based on neural network-based load 

prediction, and it will be detailed in the next section. 

III. PROPOSED SLA-AWARE LOAD BALANCING SCHEME FOR 

CLOUD DATACENTERS 

We propose an SLA-aware two-level decentralized load 

balancer (tldlb) architecture and a neural network-based 

dynamic weighted round-robin scheduling algorithm (nn-dwrr) 

to support dynamic load balancing in cloud data centers. The 

decentralized load balancer architecture in our design, as shown 

in Figure 3, is divided into two levels: global load balancer and 

local load balancer. Each global load balancer is connected to 

an SLA-aware local load balancer that forms a virtual zone. The 

distributed load balancer architecture is described as follows: 

1) Local load balancer 

 A local load balancer has two main tasks. The first task is 

monitoring the load of VMs which are in the same virtual zone. 

The local load balancer will obtain four load metrics (CPU, 

memory, network bandwidth, and disk I/O utilizations) from 

each VM and the response time of each request for VMs. The 

local load balancer will provide the above information to the 

global load balancer. If the current working VMs (VM1 through 

VMn) can’t handle the load, the local load balancer will activate 

some spare VMs from a spare VM pool (VMs1 through VMsm) 

to provide the service. The second task is choosing an 

appropriate VM using a neural network-based load balancing 

algorithm and then redirects the request to the VM. Our local 

load balancer is SLA-aware, which assigns requests to 

appropriate VMs for servicing so as to meet the SLA 

requirement. 

2) Global load balancer 

Global load balancers are connected to one another via P2P 

connections. The global load balancers exchange the load 

information of each virtual zone using the load information 

from each local load balancer. If there is no VM available in the 

spare VM pool to serve an overloaded virtual zone to meet the 

SLA requirement, the corresponding global load balancer will 

direct the requests to another light-loaded virtual zone to 

service the requests. 

Figure 4 shows the architecture of an SLA-aware local load 

balancer along with a spare VM pool. The following is a brief 

description of each module. 

 Request Handler 

This module receives requests and forwards them to the 

Request Scheduler module. When the workload of a virtual 

zone reaches the upper limit, this module will redirect the 

requests to another Request Handler which belongs to another 

virtual zone. 

 Request Scheduler 

This module assigns the requests from the Request Handler 

module to the selected VMs based on the weights from the 

Weight Adjustment module. We give each VM a weight and 

then the Request Scheduler module distributes the requests to 

appropriate VMs by these weights. 

 Load Monitor 

It monitors four utilization metrics (CPU, memory, network 

bandwidth, and disk I/O utilizations) of each VM in this local 

load balancer. These utilization data allow the local load 

balancer to dynamically adjust the capacity index (CIi) for VMi. 

 History Storage 

The load history information collected by the Load Monitor 
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module and the weights history data from the Weight 

Adjustment module will be stored in this module. The weights 

history data can support the Load Prediction module to predict 

the load at the next time slot. 

 Load Prediction 

This module uses load history data, weights history data, and 

the specified response time from the SLA Engine module to 

predict a neural network index (NIi) for VMi. The NIi‘s are sent 

to the Weight Adjustment module. In addition, we use an 

artificial neural network (ANN) with the delta leaning rule in 

our design (see Figures 5 and 6). 

 SLA Engine 

This module records the response time of each request and 

checks if the response time satisfies the SLA requirement. 

 Weight Adjustment 

This module adjusts the weight of each VM which belongs to 

this local load balancer according to the remaining capacity 

information (CIi) of each VMi from the Load Monitor module 

and load prediction information (NIi) from the Load Prediction 

module. 

 Active VMs and a Spare VM pool 

There are active VMs and some suspended VMs in the spare 

VM pool. When active VMs can’t handle incoming requests to 

meet the SLA requirement, the Request Handler module will 

wake up some spare VMs to service the requests. 

