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A Genetic Algorithm for Reliability-Oriented
Task Assignment With £ Duplications in
Distributed Systems

Chin-Ching Chiu, Chung-Hsien Hsu, and Yi-Shiung Yeh

Abstract—A distributed system is a collection of pro-
cessor-memory pairs connected by communication links. The
reliability of a distributed system can be expressed using the
distributed program reliability, and distributed system reliability
analysis. The computing reliability of a distributed system is an
NP-hard problem. The distribution of programs & data-files can
affect the system reliability. The reliability-oriented task assign-
ment problem, which is NP-hard, is to find a task distribution such
that the program reliability or system reliability is maximized.
For example, efficient allocation of channels to the different cells
can greatly improve the overall network throughput, in terms of
the number of calls successfully supported. This paper presents
a genetic algorithm-based reliability-oriented task assignment
methodology (GAROTA) for computing the k-DTA reliability
problem. The proposed algorithm uses a genetic algorithm to
select a program & file assignment set that is maximal, or nearly
maximal, with respect to system reliability. Our numerical results
show that the proposed algorithm may obtain the exact solution
in most cases, and the computation time seems to be significantly
shorter than that needed for the exhaustive method. When the
proposed method fails to give an exact solution, the deviation
from the exact solution is very small. The technique presented
in this paper would be helpful for readers to understand the
correlation between task assignment reliability, and distributed
system topology.

Index Terms—Distributed program reliability, distributed
system reliability, genetic algorithm, task assignment.
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GAROTA Genetic Algorithm-based Reliability-Oriented
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Notation

list of files required for p, to complete its ex-
ecution.

the probability of success of link e; ;.

average fitness value, i.e., avgft =
sumft/ps.

the probability of failure of link e; ;.

the capacity of the 7" node.

the number of links in G, ¢ = |E].

an edge represents a communication link be-
tween v; and v;.

total number of files in the DS.

the actual fitness value of a chromosome ¢ in a
generation.

file a.

an undirected DS graph where V' denotes a set
of processing elements, and E represents a set
of communication links.

the number of copies of pf,.

mutation count, crossover count.

mutation rate, crossover rate.

the number of nodes in G, n = |V|.

total number of programs in the DS.
distributed program or file «.

population size.

distributed program «.

a proportion of a roulette-wheel slot-sized of
chromosome 7 in a generation, i.e., 7ft; =
fti/sumft.

accumulation of rft;, i.e., roulette; =
k=1t

a set of a; ; of existing ¢; ;.

aset of a; ya; ; of existing e; ¢, ¢ ;.

asetof a; ,a, ya,, ; of existing e; 5, €z 4, €y,j,
in which v,, v, € Vi, and v, v, has not
occurred. That is, the short path length from
v; to vj, or from v; to v; is 3.

the size of data file f,,.

the size of program p,, .

total fitness value of all the chromosome in a
generation, i.e., sum ft = > 17, ft;.

an i*® node represents the i*" processing ele-
ment,0 << n-—1.

a set of v, of existing e; ¢, ey, ;.

a probability of a path created by selecting
from the set S if not empty, then from the set
S5 one after another, and same as the set S3.
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DEFINITIONS

Definition 1. A distributed system is defined as a system
involving cooperation among several loosely
coupled computers (processing elements).
The system communicates (by links) over a
network.

A distributed program is defined as a pro-
gram of some distributed system which re-
quires one or more files. For a successful dis-
tributed program, the local host possesses the
program, the processing elements possess the
required files, and the interconnecting links
must be operational [9].

A dependent set is defined as a set .S of dis-
tributed programs and files such that there
does not exist a partition that divides S into
two disjoint subsets S, and S, where S, U
Sy = S,and S, N S, = I, such that each
program and the files required are within the
same subset [13].

The DTA problem is defined as to find an
assignment for a dependent set under some
resource constraints in the distributed system
such that the distributed system reliability is
maximum [13].

The k-DTA problem is defined as deter-
mining assignments for k copies of a depen-
dent set to maximize the DSR under some
resource constraints in the distributed system
[13]. _

The k-DTA problem is defined as deter-
mining assignments for at least 1 copy and at
most k copies of a dependent set to maximize
the DSR under some resource constraints in
the distributed system.

The mask string is defined as a string with a
length n x (P+ F') in which each bit indicates
whether the capacity of a node is sufficient to
be allocated a program or data file.

The access weight is defined as the proba-
bility that a program can access a data file to
execute the program under consideration.

Definition 2.

Definition 3.

Definition 4.

Definition 5.

Definition 6.

Definition 7.

Definition 8.

