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A b s t r a c t - - D i a b e t e s  mellitus has become a general chronic disease as a result of changes in cus- 
tomary diets. Impaired fasting glucose (IFG) and fasting plasma glucose (FPG) levels are two of 
the indices which physicians use to diagnose diabetes mellitus. Although this is a fairly accurate 
approach, the tests are expensive and time consuming. This study at tempts  to construct a prediction 
model for Type II diabetes using anthropometrical body surface scanning data. Four data  mining 
approaches, including backpropagation neural network, decision tree, logistic regression, and rough 
set, were used to select the relevant features from the data to predict diabetes. Accuracy of clas- 
sification was evaluated for these approaches. The result showed that  volume of trunk, left thigh 
circumference, right thigh circumference, waist circumference, volume of right leg, and subjects'  age 
were associated with the condition of diabetes. The accuracy of the classification of decision tree and 
rough set was found to be superior to that  of logistic regression and backpropagation neural network. 
Several rules were then extracted based on the anthropometrical data using decision tree. The result 
of implementing this method is not only useful for the physician as a tool for diagnosing diabetes, 
but it is sophisticated enough to be used in the practice of preventive medicine. (~) 2006 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - D a t a  mining, Type II diabetes, Backpropagation neural network, Diagnosis. 

This research was supported in part by Grant No. 93-2213-E-007-110 from National Science Council (Taiwan). The 
authors would like to thank the medical staff at the Department of Health Examination at Chang Gung Memorial 
Hospital, Taiwan. We are grateful to the Chang Gung Biomedical Research Team members who provided the 
data and shared their experiences of medical research with us. 

0898-1221/06/$ - see front matter (~) 2006 Elsevier Ltd. All rights reserved. Typeset by .Ah/tS-TEX 
doi: 10.1016/j.camwa.2005.08.034 



1076 C.-T. S u e t  al. 

1. I N T R O D U C T I O N  

Diabetes mellitus (DM) is a major chronic disease, affecting up to 3% of the population in 
industrialized countries. There are approximately 135 million people suffering from DM, and the 
number will rise to 300 million, or 5.4% of world population by 2025. Consequently, researchers 
all over the world are now paying more attention to the diagnosing and/or  predicting of DM. 

According to the definition from the Canadian Diabetes Association [1], diabetes mellitus 
is a condition in which the body either cannot produce insulin or cannot effectively use the 
insulin it produces. Diabetes mellitus is divided into two types: Type I diabetes and Type II 
diabetes. Type I diabetes (or insulin-dependent diabetes, IDDM) occurs when the pancreas no 
longer produces any or very little insulin. The body needs insulin to use sugar as an energy 
source. It  usually develops in childhood or adolescence and affects 10% of people with diabetes. 
Different from Type I, Type II diabetes (or non-insulin-dependent diabetes, NIDDM) occurs 
when the pancreas does not produce enough insulin to meet the body's  needs or the insulin is 
not metabolized effectively. Type II usually occurs later in life and affects 90% of people with 
diabetes. 

In the past a statistical approach, such as analysis of variable (ANOVA), multi variable analysis, 
and factor analysis, was used to predict DM. For instance, Kim et al. [2] investigated the asso- 
ciation between microalbuminuria and the insulin resistance syndrome, independent of Type II 
diabetes, using a multiple regression analysis and multiple logistic regression analysis. The result 
shows that  the body mass index (BMI) and waist hip ratio (WHR) are both important  factors 
for DM. Chen et al. [3] studied the association of hypertension and insulin-related metabolic syn- 
drome in nondiabetic Chinese using factor analysis. The result of their study shows a significant 
association between hypertension and the insulin-related metabolic syndrome. However, a simple 
statistical approach such as logistic regression cannot clearly explain the relationship among the 
input variables and DM. On the other hand, artificial intelligence (AI) could be a good candidate 
to avoid this problem. Since the early 1990s, feedforward artificial neural networks have been 
used increasingly in various fields, such as backpropagation for clinical diagnosis [4-6] and self- 
organizing map breast cancer clustering [7]. Other algorithms, like genetic algorithms, genetic 
programming, evolution strategies, evolutionary programming, classifier systems, and hybrid sys- 
tems are being reported continuously [8]. In addition, two indices, sensitivity and specificity, are 
used to evaluate the prediction models when conducting epidemiological studies using the statis- 
tical method [9-11]. In practice, we can understand that  researchers do not use statistics-based 
analysis due to the fact it may face some limitations. However, AI studies put emphasis on 
the accuracy of classification rather than on sensitivity and specificity. Although biochemical 
examination is a general approach for the diagnosis of diabetes, it has some disadvantages as a 
diagnostic for DM. Repeated diagnoses can lead to increased inconvenience for both the physician 
and the patient. On the other hand, some studies [12,13] have shown that  there is a relationship 
between body composition and DM. Based on this we use four data mining approaches to find the 
relationship of anthropometrical data  and diabetes mellitus. It is our intention to provide a new 
diagnostic approach for physicians to diagnose DM, and thereby reduce government expenditures 
and enhance the health for all citizens. 

