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Abstract—For the first time, a shallow trench isolation
(STI)-induced enhanced degradation in pMOSFETS for ultrathin
gate oxide devices has been observed. The I, degradation is
enhanced as a reduction in the gate width and the hot carrier
(HC) or negative bias temperature instability (NBTI) effect. Ex-
tensive studies have been compared for atomic layer deposition
(ALD)-grown and plasma-treated oxide pMOSFETSs. Different
temperature dependences were observed. At room temperature,
hole trap is dominant for the device degradation, in which hole-
trap-induced V7 is significant, whereas at high temperature under
NBTI stress, interface trap becomes more significant, which dom-
inates the device I, degradation. In addition, the V- rolloff can
be modeled as a width narrowing effect specifically for STI. More
importantly, the NBTI-induced interface/oxide traps are strongly
related to the hydrogen and N, content in the gate oxide formation
process. The interface trap generation is suppressed efficiently
using the ALD-grown gate oxide. These results provide a valuable
guideline for the understanding of the HC and NBTI reliabilities
in an advanced ALD-grown gate oxide processes/devices.

Index Terms—Atomic layer deposition (ALD), gate stack,
narrow-width effect, negative bias temperature instability (NBTI),
shallow trench isolation (STT).

I. INTRODUCTION

N PREVIOUS studies [1], for the previous-generation

quarter-micrometer CMOS technology, in which the gate
oxide is larger than 30 A, narrow-width shallow trench isolation
(STI) exhibits severe degradation after hot-carrier (HC) stress
with a reducing gate width. The degradation of pMOSFETSs
was attributed to an off-state leakage current increase [2] and
channel-length shortening [3] because electron trapping exists
for a thicker gate oxide. In comparison, for a very thin gate ox-
ide (< 20 A), the hole trap is the dominant mechanism instead,
which leads to an off-state current reduction which is good.
However, there are several other issues that become significant
with device scaling. According to experimental observations,
devices with the STI structure exhibit different degradation
mechanisms at various temperatures. Generally, the negative
bias temperature instability (NBTI) in pMOSFETS is attributed
to the generation of interface traps and oxide trap charges [4].
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So far, none has been reported on the enhanced degradation
of narrow-width devices in relation to the NBTI effect, espe-
cially for a very high-end atomic layer deposition (ALD) gate
oxide stack.

In this paper, the aforementioned enhanced degradation at
both room temperature (HC effect) and high-temperature stress-
ing (NBTI) has been demonstrated on an advanced ultrathin
ALD gate nitride/oxide (N/O) stack. Furthermore, to get more
insight into the detailed degradation mechanism, a unique neu-
tralization technique on the oxide charges has been provided,
which allows us to identify the generation of interface traps and
oxide trap charges. Various experiments have been conducted
to confirm that ALD is effective in suppressing the enhanced
degradation effect.

II. DEVICE PREPARATION

The devices were prepared based on the 90-nm foundry
technology. The ALD N/O gate stack was prepared by an
advanced remote plasma-enhanced ALD (RPEALD) technique
with less H-precursor and No content [5]. The control sample
with a heavily plasma-nitrided oxide served as a reference. The
ALD and plasma samples have an equivalent oxide thickness
(EOT) of 15.4 and 15.5 A, respectively. The devices with a
masked gate length of 0.15 um and various gate widths were
used for the reliability measurement.

III. RESULTS AND DISCUSSION
A. Narrow-Width Effect at Room Temperature

Fig. 1 shows the measured device drain—current degradation
after the HC stress for pMOSFETs, including IG max, 1B, max>
and Vg = Vp stress conditions, respectively. It is generally
known that the largest degradation in the ultrathin gate oxide
thickness device occurs at Vg = Vpp stress as expected. Fig. 2
shows one set of measured drain—current at Vg = —2 V for
a device with a width W =2 um before and after Vg =
Vp = —2 V stresses. The fresh device curve is represented
by curve (1), whereas a decrease of the current is represented
by curve (2) for the device after the stress. The decrease of
the drain—current for devices after the stress can be regarded
as an increase of the threshold voltage with the generation of
interface trap Vi; and hole trap Q,¢. The steps in Fig. 3 will help
us clarify the generation of either Vj; or Q. First, for a fresh
device, the drain—current at Vg = —2 V (curve (1) in Fig. 2)
and the gate-induced drain leakage (GIDL) current (curve (1)
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Fig. 1. Drain—current degradation of the thin oxide ALD device under
1 max> IB,max, and Vg = Vp stresses, respectively.
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Fig. 2. Drain—current at Vg = —2 V for the device before stress [curve (1)],
after stress [curve (2)], and after neutralization is completed [curve (3)]. The
stress condition is given at Vo = Vp = —2 V. Note that the Al caused by

Qot is larger than that due to Nj¢.

