

Abstract—One of the most important issues about cloud

computing is how to achieve load balancing among thousands of

virtual machines (VMs) in a large datacenter. In this paper, we

propose a novel decentralized load balancing architecture, called

tldlb (two-level decentralized load balancer). This distributed load

balancer takes advantage of the decentralized architecture for

providing scalability and high availability capabilities to service

more cloud users. We also propose a neural network-based

dynamic load balancing algorithm, called nn-dwrr (neural

network-based dynamic weighted round-robin), to dispatch a large

number of requests to different VMs, which are actually

providing services. In nn-dwrr, we combine VM load metrics

(CPU, memory, network bandwidth, and disk I/O utilizations)

monitoring and neural network-based load prediction to adjust

the weight of each VM. Experimental results support that our

proposed load balancing algorithm, nn-dwrr, can be applied to a

large cloud datacenter, and it is 1.86 times faster than the wrr,

1.49 times faster than the Capacity-based, and 1.21 times faster

than the ANN-based load balancing algorithms in terms of

average response time. In addition, tldlb can reduce the SLA

(service-level agreement) violation rate via in-time activating VMs

from a spare VM pool.

Keywords—cloud computing; decentralized architecture; load

balancing; neural network; service level agreement

I. INTRODUCTION

Cloud computing is the delivery of computing as a service

rather than a product, whereby shared resources, software, and

information are provided to computers and other devices as a

utility (like the electricity grid) over a network (typically the

Internet) [1]. Cloud Computing has been envisioned as the

next-generation architecture of IT enterprises. Therefore, it

rapidly grows in recent years. We can clearly find that the

number of users which use cloud computing grows very fast, as

shown in Figure 1. We can see the growth of average daily

instance launch counts in Amazon EC2 is very fast.

The load of a cloud computing system is highly dynamic.

Different users may require different services, and it may lead

to load unbalance between the servers (virtual machines, VMs)

in a cloud datacenter. To conquer this problem, user requests

are sent to a load balancer and the load balancer then forwards

them to the appropriate VMs for processing in cloud

datacenters. The function of load balancing aims to realize a

high ratio of user satisfaction and facilitate high resource

utilization in the cloud [3]. Improper allocation rules might

cause the inefficiency of the cloud system [4]. Therefore, we

need a load balancer in a cloud computing system to receive

user requests and forward them to appropriate servers (or VMs)

to service the user requests [5][6].

Figure 1. The cloud scales: Amazon EC2 growth [2].

User

Internet

Load

Balancer

WAN/LAN

VM1

VM2 VMn

.

Cloud Computing

Environment

Figure 2. A classic load balancer architecture in a cloud

datacenter.

Figure 2 illustrates a classic load balancer architecture in a

cloud datacenter. All user requests will be connected to a load

balancer. Obviously, we cannot expect one load balancer to

deal with the burden of the entire cloud datacenter. We can use

a technique which is similar to Amazon’s Auto Scaling. When

one load balancer is overloaded, it will start another load

balancer to share the load of user requests.

-

Chung-Cheng Li and Kuochen Wang

Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan 300

shinji10343@hotmail.com, kwang@cs.nctu.edu.tw

58978-1-4799-3689-2/14/$31.00 ©2014 IEEE ICOIN 2014

A service-level agreement (SLA) is a part of a service

contract where the level of service is formally defined [7]. The

SLA will typically have a technical definition in terms of

response time, throughput, or similar measurable details [7]. In

this paper, we aim to reduce the SLA violation rate while

designing a load balancing architecture and algorithm.

In section II, we review architecture and algorithms of

existing load balancer designs in cloud computing

environments and depict the differences between centralized

and distributed load balancer designs. In section III, we propose

a new architecture, called an SLA-aware two-level

decentralized load balancer (tldlb), to support dynamic load

balancing in cloud datacenters and also proposes a novel load

balancing algorithm, called neural network-based dynamic

weighted round-robin (nn-dwrr), to dispatch requests to

appropriate VMs. Experimental results and the comparison of

different load balancing algorithms are discussed in section IV.

Finally, section V gives concluding remarks.