I. INTRODUCTION

ISTRIBUTED SYSTEMS (DS) have become increas-

ingly popular in recent years. The advent of VLSI
technology & low-cost microprocessors has made distributed
computing economically practical. Distributed systems can
provide appreciable advantages, including high performance,
high reliability, resource sharing, and extensibility [1]. The
potential reliability improvement of a distributed system is pos-
sible because of program and data-file redundancies. Reliability
evaluations of distributed systems have been widely published
[1]-[8]. To evaluate the reliability of a distributed system,
including a given distribution of programs & data-files, it is
important to obtain a global reliability measure that describes
the degree of system reliability [10]-[15].
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For a given distribution of programs & data files in a DS, dis-
tributed program reliability (DPR) [9] is the probability that a
given program can be run successfully, and will be able to access
all of the files it requires from remote sites in spite of faults oc-
curring among the processing elements & communication links.
The second measure, distributed system reliability (DSR), is de-
fined as the probability that all of the programs in the system
can be run successfully. As Kumar, Hariri, & Raghavendra [9]
pointed out, redundancy in resources such as computers, pro-
grams, and data-files can improve the reliability of distributed
systems. Therefore, program & data-file assignment with redun-
dancy considerations is important in improving a DSR.

It is assumed that there are n processing nodes, P programs,
F data files, and k copies. The total number of possible assign-
ments is then n*(T+F) Thus, the optimal program & file al-
location for the processing nodes is an exponentially complex
problem [15]. This fact indicates that optimum solutions can be
found only for small problems. For larger problems, it is nec-
essary to introduce heuristic algorithms that generate near-op-
timum solutions. The genetic algorithm (GA) can be adopted
to search large, complex problem spaces [19]. The main steps
for the GA are reproduction, selection, crossover, and mutation.
The selection, crossover, and mutation processes are repeated
until the termination condition is satisfied [16]-[20]. Typically,
one can solve a constrained optimization using genetic algo-
rithms, either by a penalty function for solutions outside the fea-
sible, or by implementing special operators to ensure that all of
the solutions are feasible. The penalty function used here em-
ploys the notion of a near-feasibility threshold (NFT) for each
constraint [21]-[23]. The NFT is the threshold distance from the
feasible region that is considered as being close to feasibility. It
can be difficult to find a penalty function which is an effective,
efficient surrogate for the missing constraints. We choose the
latter course in this paper.

Hwang & Tseng [13] proposed the k-DTA (distributed task
assignment with %k copies) problem. The k-DTA models the
assignment of k copies of both distributed programs, and their
data-files to maximize the DSR within some resource con-
straints. We extend this problem to the k-DTA problem which
allows assignments for at least 1 copy, and at most k copies of
a dependent set. Because the k-DTA problem is NP-hard [13],
as is the k-DTA problem, this study proposes an algorithm
based upon the genetic algorithm [19] to find an approximate
solution. The simulation results show that the exact solution
can be obtained in most cases using the proposed algorithm.
When the proposed algorithm fails to obtain an exact solution,
the deviation from the exact solution is very small.

II. COMPUTING OPTIMAL RELIABILITY

In this section, we describe the problem addressed and clarify
our research objectives.

Bi-directional communication channels operate between pro-
cessing elements. A distributed system can be modeled using a
simple undirected graph. For example, a DS topology with four
nodes & five links is shown in Fig. 1. If two programs & three
data files are allocated, the number of different program & data
file combinations for allocation is 4° = 1024. The program p;
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Fig. 1. The DS with four nodes, and five links.

requires data files fi, and fo; and ps requires data files f1, fo,
and f3 for completing execution. Assume that these files are al-
located as shown in Fig. 1.

A file spanning tree (FST) consists of the root node (pro-
cessing element that runs the program), and some other nodes
which hold all the files needed for the program held in the root
node under consideration. A minimal file spanning tree (MFST)
contains no subset FST. Once all of the MFST have been gen-
erated, the next step is to find the probability that at least one
MEST is working, which means that all of the edges & vertices
included in it are operational. Any terminal reliability evaluation
algorithm based on path or cutset enumeration can be used to ob-
tain the distributed program reliability DPR(p,, ) of the program
P under consideration. For program pq, there are three MFST,
such as VoV2€0,2; VoV2€0,1€1,2; and VoV2€0,1€1,3€2,3- Therefore,
DPR(p1) = pr(L_Jf’:1 M FST;). The reliability of program p;
can be computed using a sum of mutually disjoint terms [4].

DPR(p1) = bo,1a0,2 + ag,1a0,2b1,201,3 + ag,1a0,2b1,201,3b2 3

+ag 101,201 3b23 + ap 101,201 3 + 0,101,302 3.

Assume that the probability of each link is 0.9. Then
DPR(p1) = 0.98829.

In the same way, all the eight MFST of program ps are as
follows.

VoV1V2V3€0,1€0,2€1,3; VoV1V2V3€0,1€1,2€1 3}
VoV1V2V3€0,1€1,3€2,3; VoV1V2V3€0,2€1 2€2 3;
VpV1V203€0,2€1,3€2,3; VoV1V2V3€0,1€0,2€2,3;

VoV1V2V3€0,2€1,2€2 3; VoV1V2V3€0,1€1,2€2,3-

8
DPR(py) =pr | | J MFST;
=1
= ao,1a0,2b1,2a1,3b2,3 + a0,1bo,2a1,2a1,3bz,3
+ ao,1b0,2b1,2a1,302,3 + bo 100,201 201,302 3
+ a0,100,201,201,3b2 3 + by 100,201 201 3023
+ ag,100,2b1,2a2 3 + b 100 201 202 3

+ @o,101,2a2 3.