in Fig. 3) are measured. Then, both currents are measured after
the device was stressed for 1000 s under Vo = Vp = —2 V.
Here, we see a clear shift of the GIDL curve to the right, i.e.,
curve (2). This shift corresponds to a positive threshold voltage
shift Vi, caused by Q.t, which is an indication of the positive
oxide trap. Consequently, a neutralization process is performed
by injecting electrons from the substrate into the gate oxide as
shown in two steps [6] and with bias conditions given in the
figure to fill those positive traps. Here, we see that a shift of
the GIDL current, curve (2), will be moved back to curve (3)
and then aligned with the fresh one, curve (1). In Fig. 2, the
difference of I between curves (1) and (3) shows the effect of
the generated [V;;, whereas the difference between curves (2)
and (3) gives the effect of the generated (Q,¢. From the afore-
mentioned GIDL measurement technique, we can accurately
separate the contribution of the interface trap and oxide trap to
the drain—current degradations. In a similar manner, we can ob-
tain the same set of curves for narrower width devices, and their
comparison with a wide device is given in Fig. 4. In Fig. 3, the
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Fig.3. GIDL currents for the fresh, stressed, and after neutralized. A two-step
neutralization is achieved by hot-electron injection to eliminate hole traps.
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Fig. 4. Comparison of the measured drain—currents for devices with W =
0.11 and 2 pm. Note that the generated (ot is enhanced for narrow-width
devices.

contribution of oxide traps (). to the drain—current degradation
Alp g, is much larger when compared with that contributed
from the generation of interface traps Alp n,, . These results
show that the HC degradation depends mostly on the oxide
traps, whereas it depends weakly on the generated interface
traps with reducing gate width. It is believed that there are only
few oxide traps in the ultrathin gate oxide device. Consequently,
a much larger generated @), found here should mainly depend
on the high nitride density in the gate oxide. Obviously, we can
see an enhancement of the Q¢ with reducing channel width,
i.e., a device with W = 0.11 pm has a larger shift (18%) of
Ip q., as compared with that with W = 2 um (11.4%).

To further study the variation of the threshold voltage with
the device gate width, we plotted AV as a function of the
channel width (solid circles) in Fig. 5, from which we can
see a large enhancement of the narrow-width effect. This is
attributed to the STI mechanical stress as reported in [3]. We
know that the STI-enhanced HC stress degradation area is
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comparison between two different gate oxide processes is also shown.
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Fig. 6. Model to show the STI damage area, which can be used to predict the
Vi shift for devices over a wide range of gate widths.

confined in the edge region of the STI such that the STI edge
ratio (i.e., the ratio of the edge region to the total gate width) of
a narrower width device is larger. In other words, the threshold
voltage shift at the STI edge as caused by the quality of the STI
or the mechanical stress is believed to be much larger than that
at the channel center, as shown in Fig. 6. Therefore, HC stress
degradation is enhanced for a reduction of the channel width
and hence induces a larger threshold voltage shift.

To predict the STI effect for the different channel-width
devices, from more than two sets of measured Vi and
calculated V7 (solid symbols in Fig. 5) for different widths and
from the following equation, we can calculate the V1 at another
gate width. Here, the total variation of the threshold is given by

AL
{AVie x AW + AV;e x (W — AW)} x % = AVr
(1)
where
AV;, threshold voltage shift in the STI edge;
AV;. threshold voltage shift in the channel center;
AVp  total threshold voltage shift in the whole channel;
AL length of the HC damage area;
AW  STI edge width;
L, W device channel length and width.
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Fig. 7. Measured gated-diode currents for two different gate widths, where
the first peak shift in the gated-diode currents shows the generation of more
oxide traps for a narrow-width device.

In the preceding equation, the total threshold voltage shift AVp
is a combination of AV;. from the channel center region and
AV, from the gate edge region. Assume AL and AW are
the same for two different gate-width devices, and from two
known values of AV measured at two different gate widths,
we may calculate AV, and AV, for any gate width according
to (1) such that the total AV can be calculated.

The aforementioned method has an advantage of predicting
the degradation V7 for devices over a wide range of gate widths.
To further identify whether this V- is caused by the STI effect,
we measured the gated-diode currents [7] for two different
gate-width devices as shown in Fig. 7. The first peak shift to the
left is a result of width reduction because the first peak in the
gated-diode measurement is an indication of the generated Q)ot,
which causes the threshold voltage shift. As commonly known,
the increase of the peak currents (the difference between the
fresh and stressed ones, e.g., the peaks at Vg = 1.7 V) implies
the generation of Nj; after the HC stress. According to the
results of the gated-diode measurement in this figure, obviously,
the increment of the gated-diode current is larger for narrow-
gate-width devices. This further shows that not only (4 was
generated but also N;; was increased as a result of width
reduction. Therefore, the STI-enhanced degradation in narrow-
width devices can be further justified via this gated-diode
measurement.

To show a higher gate oxide quality of ALD, the result for
the control sample (plasma-treated device) is also shown for
comparison in Fig. 5. Note that the V7 rolloff is much worse
for the plasma-treated sample. It is commonly believed to be
due to a much higher density of the nitrogen in the gate oxide,
which induces much larger degradation of oxide traps after the
HC stress.