In this paper, we focus on dynamically adjusting the weight 

of each VM. We propose a novel neural network-based load 

balancing algorithm, called nn-dwrr (neural network-based 

dynamic weighted round-robin), to dispatch requests to 

appropriate VMs based on their weights. A weight should be 

able to reflect the remaining capacity of a VM. We give each 

active VM a weight according to the capacity index (CIi) from 

the Load Monitor module and the neural network index (NIi) 

from the Load Prediction module. The Request Scheduler 

module distributes the requests to active VMs by their weights 

assigned by the Weight Adjustment module. 

The first part of the information required by the Weight 

Adjustment module is remaining capacity information. Load 

balancing ought to be achieved using an inferred system state 

based on locally gathered data [11]. The Load Monitor module 

collects four load metrics, utilizations of CPU, memory, 

network bandwidth, and disk I/O. The Weight Adjustment 

module uses the following formula to calculate the capacity 

index (CIi) for VMi. 

 
 = 1 − (,, ℎ, /) 

 

The larger capacity index means more remaining resources in 

this VM. We are not sure what kinds of services will be 

provided in datacenters. Different services require different 

critical resources. For example, the critical resource of a Web 

server is CPU and the critical resource of a FTP server is 

network bandwidth. The critical resource may become the 

bottleneck of a VM. Therefore we simply use a maximal to find 

the current bottleneck of a VM [13]. 

The second part is the load prediction information from a 

neural network-based load predictor. Remind that we used the 

delta learning rule in our ANN design because the neural 

network has the capability of optimization and prediction. Due 

to no certain mathematical approach for obtaining the optimum 

number of hidden layers and their neurons [14], we used a 

single hidden layer for less computation time in our design. 

 

 

Figure 3. Proposed two-level decentralized load balancer (tldlb) 

architecture. 

 

 
Figure 4. The architecture of an SLA-aware local load balancer 

along with a spare VM pool. 

 

In Figure 5, input x is a vector which contains recent ten 

history weights. To avoid SLA violations, such as the response 

time required (di), which is specified in the SLA, we consider 

the response time when training the neural network. The neural 

network will calculate a weight for each VMi, which we call 

neural network indexi (NIi). The Request Scheduler module 

allocates requests according to NIi, and then measure the 

average response time (oi). When the current average response 

time is close to the certain proportion (called pre-reaction rate 

(p), e.g., 80%) of the response time specified in the SLA, the 

neural network will automatically adjust the hidden layer’s 

weights before SLA being violated. If the learning rate ( ) is 

set to a large value, the neural network can learn faster. 

However, if there is a large variation in input, then the neural 

network may not learn well. We use the following formulas to 

train the neural network: 
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 =  ∑ 

 = ( ×  − ) × ′ 

∆ω =  ×  ×  

w() = w() + ∆ω 

 

 

 
 

Figure 5. Schematic representation of an ANN model for VMi. 

 

 

 

Figure 6. The process of delta learning rule for VMi. 

 

If there are n VMs in a local load balancer, the Weight 

Adjustment module will combine remaining capacity index CIi 

and neural network index NIi together to calculate a weight (Wi) 

for VMi by the following formula: 

 

 =  × 
∑  × 

∗ 100% 

 

Wi reflects the remaining resources proportion of VMi in the 

entire n VMs. The Weight Adjustment module sends these 

weights to the Request Scheduler module.  

IV. EVALUATION AND DISCUSSION 

We built a testbed that includes a local load balancer and five 

VMs. This testbed was for hosting a web service. There was 

three active VMs (VM1, VM2, and VM3) with different 

capabilities and two spare VMs (VMs1 and VMs2), which were 

running in an Apache web server in a virtual zone. We used the 

load balancer to link these VMs together to form a virtual zone. 

The load balancer would distribute requests to three VMs 

according the proposed scheduling algorithm nn-dwrr. The 

experimental environment setup and related parameters are 

shown in Table I and the configuration of the five VMs is 

shown in Table II. 

 

Table I. Load balancing experiment parameters. 

 

Table II. The configuration of the five VMs. 
 