=0.976 86.
P P
DSR =pr | ()| E(pa) | =pr | (| MFST(pa)
a=1 a=1

where MFST(p,) represents a set of MFST associated with
program p,. Therefore, the results of all the MFST of the in-
tersection of the two programs are

VoV1V2V3€0,1€0,2€1,3; VoV1V2V3€0,1€1,2€1,3;
VoV1V2V3€0,1€1,3€2,3; VoV1V2V3€0,2€1,2€2 33
VoU1V2V3€0,2€1,3€2 35 VoV1V2V3€0,1€0,2€2,3;

VoU1V2V3€0,1€1,2€2 3; VoV1V2V3€0,2€1,2€2 3-

DSR =pr <m E(pa)>

a=1
= a0,1a0,2b1,2a1,3b2,3 + a0,1bo,2a1,2a1,3bz,3
+ ao,1bo,2b1,201,302,3 + ag,2a1,261 3b2 3
+ bo,100,2b1,201,302 3 + ag,100,2b1 202 3
+ ap,100,2b1 202 3 + ag,101 202 3.
=0.976 86.

A reliability-oriented task assignment problem can be charac-
terized as follows.

1) Given:

i) the topology of a DS

ii) the reliability of each communication link

iii) the available memory space of each processing ele-
ment

iv) a set of distributed programs

v) a set of data files

vi) the size of each distributed program

vi) the size of each data File was copy-edited.

vii) the files required by each distributed program for exe-
cution

2) Assumption:

i) each node is perfectly reliable

ii) each link is either in the working (ON) state, or failed
(OFF) state

iii) a graph G does not have any self-loops

iv) the failure of a link is independent of the failure of other
links

v) each node on a DS can have only one copy of the data
files

3) Constraint: the memory space limitation of each pro-

cessing element

4) Goal: maximize the DSR of the system (or Maximize the

DPR of a given program).

Reliability optimization can be defined as the maximum reli-
ability for computing a given task under some constraints. For a
given task, the reliability can be computed as Ri, Ro, ..., R,
for x situations, where  may be an astronomical figure. By
doing so, the reliability optimization for the task is the maximal
reliability in Ry, R, ..., R;. The genetic algorithm involves
obtaining an approximate solution, which is close to the max-
imal reliability in Ry, Ro, ..., R, . Restated, a task assignment
must be found under the given DS such that the DPR of a given
program or DSR of the system is adequate. That is, when the
algorithm fails to obtain an exact solution, the deviation from
the exact solution is very small.
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Fig. 2. The type of a chromosome, X', with a length n x (P + F).
. . <. £ <. £ < -p1------
The main problem can be mathematically stated as follows. /2 71 1
1) Given: X4 X13 X2 Xjp Xj0 X9 Xg X7 Xg X5 X4 X3 Xp X Xp

1) distributed system parameters
i) memory capacity of each node
iii) memory requirement of each program, and data file
was copy-edited.
iv) number of copies of each program, and data file
2) Objective: maximize DSR = pr([i_; E(pa))
3) subject to:

n—1 P P+F
i§0 <Z 5(pj)$(a—1)><n+i + Z S(fj)x(a—l)Xn-l—i)

a=1 a=P+1
< C(vi)*,
n—1 N
Zx(afl)xnﬁ»i =k
=0

where Z(q_1)xnti = 0orl, @ = 1,---, P+ F, and k is the
number of copies of pf,.

Obviously, the problem requires a large execution time.
Herein, we develop an efficient method that allows task as-
signment optimization in the DS that achieves the desired
performance. Owing to its computational advantages, our
proposed method may be preferred to an exhaustive method.

III. GENETIC ALGORITHM BASED RELIABILITY-ORIENTED
TASK ASSIGNMENT METHODOLOGY

The GA search space is composed of possible solutions (chro-
mosomes) to the problem. Each chromosome has an associated
objective function value called a fitness value which denotes its
strength. A set of chromosomes & their associated fitness values
are called the population. This population at a given GA stage
is referred to as a generation.

A. Development of the Approach

The development of our genetic algorithm-based reliability-
oriented task assignment methodology (GAROTA) is described
in the following subsections.

1) Chromosomal-Coding Scheme: Our problem involves
program & data file assignments. The network topology is
fixed. The size of every node is also fixed. We used a coding
scheme with binary numbers. The length of a chromosome is
equal to the number of network nodes multiplied by the sum of
the number of programs & files. If P, F', and n represent the
number of programs, data files, and nodes, respectively, then a
chromosome, X, with a length n x (P + F') has the type as
shown in Fig. 2.

Each bit indicates whether a program or file is allocated in
a node, where z; = 1, if it occurs; otherwise x; = 0. That
is, if program p, is on node j, set x; = 1 where the index

1 0 0 1 o0 o0 1 O 1 0 0 O 1 0 1

Fig. 3. A chromosome wheren =5, P =1, F = 2,&% = 2.

i = (a—1) xn+jfora < P.For files, if file fs is on
node j, set ; = 1 where theindexi = (6 — 14+ P) xn+j
forg < F. ~

Forexample,ifn =5,P =1, F = 2,&k = 2inFig. 3isone
of the chromosomes, it indicates how the program & files are
allocated. This chromosome shows that p; is allocated in nodes
vo & 9, f1 is allocated in nodes v; & vs, and f is allocated in
node v1 & vg.