The remainder of this paper is organized as follows. In Section 2, we introduce the four 
data mining techniques and their procedures. Methods and results are presented in Section 3. 
Technical and medical discussions are provided in Section 4. Finally, we draw our conclusion and 
make suggestion from this study in Section 5. 

2. S E L E C T E D  D A T A  M I N I N G  A P P R O A C H E S  

Diagnosis is the process of selectively gathering information concerning the health status of 
a patient, and interpreting this information based on previous knowledge, as evidence for or 
against the presence or absence of a disorder [14]. Feature selection has always been one of the 
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processes for diagnosis and prognosis [15]. Some tools, like neural network and decision tree, 
are helpful for analyzing the results of feature selection. Logistic regression is also a traditional 
tool in many medical researches, including the process of feature selection. As for rough set, it 
is good at processing large and vague data where the character of the data is consistent with 
general medical data. 

2.1.  N e u r a l  N e t w o r k  

Neural network is one of the methods of artificial intelligence. I t  is characterized by 

(1) its pattern of connections between the neurons, 
(2) its method of determining the weights of these connections, and 
(3) its activation function. 

A neural net consists of a large number of simple processing elements called neurons. Similar to 
neural systems, each neuron is connected to other neurons by means of directed communication 
links, each with an associated weight, with the weights representing the level of information. 
Each neuron has an internal state, called its activation, which is a function of the inputs it 
has received. Typically, a neuron sends its activation as a signal to several other neurons. It  
is important to note that  a neuron can send only one signal at a time, although that  signal is 
broadcast to several other neurons. In addition, it is convenient to visualize neurons as being 
arranged in layers. Typically, neurons in the same layer behave in the same manner. A multilayer 
net generally is composed of one input layer, hidden layers, and an output layer [16]. Usually, 
a neural network with signal hidden layer can provide a good performance of classification and 
prediction. 

Neural network systems are divided into two groups: supervised learning and unsupervised 
learning. Backpropagation neural network is a typical network of supervised learning, and very 
useful for selecting features. The multilayer network modeling is accomplished via two phases: 
the training and the testing process. Even though it can basically approximate any function, the 
neural network method still has a few problems such as t ime consuming convergence, overfitted 
training, high complexity in computation and black boxes in the training results [17]. Some 
developed algorithms [18,19] reported that  a suitable pruning of some of the input nodes might 
be helpful for rule extracting and knowledge acquisition. 

Consequently, we refer to Sue t  al. [20] concerning an algorithm of feature selection. As per their 
research, a neural network is shown in Figure 1. This neural network is a multilayer perceptron. 
It  is composed of a single input layer with n input nodes, a single hidden layer with m hidden 

.21 

Figure 1. A typical neural network. 
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nodes, and a single output layer with s output nodes. The connection (weight) of input to hidden 
is W; another hidden to output is V. The relationship between the two layers is determined by 
weight. It is important to note that  the priorities of these input nodes are according to W and V: 

As a result of not all of the connections being identical, i.e., sometimes W is greater than V 
and sometimes it is not. The priority of the input nodes is determined by Pi which is defined as 
follows, 

Pi = IWij × V~kl, (1) 
i=1 j = l  k = l  

where 

Wiy is the weight between the ith input node and the jth hidden node; 
~ k  is the weight between the jth hidden node and the k th output node; 

P~ is the sum of absolute multiplication values of the weights Wij and Vjk. 

For the sake of convenience for the user, we calculate the mean of total Pi to determine the 
important input nodes according to equation (1). Thus, the ith input node is found to be an 
important node which will be selected if Pi >~ mean  or else will be removed if Pi < mean.  

In summary of the above, we illustrate an algorithm for feature selection as follows. 