Virtual Machine VM1 VM2 VM3 VMs1 VMs2 
CPU (cores) 1 2 3 2 2 

Memory (MB) 512 1024 2048 1024 1024 
Virtual disk (GB) 10 10 10 10 10 

Static weight (wrr) 1 2 4 - - 
 

We used this testbed to host the web service and evaluated 

average response time using an Apache benchmark (ab) to 

collect real web traffic for different load balancing algorithms. 

Requests were based on a real web service. We compare four 

different scheduling algorithms. How to utilize the advantage 

of cloud computing and make each task to obtain the required 

resources in the shortest time is an important topic [9]. 

Therefore, we used average response time as a metric for 

comparing the four scheduling algorithms. 

Figure 7 shows the comparison of the four scheduling 

algorithms. The response time requirement specified in the 

SLA is 2000 ms. In Figure 7, we found that the static 

scheduling algorithm (wrr) has the longest response time. The 

Capacity-based and wrr scheduling algorithms have near the 

same performance before the number of requests exceeds 510. 

After that, the disparities of the response time between them 

will become more obvious. The performance of the ANN is 

good when the number of requests is large. However, we found 

the average response time of the ANN-based algorithm is the 

worst and varies greatly before the average response time 

exceeds 80% (pre-reaction rate) of the response time, specified 

in the SLA. This is because the ANN-based algorithm will 

continue to distribute requests to a VM when the response time 

does not exceed 80% of the response time specified in the SLA. 

No matter what the number of requests is, the performance of 

OS CentOS 5.5 

Virtual machine hypervisor Xen 

Number of VMs 3 

Number of spare VMs 2 

Application Web service 

Duration (time limit) 60 sec 

Response time specified in 

SLA 

2000, 1000, 432 ms 

Pre-reaction rate (p) 80% 

Transfer function (f) 

(for hidden and output layers) 
Log-sigmoid 

Learning rate () 0.5 
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the proposed nn-dwrr is always the best. Figure 8 shows that the 

proposed nn-dwrr is 1.86 times faster than the wrr, 1.49 times 

faster than the Capacity-based, and 1.21 times faster than the 

ANN-based scheduling algorithms in terms of average 

response time.  

 

 
Figure 7. Comparison of four scheduling algorithms in terms of 

average response time. 

 

 
Figure 8. Average response time for the four scheduling 

algorithms. 

 

 
Figure 9. Comparison of SLA violation rates with and without a 

spare VM pool. 

 

Figure 9 shows the comparison of the SLA violation rate 

with and without a spare VM pool in the proposed tldlb 

architecture, both running the proposed nn-dwrr algorithm. In 

this experiment, the threshold of the SLA violation rate was set 

to 5%. The SLA violation rate is defined as follows: 

 

 = 
  

 

The SLA Engine, as shown in Figure 4, will keep monitoring 

the response time of each request and then calculate the SLA 

violation rate. The SLA Engine would activate a spare VM 

when the SLA violation rate exceeds the threshold (5%, in this 

case). We found that the proposed tldlb can avoid exceeding the 

SLA violation rate of 5% by activating VMs from the spare VM 

pool. The proposed tldlb can indeed reduce the SLA violation 

rate by activating VMs in the spare VM pool in time. 

V. CONCLUSION 

We have presented an SLA-aware decentralized load 

balancer architecture, tldlb, which can reduce the SLA 

violation rate. If active VMs are overloaded, the proposed tldlb 

avoids SLA violations by activating VMs in a spare VM pool. 

In addition, we also proposed a novel neural network-based 

load balancing algorithm, nn-dwrr, to distribute incoming 

requests to appropriate VMs. Experimental results have shown 

that the proposed nn-dwrr is 1.86 times faster than the wrr, 1.49 

times faster than the Capacity-based, and 1.21 times faster than 

the ANN-based load balancing algorithms, in terms of average 

response time. Since our load balancing algorithm is simple and 

efficient, it is well-suited for cloud computing environments to 

service more requests with less response time. 
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