B. Observation of Narrow-Width-Dependent NBTI Effect

To investigate the width dependence of the NBTI effect,
Fig. 8 shows the measured drain—currents for two different
gate-width devices, where the measurement step is similar to
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Fig. 8. NBTI measurement. The drain—current for the device with W = 0.11
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that the AIp caused by Nj is dominant.
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traps. (b) I p degradation caused by the NBTI-induced interface traps.

that given in Fig. 2. As a result of the recovery of Vr after
turning off the NBTI stress, it was found by comparing the data
with the dashed lines and the open circles that ),y becomes
smaller. Therefore, IV;; will become the dominant factor of the
drain—current degradation as well as the Vr shift. Here, the
drain—current degradation Alp y,, becomes much larger from
the comparison of the dashed lines and solid circles. Qo is
nearly negligible here. It is attributed to the near interface oxide
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Fig. 10. Drain—current before and after NBTI stress and the comparison for
two different gate oxide processes. ALD has much better reliability.
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is still OFF when the channel begins to conduct.

traps, which are recovered in a very thin gate oxide. Therefore,
we plot in Fig. 9(a) and (b) the enhancement of the Vi rolloff
and Ip due to the generated Nj; only. In other words, the
observed (), after NBTI becomes weaker compared with the
generated Vj; at an elevated temperature, and the interface traps
become the dominant mechanism for the I degradation. The
narrow-width-dependent NBTI degradations for two different
gate oxide processes are shown in Fig. 10.

C. Further Insight of the Trap Generation and the Model

To reasonably explain the observed enhancement effect
caused by the STI, for the first time, a model called width
narrowing, which is different from that in [3], is proposed
in Fig. 11. In a comparison between a wide- and a narrow-
width device, after the HC stress, the STI corner exhibits an
area where the channel beneath this region has a larger local
threshold voltage due to the positive hole trap (@, )-induced
damage, in which a larger local threshold voltage is observed at
the gate edge. If the local threshold voltage shift is sufficiently
high, it results in an effective width, W — AW, such that AVp
is enhanced for a narrower width device [Figs. 5 and 9(a)].
Another most important implication from Fig. 8 is showing that
the NBTI effect will generate more interface traps /N, for a
narrower device as a result of the STI effect. By combining
the two preceding factors, the result and physical mechanism
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in an ultrathin gate oxide device are quite different from the
last-generation quarter-micrometer generation devices in that
the degradation comes from the channel shortening [3] or elec-
tron traps.

The mechanisms related to an Nj; increase and a Qo re-
laxation after NBTI are more interesting and can be drawn
as follows.

1) Both Ny and Q¢ are caused by the hydrogen release
from the surface toward the polygate [8], [9]. The gen-
eration of N is smaller for ALD because ALD has less
hydrogen content (see the comparison in Fig. 12) and
hence a slower release rate of Ho.

2) The hole trap generation can be measured by the low-
voltage stress-induced leakage current (LV-SILC) method
[10] with results given in Fig. 13, where we see that
ALD exhibits smaller SILC and hence smaller hole traps,
smaller SILC, and V7 (Fig. 5).

3) Resulting from the recovery of Vr or Qo (Fig. 10,
especially under NBTI), the N;; in the plasma sample is
aggravated due to a heavier N content at the interface as
hole traps are moved back to the substrate.

We therefore have the following conclusions.

1) NBTI and HCI device degradations are enhanced with
reducing gate width, which show the STI effect.

2) Under NBTI stress, ALD exhibits much less V;; gener-
ation and hence much better reliability compared with
plasma film.

3) Gate oxide formation process with ALD is proved to be
more reliable than that of the plasma film in terms of
the HC stress effect (at room temperature) and NBTI
reliabilities (at high temperature).

IV. CONCLUSION

The origins of enhanced drain—current degradation and its
dependence on the narrow-width effect in pMOSFETSs have
been extensively studied. New results on the HC- and NBTI-
stress-induced device degradations in scaled STI pMOSFETs
have been reported. The separation of the degradation type,
including interface trap and oxide trap via a so-called neutral-
ization step and GIDL measurement, is proposed to verify the
generated oxide trap and interface trap.

For the evaluation of the HC and NBTI reliabilities, different
temperature dependences are observed. At room temperature,
from the HC test, the hole trap is dominant for the device
Vr shift, whereas the interface trap is more significant and
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Fig. 13. LV-SILC measurement at low Vg, which shows that much more
Nit’s are generated near the conduction band for plasma-treated sample.

responsible for the Ip degradation after NBTI stress at high
temperature. Moreover, the Vi rolloff can be well explained by
a width narrowing effect physically, and a quantitative model is
further proposed. Results have clearly shown that the generated
interface/oxide traps are strongly related to the hydrogen and
N, content in the gate oxide formation process. Therefore, the
results provide us a useful guideline for understanding the HC-
and NBTI-related reliabilities in an advanced gate N/O stack
60 nm and beyond CMOS processes/devices.
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