2.1.1. A l g o r i t h m  

Step 1: Calculate the product (Pi) of the connection of input-hidden and hidden-output for 
each input node. 

Step 2: Sort the products and compute the mean of total Pi. 
Step 3: Remove input node if its product (Pi) is less than the value of the mean of total Pi. 
Step 4: Go to Step 1 till the number of input nodes that are users is as expected. 

2.2. Dec i s ion  T r e e  

A decision tree is another feature selection approach. It  is a popular classifier in machine 
learning applications and is also used as a diagnostic model in medicine. Decision tree is connected 
via nodes and branches. The tree construction process is heuristically guided by choosing the 
'most informative' attribute at each step, aimed at minimizing the expected number of tests 
needed for classification. Let E be the entire initial set of training examples, and cl, . . . , c g  

be the decision classes. A decision tree is constructed by repeatedly calling a tree construction 
algorithm in each generated node of the tree. Tree construction stops when all examples in a 
node are of the same class, or if some other stopping criteria are satisfied. In brief, a decision tree 
is a flow-chart-like tree structure, in which each internal node denotes a test on an attribute, each 
branch represents an outcome of the test, and leaf nodes represent classes or a class distribution. 
The topmost node in a tree is the root node [21]. A typical decision tree is shown in Figure 2. 

[ Turn°ur I 
Thickness 

1 . 5 - 4 m m ~ <  1.5ram y e s / ~ ~ n o  

Survial Survial 
3 year: 88% 3 year: 73% 
5 year: 81% 5 year: 64% 

Figure 2. A decision tree for predicting survival. 
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C4.5 is a well-known decision tree construction software (C5.0 is its recent upgrade), that is 
widely used, and has been incorporated into medical data  mining tools. Quinlan [22] provides ID3 
(interactive dichotomizer 3) using a tree representation. It is an entropy-based algorithm used 
for some of the larger database analysis either consisting of string data or integer data. Also, its 
interpretability has been maximized. It  is important to note that  C4.5 is more interpretable than 
neural networks. C4.5 is easy to use for users with little or no knowledge of statistics and machine 
learning. Compared with C4.5, the C5 version classifies more accurately, much faster and requires 
less memory. Although there are all these advantages, overfitting remains an important issue to 
overcome for the knowledge miner. 

CART is another decision tree popular for data mining. Different from C4.5, CART is a binary 
tree based on the Gini Index (GI) to determine the condition for constructing the tree [23]. Both 
CART and C4.5 need to prune the initial tree after training and testing. The difference in 
pruning conditions between these two algorithms is that  C4.5 is based on the subtree, while 
CART is based on the entire tree. In addition, both CART and C4.5 rely on the specific 'cost 
function' to decrease the probability of misclassification [9]. 

In this study, entropy-based trees [24] have been chosen to analyze and induct this medical 
diagnostic tree. Some of the medical information such as the symptom of some diseases, or the 
classification of body size are vague and difficult to distinguish in a clinical diagnosis. It is worth 
noting here that  CART is not suited for this study because it is an absolute binary classifier. In 
short, the entropy-based tree using C5 with not only a friendly interface, but also using a flow- 
chart-like structure makes it more user-friendly. The procedure, i.e., hypothesis and algorithms 
of entropy-based tree is as follows. 

HYPOTHESIS. Let's take a training set S. Ci C S, Vi = 1 ,2 ,3 , . . .  ,n. The number of class is 
freq (Ci, S). IS[ is the total number of training sets. Hence, the probability of occurrence of the 
number of class is (freq ( C,, S) ) / I S I . 

A L G O R I T H M S .  

Step 1: Measure the information ( -  log2(freq (Ci, S)/ISI))  of each class. 
Step 2: Calculate the mean information of training set S. 

info(S) = -  f i  freq (Ci, S) //freq (Ci, S ) )  
i=1 [SI l°g2 \ ISI (2) 

Step 3: Partition S into S~ base on attribute A, i.e., let {$1, $2, $3 , . . . ,  Sn} E S. 
Step 4: Calculate the information which is partitioned. 

infoA(S) = ~-~ n-~ x info(Si) (3) 
i = l  

Step 5: Compute the information gain. 

gain (A) = info(S) - infoA(S) (4) 

The algorithm computes the information gain of each attribute. The attribute with the highest 
information gain is chosen as the test attribute for the given set S. A node is created and labeled 
with the attribute, branches are created for each value of the attribute, and the samples are 
partitioned accordingly. 