II. RELATED WORK

There are several load balancing architectures in cloud

computing environments [3][8][9][10]. All these architectures

broadly implement load balancing algorithms, which can be

static or dynamic, and also use centralized or decentralized

control [8]. Therefore we roughly divide load balancing

architectures into two categories, centralized and decentralized.

The centralized load balancer architecture has a single load

balancer which receives an incoming request and then selects a

proper VM to serve the request by a scheduling algorithm. In

this architecture, the load balancer may become a bottleneck in

cloud environments if the request rate grows to exceed the

capacity of the load balancer. That is, this architecture lacks

scalability in cloud environments. The decentralized load

balancer architecture has several load balancers in cloud

environments. Incoming requests will be dispatched to load

balancers randomly or adjacent load balancers. Although the

decentralized load balancer architecture has more scalability

than the centralized load balancer architecture, it needs more

communication cost to share load information among load

balancers.

We review two existing load balancing algorithms and then

propose a neural network-based dynamic weighted round-robin

(nn-dwrr) scheduling algorithm. The first existing scheduling

algorithm is called the weighted round-robin scheduling

algorithm (wrr) [10]. It assigns a fixed weight to each VM

depending on the VM’s processing capacity at the startup. The

second capacity-based scheduling algorithm (Capacity-based)

monitors the resources of each VM and distributes more

requests to the VM which has more remaining resources [12].

The main concept is distributing requests to a VM which has

the most remaining capacity. In contrast, the proposed neural

network-based dynamic weighted round-robin algorithm

(nn-dwrr) adjusts weights based on neural network-based load

prediction, and it will be detailed in the next section.

III. PROPOSED SLA-AWARE LOAD BALANCING SCHEME FOR

CLOUD DATACENTERS

We propose an SLA-aware two-level decentralized load

balancer (tldlb) architecture and a neural network-based

dynamic weighted round-robin scheduling algorithm (nn-dwrr)

to support dynamic load balancing in cloud data centers. The

decentralized load balancer architecture in our design, as shown

in Figure 3, is divided into two levels: global load balancer and

local load balancer. Each global load balancer is connected to

an SLA-aware local load balancer that forms a virtual zone. The

distributed load balancer architecture is described as follows:

1) Local load balancer

 A local load balancer has two main tasks. The first task is

monitoring the load of VMs which are in the same virtual zone.

The local load balancer will obtain four load metrics (CPU,

memory, network bandwidth, and disk I/O utilizations) from

each VM and the response time of each request for VMs. The

local load balancer will provide the above information to the

global load balancer. If the current working VMs (VM1 through

VMn) can’t handle the load, the local load balancer will activate

some spare VMs from a spare VM pool (VMs1 through VMsm)

to provide the service. The second task is choosing an

appropriate VM using a neural network-based load balancing

algorithm and then redirects the request to the VM. Our local

load balancer is SLA-aware, which assigns requests to

appropriate VMs for servicing so as to meet the SLA

requirement.

2) Global load balancer

Global load balancers are connected to one another via P2P

connections. The global load balancers exchange the load

information of each virtual zone using the load information

from each local load balancer. If there is no VM available in the

spare VM pool to serve an overloaded virtual zone to meet the

SLA requirement, the corresponding global load balancer will

direct the requests to another light-loaded virtual zone to

service the requests.

Figure 4 shows the architecture of an SLA-aware local load

balancer along with a spare VM pool. The following is a brief

description of each module.

 Request Handler

This module receives requests and forwards them to the

Request Scheduler module. When the workload of a virtual

zone reaches the upper limit, this module will redirect the

requests to another Request Handler which belongs to another

virtual zone.

 Request Scheduler

This module assigns the requests from the Request Handler

module to the selected VMs based on the weights from the

Weight Adjustment module. We give each VM a weight and

then the Request Scheduler module distributes the requests to

appropriate VMs by these weights.

 Load Monitor

It monitors four utilization metrics (CPU, memory, network

bandwidth, and disk I/O utilizations) of each VM in this local

load balancer. These utilization data allow the local load

balancer to dynamically adjust the capacity index (CIi) for VMi.

 History Storage

The load history information collected by the Load Monitor

59

module and the weights history data from the Weight

Adjustment module will be stored in this module. The weights

history data can support the Load Prediction module to predict

the load at the next time slot.