2) Valid Chromosomes: The most reliable assignment for &
copies of some program or data file is to assign these copies
to k distinct nodes [13], the same characteristics as the k-DTA
problem.

For a valid chromosome, it must possess two characteristics:

1) For each sub-string, say so = T(a41)xn—1s-- s Laxns Of

a chromosome, where « is in the range (0, P+ F' — 1), the
number of bits whose value is 1 is under the k constraint.

2) The summation of the programs & files size, which is as-

signed to the same node, is at most as large as the capacity
of the node.

The purpose of the CheckString function is to check that there
are k copies of each program or file, and to ensure that the sum
of the program & file memory used on each machine does not
exceed its capacity. The detailed steps for CheckString are de-
scribed in Fig. 4.

3) Initialization Approach: The initial population can be
randomly created or well adapted [20]. GAROTA was randomly
created to generate an unbiased population at initialization.

a) Mask string generation: The size & format of a mask
string, say M, is the same as those of a chromosome. This
string can be used to avoid generating an invalid chromosome,
and speed up the GA generation initialization. In our simula-
tion case, if the mask string is omitted, approximately 80 to 100
invalid strings will be generated before obtaining a valid chro-
mosome. For each bit of M, say 14 xn+i, the value is set at

if ¢(vi) > $(pa) and a < P,

1
Maxnti = { 1 if c(vi) > s(fa-p) and a > P,
0 otherwise

where 0 < a < P+ F,0 < 1 < n.
The detailed steps for the InitMaskString function are de-
scribed in Fig. 5.
b) Fast valid chromosome generation for population ini-
tialization: When a chromosome is generated according to the
mask string M, we could always obtain a valid chromosome,
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Function CheckString( X, P, F, I: , n') /*check whether X is valid chromosome or not*/

for (j=0;j < (P + F); j++)

Sj = X(1)xn-15+ - - KXjxne

count = inspect the number of bits in sub-string s; whose value is 1.

if ( count <1 or count > ]; )
return false.
end_if
endfor

for (i=0; i <n; i++)

SneedVi) = 0. /*8,.,4v;) denotes the total capacity requires from v; */

for (7=0;j < (P +F); j++)
if (Xpopss = 1)
if(j<P)

add s(p)) to Syeedvy)-

else

add s(f.p) to Speed V)

endif
endif
endfor
if (Sneed(vi) > €(v)))
return false.

endif

endfor

return true.

end CheckString
Fig. 4. The detailed steps of CheckString.

Function InitMaskString( P, F, n)
length_M = n < ( P+ F'). /*the number of bits in a mask string*/
M=0.
for (j=0;j < (P +F); j++)
for (i=0; i <n; i++)

if (j <P, and c(v) > s(p)) )

/*initial a string whose length is length_M bits*/

Let mj:= 1.
elseif (j = P, and c(v;) > s(f;.p))
Let mj4; = 1.
endif
endif
endfor
endfor
return M.
end GetMaskString

Fig. 5. The detailed steps of InitMaskString.

and omit checking whether it is a valid chromosome. The chro-
mosome will satisfy our requirement, and can be appended to
the population. The purpose of the GetString function is to gen-
erate a chromosome. The mask string would tend to put higher
numbered files on higher numbered nodes in the initialization
part of the GA (Function GetString). The detailed steps for Get-
String are described in Fig. 6.

4) Objective Function: To reduce the computational time,
we construct the objective function carefully with a dependence
on the weight of each node & each node pair, i.e. 2-terminal, for
obtaining the fitness value of each chromosome.

a) Computing the weight of each node: The number of
ports at each node (degree of a node), and the number of links
would have a direct impact on the system reliability. Reliability
decreases with a decrease in the number of links [5]. For any
node, the degree of that node affects the number of the informa-
tion paths that can be transferred from other nodes. The node
with the higher degree is more likely to have more paths to
the destination nodes than those with lower degrees. Therefore,
we employed a simple means for computing the node weight,
which takes less time, and quickly computes the process. The
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Function GetString( M, P, F, k ,n)

Let cp(v;) = c(vy), for 0<i <nm.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 1, MARCH 2006

length X=nx ( P+ F). /*the number of bits in a chromosome*/

Let X=0.
for (j=0;j < ( P+ F); j++)
Letz=0.

dowhile (1< k)

/*initialize a string X with a length length X bits*/

i = generate a random number between 0, and #.

if (my = 1)
Let mj,,,.; = 0.
Let x,; = 1.
if(j<P)

Let ctmp(vi) = ctmp(vi) = s(pj)'

else

Let ctmp(vi) = ctmp(vi) - S(};—P)'

endif
Leta=j+1.

dowhile (a < P + F') /*tune the mask string M*/

lf( Meyp+i = l; and Xan+i — 0)

if((a<Pand () <s(fr))or(a = P,and ¢y <sfor)))

Let m,,,+; = 0.
endif
endif
Leta=a+ 1.
enddowhile
Letr=¢+1.
endif
enddowhile
endfor
return X.

end GetString

Fig. 6. The detailed steps of GetString.

following formula is used to compute the weight, say w(v;), of
node v;.

d(v;)
bt (D

w(v)=1-
z=1

where d(v;) denotes the number of links connected to the node
(N

b) Computing the 2-terminal weight of all pairs: The re-
liability of a set of two nodes depends on their links, and the link
reliability. In the network, two nodes may contain many paths
between them. The length of a path is between 1, and n — 1. To
reduce the computational time, we considered a path in which

the length is not greater than three. When the length of the path
is three, paths were selected uniquely. The following formula
with recursive description was used to evaluate the weight of
2-terminals.