2.3. Logistic Regression 

Logistic regression is a typical statistical approach which is good at binary data analysis. For 
example, some medical research, as a result of output such as survivals (yes or no) and disease 
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(positive or negative) are categorical data, where logistic regression is a useful analysis approach. 
Also accuracy of classification could satisfy some researchers and clinical operators. Different 
from traditional simple regression, it is a nonlinear approach to analyze the dependent variable 
that  is categorical, such as binary data. 

To obtain the logistic model from the logistic function, we write z as the linear sum a plus ~1 
times X1 plus/32 times X2, and so on to flk times Xk, where the X are independent variables of 
interest and c~ and/3~ are constant terms representing unknown parameters. In essence, then, z 
is an index that  combines the X ' s  (see equation (5)). 

z = ~ + ~1X1 + ~2X2 + - . .  + ~kXk. (5) 

We now substitute the linear sum expression for z in the right-hand side of the formula for 
f ( z )  to get the expression f ( z )  equals 1 over 1 plus e to minus the quantity a plus the sum of 
~X~ for i ranging from 1 to k (see equation (6)), 

1 1 
f ( z )  - 1 + e - z  - 1 + e - ( ~ + ~ x O "  (6) 

Actually, to view this expression as mathematical model, we must place it in an epidemiologic 
context. Suppose we have observed independent variables X1, )(2, and so on up to Xk on group 
of subjects, for whom we have also determined disease status, as either 1 if "with disease" or 0 

if "without disease". 
We with to use this information to describe the probability that  the disease will develop, in a 

disease-free individual with independent variable values X1, X2, up to X k .  The probability being 
modeled can be denoted by the conditional probability statement as follows, 

P ( D  = 1 I X I , X 2 , . . . , X k ) .  

The model is defined as logistic if the expression for the probability of developing the disease, 
given the X is 1 over 1 plus e to minus the quantity ~ plus the sum from i equals 1 to k of 
/~i times Xi .  The terms ~ and fli in this model represent unknown parameters that  we nee to 
estimate based on data obtained on the X ' s  and on D (disease outcome) for a group of subjects. 

For notational convenience, we denote the probability statement P ( D  = 1 ] X1,  X2, . . . ,  Xk) as 
simply P (X)  where the bold X is a shortcut notation for the collection of variables XI through 

Xk, 
P (X)  = P ( D  = 1 IX1 ,  X2 . . . . .  Z k ) .  (7) 

Thus, the logistic model [25] may be written as equation (8), 

1 
P ( X )  = 1 + (8) 

2.4. R o u g h  Set  

The rough set theory was proposed by Pawlak in 1982, and provides a mathematical tool for 
representing and reasoning about vagueness and uncertainty. The notion of indiscernibility plays 
an important role in this theory. Rough set theory is good at data  deduction, i.e., elimination 
of superfluous data, discovery of data dependencies, estimation of the significance of data, and 
the discovering of cause-effect relationships. Based on the above, rough set provides a powerful 
function for physicians and in medical studies as a diagnosis tool for some diseases. 

The rough set theory has many important advantages [261 which are as follows, 

(1) provides efficient algorithms for finding hidden information in data, 
(2) finds minimal sets of data, 
(3) evaluates the significance of data, 
(4) generates minimal sets of decision rules from data, 
(5) easy to understand, and 
(6) offers straightforward interpretation of obtained results. 
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According to the rough set theory, we should find the indiscernibility. Formally, let U be a 
set of training objects, A be a set of attributes describing the objects, C be a set of classes 

^ (i) represents the value of attribute Aj for the ith and Vj be a value domain of an attribute Aj. vj 
object Obj (i). Obj (i) and Obj (k) are said to have an indiscernibility relation with attribute Aj 

while Obj (i) and Obj (k) have the same value of attribute Aj. Also, if Obj (i) and Obj (k) have 

the same values for each attribute in subset B of A, Obj (i) and Obj (k) are also said to have an 
indiscernibility relation with attribute set B. 

The lower approximation and upper approximation are defined as B.(X) and B*(X) respec- 
tively, as follows, 

B,(X) = {x I~ e U, B(x) c X} ,  

B*(X) = {x I x E U, and B(x) n X # ¢}.  