 Load Prediction

This module uses load history data, weights history data, and

the specified response time from the SLA Engine module to

predict a neural network index (NIi) for VMi. The NIi‘s are sent

to the Weight Adjustment module. In addition, we use an

artificial neural network (ANN) with the delta leaning rule in

our design (see Figures 5 and 6).

 SLA Engine

This module records the response time of each request and

checks if the response time satisfies the SLA requirement.

 Weight Adjustment

This module adjusts the weight of each VM which belongs to

this local load balancer according to the remaining capacity

information (CIi) of each VMi from the Load Monitor module

and load prediction information (NIi) from the Load Prediction

module.

 Active VMs and a Spare VM pool

There are active VMs and some suspended VMs in the spare

VM pool. When active VMs can’t handle incoming requests to

meet the SLA requirement, the Request Handler module will

wake up some spare VMs to service the requests.

In this paper, we focus on dynamically adjusting the weight

of each VM. We propose a novel neural network-based load

balancing algorithm, called nn-dwrr (neural network-based

dynamic weighted round-robin), to dispatch requests to

appropriate VMs based on their weights. A weight should be

able to reflect the remaining capacity of a VM. We give each

active VM a weight according to the capacity index (CIi) from

the Load Monitor module and the neural network index (NIi)

from the Load Prediction module. The Request Scheduler

module distributes the requests to active VMs by their weights

assigned by the Weight Adjustment module.

The first part of the information required by the Weight

Adjustment module is remaining capacity information. Load

balancing ought to be achieved using an inferred system state

based on locally gathered data [11]. The Load Monitor module

collects four load metrics, utilizations of CPU, memory,

network bandwidth, and disk I/O. The Weight Adjustment

module uses the following formula to calculate the capacity

index (CIi) for VMi.

 = 1 − (,, ℎ, /)

The larger capacity index means more remaining resources in

this VM. We are not sure what kinds of services will be

provided in datacenters. Different services require different

critical resources. For example, the critical resource of a Web

server is CPU and the critical resource of a FTP server is

network bandwidth. The critical resource may become the

bottleneck of a VM. Therefore we simply use a maximal to find

the current bottleneck of a VM [13].

The second part is the load prediction information from a

neural network-based load predictor. Remind that we used the

delta learning rule in our ANN design because the neural

network has the capability of optimization and prediction. Due

to no certain mathematical approach for obtaining the optimum

number of hidden layers and their neurons [14], we used a

single hidden layer for less computation time in our design.

Figure 3. Proposed two-level decentralized load balancer (tldlb)

architecture.

Figure 4. The architecture of an SLA-aware local load balancer

along with a spare VM pool.

In Figure 5, input x is a vector which contains recent ten

history weights. To avoid SLA violations, such as the response

time required (di), which is specified in the SLA, we consider

the response time when training the neural network. The neural

network will calculate a weight for each VMi, which we call

neural network indexi (NIi). The Request Scheduler module

allocates requests according to NIi, and then measure the

average response time (oi). When the current average response

time is close to the certain proportion (called pre-reaction rate

(p), e.g., 80%) of the response time specified in the SLA, the

neural network will automatically adjust the hidden layer’s

weights before SLA being violated. If the learning rate () is

set to a large value, the neural network can learn faster.

However, if there is a large variation in input, then the neural

network may not learn well. We use the following formulas to

train the neural network:

60

 =  ∑

 = ( ×  − ) × ′

∆ω =  ×  × 

w() = w() + ∆ω

Figure 5. Schematic representation of an ANN model for VMi.

Figure 6. The process of delta learning rule for VMi.

If there are n VMs in a local load balancer, the Weight

Adjustment module will combine remaining capacity index CIi

and neural network index NIi together to calculate a weight (Wi)

for VMi by the following formula:

 =  × 
∑  × 

∗ 100%

Wi reflects the remaining resources proportion of VMi in the

entire n VMs. The Weight Adjustment module sends these

weights to the Request Scheduler module.