' when initialize,
(v, v;) = {@(v,;,ruj) +(1—®(v,0)xT @

Because 0 < |S1],]S2],|S3| < n, in the worst case, the weight
of 2-terminals can be computed in n — 2 additions, n — 2 sub-
tractions, and 2n — 1 multiplications. Thus, in the worst case,
when the graph is a complete graph, we can obtain all of the
weights for each node-pair in O(n?).
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Function EvalFitnessValue( X)

/*compute the access weight of X using (5) and fitness value of X using (6)*/

P(X)=0.
firstflag=1.
for each program p,, do
for each f; afl(p,) do

if (there is a p, copy in node v,, and a f; copy in node v,)

if (pair (v,, v,) has not occurred, and pair (v,, v,) has not occurred)

if (firstflag=1)

W(X) = ®(vx3vy) .

firstflag=0.

else

V(Y) =¥(X) XO(v,,v,)-

endif
endif
endif
enddo
enddo
return (P(X) x¥(X)).

end EvalFitnessValue

Fig. 7. The detailed steps of EvalFitnessValue.

c) Computing the 2-terminal access weight for all
pairs: After the 2-terminal weight for all pairs & the weight
of each node have been obtained, we can obtain the 2-terminal
access weight of all pairs according to these values. The access
weight can be obtained as

[@ (i, v)) + w(vi) + w(v;)]
3

@(’qu,’l)j) = (3)

d) Computing the access weight of a program and a chro-
mosome: If a program p,, is allocated in v, and a file f3 is allo-
cated in v,, the file f3 is needed when p,, is run. If the set Q(p,)
represents all of the pairs (vy,vy), i.e. 2(pa) = {(vz,vy)|va
holds a copy of program p,, v, hold a copy of data file f3, fs €
afl(pa), ¢ # y}, we can use the following formula to compute
the access weight of each program as follows.

V(pa) = [[© (v, y) “

where (Vs,vy) € 2(pa).

Therefore, the access weight of chromosome X, which de-
notes all the programs & data files allocated in some node, is
computed as

7(X) = [[O(vz;vy) ()

where (vg,vy) € Ule Q(pa); and if both of pairs (vg,vy),
(vy, ve) exist, discard (vy, vz).

e) Computing the fitness value of the chromosome using
the objective function: According to the access weight of chro-
mosome X, the objective function to compute the fitness value
of X is constructed as

fti = ($(X))? (6)

The objective function is to compute the fitness value of each
it" chromosome X in generation j. Fitness values indicate
which chromosomes are to be carried into the next generation.
The reason for using the value of the square of ¥(X) as the
fitness value is for the expansion of the difference between two
chromosomes. This will lead to an increase in the speed of
population convergence. The purpose of the EvalFitnessValue
function is to evaluate the fitness value of a chromosome. The
detailed steps for EvalFitnessValue are described in Fig. 7.

5) Genetic Reproduction & Selection: The process for se-
lecting potentially good strings from the current generation is
to be carried into the next generation. This is achieved by as-
signing a proportionately higher fitness value [16], [18]. A “bi-
ased” roulette wheel [20] is used for chromosome selection into
the mating pool.

6) Genetic Crossover Operators: The crossover is per-
formed at the boundaries of the node bits. First, two chro-
mosomes are randomly selected from the mating pool, and
described in Fig. 8. Next, using a random number generator,
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< /2 < /i < 4l

X4 X3 X2 X Xyo | X9 Xg X7 X X5 Xg X3 X X Xp
Stringl 1 0 0 1 0O [0 1 0 1
String2 0 1 1 o 0 |0 0 1 1

S O
oS O
S -
- O
—_—

Fig. 8. The two chromosomes are randomly selected from the mating pool.

< > < /i < P1

X4 X133 X1 X Xpp | X9 Xg X7 X X5 X4 X3 X2 X Xp
Childl 1 0 0 1 0 |0 0 1 1
Child2 0 1 1 0O 0 |0 1 0 1

o O
o O
- O
S -
—_—

Fig. 9. The two new chromosomes with information from their parents.
Algorithm GAROTA
step 0 /*initialize DS, GA, and task parameters*/
Read DS parameters: 7, e, a;j, c(v;),