(9) 

(10) 

After the lower and the upper approximation have been found, the rough set theory can be 
used to derive both certain and uncertain information, and induce certain and possible rules from 
them. 

2.5. A c c u r a c y  

Three accuracy indices are used to evaluate medical models. For data mining researches, 
accuracy of classification is often used. The other two indices, 'sensitivity' and 'specificity' are 
always used in epidemiological studies. For a two class problem the accuracy of classification can 
be estimated as P/(P + N) or (P + 1) / (P + N + 2) where P is the number of positive examples 
and N is the number of negative examples of the selected class. However, it is practical for four 
subsets to be considered. 

True positives (TP): true positive answers of a classifier denote the correct classification of 
positive cases. 

True negatives (TN): true negative answers denote the correct classification of negative cases. 
False positives (FP): false positive answers denote the incorrect classification of negative 

cases into a class positive. 
False negatives (FN): false negative answers denote the incorrect classification of positive 

cases into a class negative. 

According to the above definitions, the classification accuracy measures the proportion of correctly 
classified cases as follows, 

TP + TN 
Accuracy of Classification = TP + FN + TN + FP" (11) 

Regarding the other indices, sensitivity measures the fraction of positive cases that are classified 
as positive, and specificity measures the fraction of negative cases classified as negative. In other 
words, sensitivity can be viewed as a detection rate that one wants to maximize, while specificity 
can be seen as a false alarm rate which one wants to maximize. 

3. I M P L E M E N T A T I O N  

3.1. E q u i p m e n t s  and M a t e r i a l s  

3.1.1.  T h r e e - d i m e n s i o n  w h o l e  b o d y  scanner  

A three-dimension whole body scanner system (Figure 3) with six 3D sensor heads mounted on 
three vertical scanning mechanisms that could be motion synchronized, was used in this study. 
Based on optical triangulation techniques, including a CCD (charge coupled devices) image plane 
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Figure 3. A three-dimension whole study system. 
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Figure 4. The optical triangulation techniques of whole body scanner. 

(a 768 x 492 pixel a r ray  and laser sheet),  six la teral  laser project ions  were formed (Figures 4 and 5). 

Af terwards  these six project ions needed to be merged. A to ta l  of abou t  280 measurement  results  
were collected from the scan da t a  wi th in  24 seconds. In order  to ensure accuracy  of measurement ,  

the  subjects  were asked to extend their  arms 30 ° out  from their  bodies.  If  there  was any fault in 

this  check, then  the subjects  were remeasured.  
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Figure 5. Six laser lateral projectors and a merged whole body. 

3.1.2. Subjects 

A total of 7020 subjects (3435 men and 3585 women) were recruited via the Department 
of Health Examination from those seeking an annual physical health check-up at Chang Gung 
Memorial Hospital in Tao-Yuan, Taiwan. Thirty-two anthropometrical data were measured by 
the whole body scanner. These data included: height, weight, head circumference, breast cir- 
cumference, waist circumference, hip circumference, left upper arm circumference, right upper 
arm circumference, left fore arm circumference, right fore arm circumference, right thigh circum- 
ference, left thigh circumference, right leg circumference, left leg circumference, breast width, 
waist width, hip width, breast profile area, hip profile area, volume of head, surface area of head, 
volume of trunk, surface area of trunk, volume of left arm, surface area of left arm, volume of 
right arm, surface area of right arm, volume of left leg, surface of left leg, volume of right leg, 
surface area of right leg. In addition to these measurements, the subjects'  age and gender were 
collected as well. 

3.2. Data Preprocessing 

Some of this anthropometrical data tended to be incomplete and inconsistent, so we needed to 
perform data cleaning prior to implementation. Data  cleaning tasks were carried out as follows. 

(1) Missing value. We ignored some missing tuples as a result of that  occupies a few propor- 
tions of all anthropometrical data. 
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(2) No i sy  d a t a .  S o m e  r e p e a t e d  d a t a  (e.g., r e p e a t e d  key- in  b y  o p e r a t o r )  was  de le t ed .  T h e  d a t a  

w i t h  key- in  e r r o r  was  also de le t ed .  

(3) I n c o n s i s t e n t  d a t a .  Some  t u p l e s  were  w i t h o u t  a r e c o r d  of  b i o c h e m i c a l  e x a m i n a t i o n ,  b u t  

were  in t h e  a n t h r o p o m e t r i c a l  d a t a b a s e .  W e  d e l e t e d  i t  as well.  