IV. EVALUATION AND DISCUSSION

We built a testbed that includes a local load balancer and five

VMs. This testbed was for hosting a web service. There was

three active VMs (VM1, VM2, and VM3) with different

capabilities and two spare VMs (VMs1 and VMs2), which were

running in an Apache web server in a virtual zone. We used the

load balancer to link these VMs together to form a virtual zone.

The load balancer would distribute requests to three VMs

according the proposed scheduling algorithm nn-dwrr. The

experimental environment setup and related parameters are

shown in Table I and the configuration of the five VMs is

shown in Table II.

Table I. Load balancing experiment parameters.

Table II. The configuration of the five VMs.

Virtual Machine VM1 VM2 VM3 VMs1 VMs2
CPU (cores) 1 2 3 2 2

Memory (MB) 512 1024 2048 1024 1024
Virtual disk (GB) 10 10 10 10 10

Static weight (wrr) 1 2 4 - -

We used this testbed to host the web service and evaluated

average response time using an Apache benchmark (ab) to

collect real web traffic for different load balancing algorithms.

Requests were based on a real web service. We compare four

different scheduling algorithms. How to utilize the advantage

of cloud computing and make each task to obtain the required

resources in the shortest time is an important topic [9].

Therefore, we used average response time as a metric for

comparing the four scheduling algorithms.

Figure 7 shows the comparison of the four scheduling

algorithms. The response time requirement specified in the

SLA is 2000 ms. In Figure 7, we found that the static

scheduling algorithm (wrr) has the longest response time. The

Capacity-based and wrr scheduling algorithms have near the

same performance before the number of requests exceeds 510.

After that, the disparities of the response time between them

will become more obvious. The performance of the ANN is

good when the number of requests is large. However, we found

the average response time of the ANN-based algorithm is the

worst and varies greatly before the average response time

exceeds 80% (pre-reaction rate) of the response time, specified

in the SLA. This is because the ANN-based algorithm will

continue to distribute requests to a VM when the response time

does not exceed 80% of the response time specified in the SLA.

No matter what the number of requests is, the performance of

OS CentOS 5.5

Virtual machine hypervisor Xen

Number of VMs 3

Number of spare VMs 2

Application Web service

Duration (time limit) 60 sec

Response time specified in

SLA

2000, 1000, 432 ms

Pre-reaction rate (p) 80%

Transfer function (f)

(for hidden and output layers)
Log-sigmoid

Learning rate () 0.5

61

the proposed nn-dwrr is always the best. Figure 8 shows that the

proposed nn-dwrr is 1.86 times faster than the wrr, 1.49 times

faster than the Capacity-based, and 1.21 times faster than the

ANN-based scheduling algorithms in terms of average

response time.

Figure 7. Comparison of four scheduling algorithms in terms of

average response time.

Figure 8. Average response time for the four scheduling

algorithms.

Figure 9. Comparison of SLA violation rates with and without a

spare VM pool.

Figure 9 shows the comparison of the SLA violation rate

with and without a spare VM pool in the proposed tldlb

architecture, both running the proposed nn-dwrr algorithm. In

this experiment, the threshold of the SLA violation rate was set

to 5%. The SLA violation rate is defined as follows:

 = 


The SLA Engine, as shown in Figure 4, will keep monitoring

the response time of each request and then calculate the SLA

violation rate. The SLA Engine would activate a spare VM

when the SLA violation rate exceeds the threshold (5%, in this

case). We found that the proposed tldlb can avoid exceeding the

SLA violation rate of 5% by activating VMs from the spare VM

pool. The proposed tldlb can indeed reduce the SLA violation

rate by activating VMs in the spare VM pool in time.

V. CONCLUSION

We have presented an SLA-aware decentralized load

balancer architecture, tldlb, which can reduce the SLA

violation rate. If active VMs are overloaded, the proposed tldlb

avoids SLA violations by activating VMs in a spare VM pool.

In addition, we also proposed a novel neural network-based

load balancing algorithm, nn-dwrr, to distribute incoming

requests to appropriate VMs. Experimental results have shown

that the proposed nn-dwrr is 1.86 times faster than the wrr, 1.49

times faster than the Capacity-based, and 1.21 times faster than

the ANN-based load balancing algorithms, in terms of average

response time. Since our load balancing algorithm is simple and

efficient, it is well-suited for cloud computing environments to

service more requests with less response time.