GA parameters: ps, cr, mr, ng, tng, /*tng denotes total no. of generation when GA end*/

task parameters: I: , P, F, s(py), s(fp), afl(py).
step 1 /*compute each node weight using (1), all 2-terminal weight using (2) and all 2-terminal
access weight using (3)*/
for (i=0; i < n; i++)
for (j=i+1;j <m; j++)
O(v;, v) /*compute the pair (v, v;) access weight using (3)*/
endfor
endfor
step 2 /*generate each chromosome of the initial population*/
2.1 /*initialize the mask string M for generating chromosomes quickly*/
M= InitMaskString( P, F, k ,n).
2.2 ng=0./*generation 0, ng denotes generation of GA, ng=0,...,tng*/
2.3 /*generate each valid chromosome, and compute its fitness value for generation 0*/
for (i=0; i < ps; i++)
chrom; = GetString( M, P, F, I; ,n).
fi:= EvalFitnessValue(chrom;). /*using (6)*/
endfor
step 3 /*generate roulette-wheel area*/
add each f#; to sumft.
for (i=0; i <ps; i++)

roulette; = ft; | sumft.

if(i1=0)
roulette; = roulette,., + roulette;.
endif
endfor
Fig. 10. The detailed steps of GAROTA.
an integer is generated in the range (1, P + F — 1). This The crossover operator sometimes generates an invalid chro-

number is used as the crossover site. The result produces two mosome. For example, if the size of each node is 5, the size of
new chromosomes with information from their parents. For pq is 2, f; is 3, and f> is 2. Because p1, f1, and fo are usually
example, if the crossover site is 2, the information exchange allocated to v; in childl, the summation size is 7, which exceeds
occurs as shown in Fig. 9. the capacity of v;. This anomaly is just discarded.
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step 4 /*reproduction/Selection for mating pool*/

for (i=0; i <ps; i++)

t = generate a random number between 0.0, and 1.0.

j=0.
dowhile (> roulette;)
J=j+L
enddowhile
if (j!=0)
Jj=j-1
endif
pool_chrom; = chrom;.
pool_ft; = fi,.
endfor

step 5 /*crossover for next generation*/

cc= [cr x ps/ 2]. /*set the crossover count*/

dowhile (cc>0)

generate random integer numbers x, y in the range (0, ps-1), and pos in the range (1,

P+F-1).

generate two chromosomes, say tmpl & tmp2, by crossover the two chromosomes, say

pool_chrom,, and pool_chrom,, which are selected at random from the mating pool.

if (CheckString( rmp1, P, F, k ,n)=True, and

CheckString( tmp2, P, F, k ,n)=True)

tmp_ft1 = EvalFitnessValue( tmp]1).
tmp_fi2 = EvalFitnessValue( tmp2 ).

/* using (6) */
/* using (6) */

replace pool_chrom,, pool_chrom, by the chromosomes which are related to the

two maximized fitness values of { pool_ft., pool_fi,, tmp_fil, tmp_fi2 }.

Let cc = cc - 1. /*decrement crossover count*/

endif

enddowhile

Fig. 10. (Continued) The detailed steps of GAROTA.

7) Genetic Mutation Operator: This operator is used to im-
prove the global optimal solution, if it is appreciably reduced
by the crossover operation. First, using a random number gen-
erator, three integers (say x, y, z) are generated. The value of x
is in the range (0, ps — 1), which indicates the mutation chro-
mosome. The value of y is in the range (0, P + F' — 1), which
indicates the bits between y x n, and ((y + 1) x n) — 1 of the
mutation chromosome. The value of z is in the range (0, n — 1),
which indicates the mutation bit, i.e., the (y x n+ z)"h bit of the
mutation chromosome, and mutates it. This mutation scheme
ensures that the copy of each program & data file is correct by
selecting a bit randomly in the range (y X n,y X (n + 1) — 1)
of the mutation chromosome.

The mutation operator sometimes generates a chromosome
which does not represent a valid task assignment. When this sit-
uation occurs, the original chromosome is reserved, and another
chromosome is selected for mutation.

8) Replacement Strategy and Termination Rules: The most
common replacement strategy is to probabilistically-replace

the poorest performing chromosome in the previous generation
[20]. On the other hand, the elitist strategy appends the best
performing chromosome from the previous generation to the
current population, and thereby ensures that the chromosome
with the best objective function value always survives to the
next generation. Our GAROTA combines both of these con-
cepts. Each offspring generated after crossover is added to the
new generation if it has a better objective function value than
both of its parents. We randomly select a chromosome from the
best two of the parents & the offspring. This ensures that the
best chromosome is carried into the next generation, while the
worst is not.

GAROTA execution can be terminated when the average &
maximum fitness values of the strings in a generation become
the same.

B. Complete Algorithm of GAROTA

The algorithm begins with an initial generation of valid chro-
mosomes which satisfy the constraint. The initial generation
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step 6 /* mutate for next generation*/

me = |—mr X ps-|- /*set the mutation count™/

dowhile (mc>0)

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 1, MARCH 2006

generate random integer number x in the range (0, ps-1),/ in (0, P+F-1), and ¢ in (0, n),

respectively.

tmp X = pool chrom,.

mutate the bit x;,+,, and another bit by random select in X, ,..., Xjx(1)-1-

if ( CheckString(tmp X, P,F, k,n)=
tmp_ft = EvalFitnessValue( tmp X).

if (tmp_fi > pool_fi,)

pool chrom,=tmp X.
endif

True)
/*using (6)*/

Let mc = mc -1. /*decrement the mutation count™/

endif

enddowhile

step 7 /*replacement and creation a new generation*/

for (i=0; i <ps; i++)
chrom; = pool_chrom,;.
endfor
step 8 /*Test for terminating condition*/
ng =ng + 1. /* next generation */
if(ng < tng, and some fi; # avgft)
go to step 3.
endif

step 9 /*Compute the DSR, and output the best task assignment.*/

Compute the reliability of the final result task assignment indicate at the first chromosome of the

population using SYREL [4], and output the task assignment.