A f t e r  d a t a  p r e p r o c e s s i n g ,  6023 s u b j e c t s  (2947 m e n  a n d  3076 w o m e n )  were  r e t a i n e d .  T h e  

s u m m a r y  of t h e s e  s u b j e c t s  is s h o w n  in  T a b l e  1. F o u r  a p p r o a c h e s ,  n e u r a l  n e t w o r k ,  dec i s ion  t ree ,  

logis t ic  r eg re s s ion  a n d  r o u g h  se t s  ana ly s i s  were  p e r f o r m e d .  

Table 1. Comparison of feature of all the included subjects with non-DM. 

Variable 
(Abbreviation) 

Age [years] 

Height [cm] 

Weight [kg] 

Head Circumference [cm] 
(HEAD_ClR) 

Breast Circumference [cm] 
(BRAS_Cir) 

Waist Circumference [cm] 
(WAIST_CI) 

Hip Circumference [cm] 
(HIP_CIRC) 

Left Upper Arm Circumference [cm] 
(LEFT_UAR) 

Right Upper Arm Circumference [cm] 
(RIGHT_UA) 

Left Fore Arm Circumference [cm] 
(LEFT_FAR) 

Right Fore Arm Circumference [cm] 
(RIGHT_FA) 

Right Thigh Circumference [cm] 
(RIGHT_TH) 

General 
Population* 

53.4 4- 12.1 

159.4 4- 8.3 

63.4 4- 11 

58.8 4- 2 

97.7 4- 11,4 

86.6 4- 10.9 

96.9 4- 6.8 

30.1 4- 4.1 

30.3 ± 3.9 

23.9 4- 2.7 

24.3 4- 2.6 

Diabetes* 

59.9 4- 10.1 

159.4 4- 8.2 

66.4 4- 12.0 

58.5 4- 2.3 

101.0 + 11.6 

92.2 4- 10.7 

98.0 4- 6.9 

30.5 4- 4.4 

30.7 4- 4.3 

24.3 4- 2.8 

24.7 4- 2.7 

52.1 4- 4.7 50.6 4- 5.3 

Left Thigh Circumference [cm] 51.9 4- 4.7 50.5 4- 5.4 
(LEFT_THI) 

Right Leg Circumference [cm] 33.3 4- 3.1 33.2 4- 3.4 
(RIGHT LE) 

Left Leg Circumference [cm] 33.4 4- 3.1 33.4 4- 3.4 
(LEFT_LEG) 

Breast Width [cm] 31.4 4- 2.5 32.2 4- 2.6 
(BRAS_WID) 

Waist Width [cm] 29.8 4- 3.1 31.1 4- 3 
(WAIST_WI) 

Non-Diabetes* 

52.6 4- 12.1 

159.4 4- 8.3 

63.0 4- 10.8 

58.8 4- 2.0 

97.3 4- 11.4 

85.9 4- 10.8 

96.8 4- 6.8 

30.0 4- 4.0 

30.2 4- 3,9 

23.8 4- 2.7 

24,3 4- 2.6 

52.3 4- 4.6 

52.1 + 4.6 

33.3 4- 3.0 

33.4 4- 3.0 

31.2 4- 2.5 

29.6 4- 3.1 
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Variable 
(Abbreviation) 

Hip Width [cm] 
(HIP_WIDT) 

Breast Profile Area [cm 2] 
(BRAS PRO) 

Waist Profile Area [cm 2] 
(WAIST PR) 

Table 1. (cont. 

Surface of Right Arm [cm 2] 
(RT AR SR) 

General 
Population* 

34.6 =i= 2.2 

663.8 =t= 114.1 

Diabetes* 

34.8 4- 2.3 

718.5 4- 118.2 

Non-Diabetes* 

34.6 + 2.2 

656.8 4- 111.8 

556.5 4- 137.8 566.5 4- 141.9 646.3 4- 149.2 

Hip Profile Area [cm 2] 688.9 4- 98.7 706.1-4- 110.3 686.6 4- 97.1 
(HIP_PROF) 

Volume of Head [cm 3] 4746.5 4- 470.0 4765.6 4- 505.0 4743.5 4- 465.1 
(HEAD_VOL) 

Surface Area of Head [cm 2] 1256.6 4- 103.1 1257.3 4- ii0.0 1256.4 4- 102.1 
(HEAD SUR) 