ACKNOWLEDGEMENTS

The support by the Inventec under Contracts 100C202 and

101C179 and by the National Science Council under Grants

NSC99-2221-E-009-081-MY3, NSC101-2219-E-009-001 and

NSC102-2221-E-009-090-MY3 is grateful acknowledged. The

authors would like to thank Mr. Jonz Lee from the Inventec for

his valuable comments that helped improve the quality of this

paper.

REFERENCES

[1] “Cloud Computing – Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Cloud_computing/.

[2] “Amazon S3 Growth,” [Online]. Available:

http://www.datacenterknowledge.com/wp-content/upload

s/2011/01/amazon-s3_growth_2010.jpg/.

[3] Z. Zhang and X. Zhang, "A Load Balancing Mechanism

Based on Ant Colony and Complex Network Theory in

Open Cloud Computing Federation," in the Proceedings of

International Conference on Industrial Mechatronics and

Automation, pp. 240-243, 2010.

[4] W. Y. Lin, G. Y. Lin, and H. Y. Wei, "Dynamic Auction

Mechanism for Cloud Resource Allocation," in the

Proceedings of Cluster, Cloud and Grid Computing, pp.

591-592, 2010.

[5] “Amazon Elastic Load Balancing,” [Online]. Available:

http://aws.amazon.com/elasticloadbalancing.

[6] “Rackspace - Cloud Load Balancers On-Demand,”

[Online]. Available:

http://www.rackspace.com/cloud/cloud_hosting_products/

loadbalancers.

[7] “Service-Level Agreement – Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Service-level_agreement.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
v
e

ra
g

e
 r

e
s

p
o

n
s

e
 t

im
e

 (
m

s
)

Number of requests/sec

wrr

Capacity-based

ANN-based

nn-dwrr
(proposed)

0

1

2

3

4

5

6

1

3

5

7

9

11

13

15

17

19

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

N
u

m
b

e
r

o
f

V
M

s

S
L

A
 v

io
la

ti
o

n
 r

a
te

 (
%

)

Number of requests/sec

Without a spare VM pool

With a spare VM pool

Number of VMs

62

[8] R. Rajavel, “De-Centralized Load Balancing for the

Computational Grid Environment,” in the Proceedings of

International Conference on Communication and

Computational Intelligence, pp. 419-424, Dec. 2010.

[9] S. C. Wang, K. Q. Yan, W. P. Liao, and S. S. Wang,

“Towards a Load Balancing in a Three-level Cloud

Computing Network,” in the Proceeding of the IEEE

International Conference on Computer Science and

Information Technology, vol. 1, pp. 108-113, July 2010.

[10] “Linux Virtual Server,” [Online]. Available:

http://www.linuxvirtualserver.org.

[11] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A

Comparative Study into Distributed Load Balancing

Algorithms for Cloud Computing,” in the Proceeding of

the IEEE International Conference on Advanced

Information Networking and Applications Workshops, pp.

551-556, Apr. 2010.

[12] T. L. Pao, and J. B. Chen, “Remaining Capacity Based

Load Balancing Architecture for Heterogeneous Web

Server System,” in Proceedings of the International

Conference on Parallel and Distributed Processing

Techniques and Applications, pp. 58-63, 2006.

[13] V. Nae, A. Iosup, and R. Prodan, “Dynamic Resource

Provisioning in Massively Multiplayer Online

Games,” IEEE Transactions on Parallel and Distributed

Systems, vol. 22, no. 3, pp. 380-395, Mar. 2011.

[14] Y. Zhang, J. Pang, R. Zhao, and Z. Guo, "Artificial Neural

Network for Decision of Software Maliciousness", in

Proceedings of Intelligent Computing and Intelligent

Systems, pp. 622-625, 2010.

[15] J. Hu, J. Gu, G. Sun, and T. Zhao, “A Scheduling Strategy

on Load Balancing of Virtual Machine Resources in Cloud

Computing Environment,” in Proceedings of International

Symposium on Parallel Architectures, Algorithms and

Programming, pp. 89-96, Dec. 2010.

63