End GAROTA

Fig. 10. (Continued) The detailed steps of GAROTA.

c(v)=5 c(v)=4  c(v2)=6
c(v3)=6 c(vg)=5 c(v5)=5

a0,=0.70  a0,=0.80

a1,=0.90  a,5=0.75

a,4=0.95 a34=0.85
a35=0.90 a45=0.95

Fig. 11. The DS with six nodes, and eight links.

contains a finite number of valid strings selected at random. The
number of strings in any generation, the population size, is kept
to an even number to ease the crossover. The detailed steps for
GAROTA are described in Fig. 10.

C. An [llustrative Example

The topology of the distributed system with six nodes & eight
links is described as follows, and is shown in Fig. 11. The ¢(v;)
represents the capacity of node v;, and a; ; represents the relia-
bility of link e ;.

If there are two programs, p1, p2, and three data files, fi, fo,
f3, the size of p1, po, f1, f2, f31s 2, 3,2, 3, and 3, respectively.
The program p; needs f1, f2, and program ps needs f1, f2, f3
for complete execution, e.g., a fl(p1) is { f1, f2}, and a fl(p2) is
{f1, f2, f3}. Our task is to find the maximal distributed system
reliability under the allocated programs & files.

In step 1, after evaluating each 2-terminal pair’s weight

0.9356, 0.9295, 0.9914, 0.9735, 0.9799, 0.9754, 0.9776,
0.9924, 0.9852, 0.9960, 0.9907 and 0.9943, respectively.

In step 2, initialize the population.
In step 3, each chromosome’s fitness value, ratio of fitness

value, and roulette-wheel area are derived. The average fitness
value is 0.490 881.

The algorithm executes statements between steps 4 & 8. They
are reproduction & selection for the mating pool, crossover &
mutation for the next generation, replacement & creation of the
new generation, and testing for the termination condition. In
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TABLE 1
THE RESULTS OBTAINED USING THE EXHAUSTIVE METHOD, HWANG & TSENG METHOD, AND OUR PROPOSED METHOD FOR VARIOUS
DS ToPOLOGIES & k-DTA (WHERE k = k)

Size /:-DT A afl(pa) Global [Exhaustive Meth.'| Hwang&Tseng Proposed method
]“(' rlr Optimal NRC? time | time bolut time |NR ; bsolut
nle P p P . ; absolute err ng | ps |absolute err
2 ! 2 ’ solution (sec) | (sec) (sec) |C*

6 |8 |1[2]3 Al |Aih 0.9883041 | 4032 | 16 | 0.11 |0.0099509 | 0.97 | 1 | 190 [100 0
6|8 |1(2]4|sn8]|A6hA - 0.9883041 | 18756 | 145 | 0.11 [0.0099509 | 0.72 [ 1 | 90 |100 0
6|8 |1[3]|3(har |ps  |AA | 09883041 | 13968 | 55 |0.16 [0.0207249| 139 | 1 |100 {100 0
6|8 |1[3]4|fnhlss Ak | 09745220 | 57624 | 266 | 0.22 [0.0101783 | 1.48 [ 1 [100 {100 0
6|8 |1[3]5|anh|sns |Af | 09745220 | 210168 | 1072 | 0.22 [0.0055219 | 1.07 |1 | 70 |100 0
618 |2(2]3 [fifshs | fihs - 0.9998719 | 21312 | 97 | 0.16 |0.0146482 | 0.77 | 1 [190 |100 |0.0002047
6|8 |2(2]3 s lins |- 09992175 | 21312 | 34 | 022 |0.0137254| 0.99 | 1 [ 90 |100 0.0001706

6|8 |212]4|Anh | Al 0.9984149 | 11691 | 19 | 0.38 |0.0003736 | 0.72 | 1 |100 |100|0.0002877

6|8 (2]2]|3|nn |Ar |- 0.9998719 | 21312 | 104 | 0.22 [0.0002890 | 0.54 | 1 | 60 [100 |0.0002574
6ls(202]|3|nn |As |- 09998719 | 21312 | 48 |0.22 |0.0002890 | 0.77 | 1 | 70 [100]0.0007545
618 (2133 |nhs |Airh  |fis | 09998698 | 3699 | 24 [027 [0.0053454| 038 | 1 |100 |100]0.0004042

6 2213 |hs s |- 0.9999917 | 10260 | 113 | 022 [0.0127541| 1.14 [ 1 | 60 |100]0.0000811
6 10712 (3]3 (A |6 |AA | 09999951 | 272157 | 3433 | 0.44 |0.0274293 | 3.74 | 1 [300 |100 |0.0000882

6 (1072134 A |fiafs |fifsrd™ 1.0000000 5288498 | 38122 [ 0.38 [0.0291030 | 048 | 1 | 120 |100|0.0000172

! Exhaustive Meth.: the exhaustive method

2k
k=1, set c(vo)=5, c(v)=4, c(2)=6, c(v3)=6, c(va)=5, c(vs)=5, s(p1)=2,5(P2)=3, s(p3)=3, s(f1)=2, s(2)=3,
s(3)=3, s(fa)y=2, s(f5)=2.
k=2, set c(vo)=6, c(V1)=5, c(n)=T, c(v3)=T, c(va)=6, c(vs)=6, s(p1)=2,5(p2)=3, s(p3)=3, s(f1)=2, s(/2)=3,
s(3)=3, s(fa)y=2, s(f5)=2.