Volume of Trunk [cm 3] 39264.6 4- 7788.9 42502.1 4- 8320.5 38853.8 4- 7626.7 
(TRUNK_VO) 

Surface Area of XYunk [cm 2] 6278.2 =t= 830.2 6548.7 4- 863.4 6243.5 =f= 819.1 
(TRUNK_SU) 

Volume of Left Arm [cm 3] 2200.5 4- 451.3 2262.3 4- 463.1 2193.0 4- 450.0 
( L E F T A R M )  

Surface Area of Left Arm [cm 2] 1312.2 4- 168.7 1338.7 4- 166.8 1309.0 4- 168.7 
(LT_AR_S) 

Volume of Right Arm [cm 3] 2321.3 -4- 460.5 2388.9 4- 478.4 2312.9 4- 457.8 
(RIGHT_AR) 

1347.5 4- 168.2 1373.3 4- 164.4 1344.1 4- 168.4 

Volume of Left Leg [cm 3] 6030.0 -4- 1119.6 5772.6 4- 1173.2 6061.5 q- 1108.3 
(LT_LEG_V) 

Surface of Left Leg [cm 2] 2094.5 -i- 250.2 2044.0 4- 252.5 2100.8 4- 249.2 
(LT_LEG_S) 

Volume of Right Leg [cm 3] 5996.7 4- 1100.4 5722.9 4- 1169.6 6030.6 4- 1085.2 
(RT_LEG_V) 

Surface of Right Leg [cm 2] 2087.2 4- 252.6 2033.7 4- 255.7 2093.8 4- 251.3 
(RT LEG_S) 

3.3. Implementat ion Results  

A to ta l  of 6000 d a t a  sets were  se lec ted  r a n d o m l y  f rom the  or ig ina l  d a t a b a s e  v i a  d a t a  pre- 

processing.  T h e y  were d iv ided  into  two groups:  80% of t h e  cases were  t h e  t r a i n i n g  sets  and  the  

o thers  were t h e  t e s t ing  sets, i.e., t he  t r a in ing  sets were  4800 tup les  and  t h e  t e s t ing  sets  were 1200 

tuples .  

3 .3 .1 .  N e u r a l  n e t w o r k  

All of  t he  a n t h r o p o m e t r i c a l  d a t a  as well  as the  sub j ec t s '  age and gender  are  t h e  i n p u t  nodes.  

One  o u t p u t  node  represents  if  the  sub jec t  suffer f rom DM. So, t he  s t r u c t u r e  of this  neura l  

ne twork  could  be  expressed as 34-X-1  where  X deno tes  t h e  n u m b e r  of  h idden  nodes .  In  th is  

s tudy,  Profess iona l  II  P lus  sof tware  [27] was used to  pe r fo rm the  c o m p u t a t i o n  to  o b t a i n  t he  

s t ruc tu re  wi th  t he  m a x i m u m  class i f icat ion rate .  In  th is  mul t i l aye r  neu ra l  ne twork ,  nodes  f rom 

the  h idden  layer,  f rom 1 to 30, were  chosen.  T h e  o the r  pa r ame te r s ,  like m o m e n t u m  were set  at  
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Table 2. Results of neural network training (original model). 

Structure Training Accuracy Testing Accuracy 

34-2-1 81.24% 80.46% 

34-3-1 81.23% 80.44% 

34-4-1 81.27% 80.40% 

34-5-1 81.29% 80.41% 

34-6-1 81.30% 80.42% 

: : : 

34-23-1 81.38% 80.47% 

: : : 

34-28-1 81.27% 80.36% 

34-29-1 81.26% 80.36% 

34-30-1 81.26% 80.35% 

Table 3. Results of neural network training (reduced model). 

Structure Training Accuracy Testing Accuracy 

12-23-1 80.68% 80.15% 

0.9, 0.8, and 0.7, the learning rate was set at 0.1, 0.2, and 0.3, and the number of iterations was 
set at 20,000. After trial and error, the accuracy of the classification of the training set and the 
testing set axe shown in Table 2. The result shows that  the s tructure 34-23-1 provides the better 
performance when the learning rate is 0.1 and the momentum is 0.9. Next, the network is pruned. 
Based on equation 1, the mean of Pi is 1.86. The input nodes with Pi < 1.86 are removed from 
the network. After that,  twelve anthropometrical  factors (subjects '  age, waist profile area, right 
thigh circumference, breast profile area, left thigh circumference, volume of trunk, volume of left 
leg, waist circumference, volume of right leg, waist width, head circumference, breast width) were 
determined. Based on these twelve factors (see Table 3), we found tha t  the performance of the 
reduced model was similar to the original neural network model. 