3NRC: the number of reliability computation

4 #.3ddition two links es, €34 and a>5=0.9,a; 4,~0.95

>+ s(fa)=1
, 08 P/ p2S2
= 4
«©
; 0.7 fisfa
2
= 06
L]
)
E
g 05 ¢
= P puf
0.4 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 20 Fig. 13. The results of programs & data files assignment.

The number of generation (ng)
In the same way, the average fitness value of generation

Fig. 12. The average fitness value of every generation of DS with six nodes, ~ 10,. .., 80 is obtained as shown in Fig. 12. In generation 80,
and eight links with P = 2, F = 3, afi(p) = {f1, fo}, and afl(p2) = all chromosomes are 100100011000100010001100010010,
{fs. f2, fa}- and the fitness value is 0.748 307. The average fitness value is

0.748 307. Fig. 12 illustrates the average fitness value for every
addition, step 3 is executed again. The average fitness value of  generation. Because the termination condition is satisfied, the
generation 1 is 0.537424. algorithm goes to step 9.
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In step 9, the program & file assignments in the chromosome
population are shown in Fig. 13. The algorithm computes the
DSR using SYREL [4], and outputs the task assignment. The re-
liability is 0.999 496 9. The number of reliability computations
is equal to one, meaning that we only calculate the reliability of
the optimal solution. Although we do have to compute the ac-
cess weights & the fitness, the computational efficiency of our
scheme is due to the fact that we are using access weights in the
objective function as a proxy for reliability, so we do not have
to explicitly compute the reliability of each solution.

IV. RESULTS AND DISCUSSION

Table I presents the data on the results obtained using three

different methods for various DS topologies with different
allocated programs & data files. In contrast to the exhaustive
method, the number of reliability computations grows rapidly
when the size of the DS topology, or the number of programs &
data files, is increased. The proposed method is constant, and
independent of the size of the DS topology, and the number
of programs & data files. The deviation is very small when
the proposed method cannot obtain an optimal solution. These
data show that the proposed method is more effective than the
conventional methods.
__ In this paper, we proposed a new technique for solving the
k-DTA reliability problem. The complexity of the proposed al-
gorithm in steps 0,.. ., 9is O(1), O(n?), O(ps x kn(P + F)?),
O(ps), O(ps?), O(cc x kn(P + F)), O(me x kn(P + F)),
O(ps), O(1), and O(m?), where k denotes the upper bound
of the program & file copies, and m represents the number of
paths in the assigned node set [4]. Therefore, the complexity of
the proposed algorithm is O(n® + tng x ps x kn(P + F)? +
m?). Results obtained from our algorithm were compared with
those from the exhaustive method, and the Hwang & Tseng’s
method [13]. Although the exhaustive method, which has a time
complexity of O(n?n*(P+F)) can yield the optimal solution,
it cannot effectively reduce the number of reliability computa-
tions, and the time complexity. An application occasionally re-
quires an efficient algorithm for computing reliability owing to
resource considerations. Under this circumstance, deriving the
optimal reliability may not be a promising option. Instead, an
efficient algorithm yielding approximate reliability is preferred.
The reliability computation will consume processor time. Thus,
we focus on decreasing the number of reliability computations.
When £ = k, the time_complexity of the Hwang & Tseng
method [13] is O(n® + kn(P + F) + m?), which is slightly
quicker than our method, but the deviation from the exact solu-
tion is not ideal [13].

In contrast to the computer reliability problem, which is
static-oriented, the task assignment problems in the DS are dy-
namically-oriented because many factors such as DS topology,
node capacity, link reliability, the size of the programs or files,
files requested by each program, copies of programs & files,
and the number of paths between each node can significantly
affect the efficiency of the algorithm [4]. Thus, quantifying the
time complexity exactly is extremely difficult. The accuracy &
efficiency of the proposed algorithm were verified by imple-
menting simulation programs in the C language executed on a

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 1, MARCH 2006

Pentium III with 128 M-DRAM, using MS-Windows 98. In our
simulation case, the number of reliability computations for the
proposed algorithm was constant. The exact solution can be ob-
tained when the number of copies of programs & files is one. In
almost every case, if the number of copies of programs & files
exceeds one, the proposed method can obtain an approximate
solution in which the average deviation from the exact solution
is under 0.001. Because the proposed algorithm uses the elitist
strategy at replacement, and uses the access weight instead of
the two-terminal reliability of for computing the fitness value,
in a few cases, it cannot obtain the exact solution.
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