3.3.2.  D e c i s i o n  t r e e  

A decision tree with 167 branches was inducted from the whole of the anthropometrical  data 
(6000 instances, 34 attributes) by See 5 software. In See 5, we place training sets with 4800 
tuples and testing sets with 1200 tuples to construct  the decision tree (a medical diagnostic 
tree). Furthermore,  cost files were defined and used to reduce the probabili ty of misclassification 
from positive to negative. The original medical diagnostic tree shows that  the proportion of 
misclassification is approximate 9.3%. The criterion of feature selection is to collect all of the 
nodes tha t  form on each layer of the medical decision trees from all the folds. As a result of some 
nodes having been repeated, a total  of thirteen anthropometrical  factors (height, weight, breast 
circumference, waist circumference, left upper arm circumference, right thigh circumference, left 
circumference, breast profile area, hip profile area, volume of trunk,  surface area of left arm, 
subjects '  gender and their age) were found from the medical diagnosis tree. Next, a decision tree 
was inducted from these thirteen attributes, and the proportion of misclassification was raised 
to 9.6%. 
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3.3.3. Logis t ic  r eg re s s ion  

A logistic regression model was constructed using the SPSS V10.0 software. Being similar as 
the R square of a simple linear regression, a likelihood ratio test was always used to test the 
variance and significance of this model. Next, the Lemeshow Test was used to test the goodness 
of fit of this model. The result showed that  the likelihood ratio was 2816 and that  the model 
chi-square was significant. The goodness of fit was satisfied in our model. 

Next, 4800 training sets were used to construct an original logistic regression model. The 
accuracy of classification from the testing sets with 1200 tuples for this model is 88.50%. Then, 
a total of thirteen anthropometrical factors were selected through logistic regression analysis. 
These significant factors were weight, head circumference, right thigh circumference, left thigh 
circumference, breast width, waist width, hip width, waist profile area, surface area of head, 
volume of trunk, surface area of trunk, volume of right leg, and subjects'  age, respectively. 
Rather than constructing the complete logistic regression model, the reduced logistic regression 
model is shown as equation (12). The accuracy of classification of the reduced model is 88.57%. 

y = (0.0159 x AGE) + (0.0616 x WEIGHT)  - (0.0796 x HEAD_CIR) 

- (0.2371 x RIGHT TH) + (0.0027 x BRAS_WID) - (0.0672 x WAIST WI) 

+ (0.0325 x HIP_WIDT)  + (0.0021 x WAIST_PR) - (0.0015 x HEAD SUR) 

+ (0.0001 x TRUNK VO) - (0.0009 x TRUNK_SU) - (0.0002 x RT LEG_V) + 10.7055 

(12) 

In equation (12), we can find the three significant factors are right thigh circumference, head 
circumference and waist width. The other factors are not significant. 

3.3.4. R o u g h  S e t  

According to the rough set theory, 34 attributes were reduced by the Rosetta GUI version 1.4.41 
software package [28]. Two steps, data discretization and computing the minimal reducts needed 
to be performed. We used the entropy-based algorithm to process data  discretization. However, 
a genetic algorithm (built-in Rosetta) was used to produces a set of minimal attr ibute subsets 
(minimal reducts) that  define the functional dependencies. According to the algorithms, a total 
of 12 anthropometrical factors including height, waist circumference, right thigh circumference, 
left thigh circumference, right leg circumference, left leg circumference, hip width, volume of 
head, surface area of head, volume of trunk, volume of right leg, and surface area of right leg 
were used to construct a reduced model to evaluate DM. The accuracy of the classification of the 
reduced model is approximate to 89%. 

Table 4. Summary of feature selection of four approaches. 

SEX 

AGE 

HEIGHT 

WEIGHT 

HEAD CIR 

BRAS_CIR 

Neural Network Decision Tree 

WAIST_CI ~ 

HIP CIRC 

Logistic Regression Rough Set Total 

1 

3 

2 

2 

2 

2 

3 

0 
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Table 4. (cont.) 

LEFT_UAR . 

RIGHT_UA 

LEFT_FAR 

RIGHT_FA 

R I G H T _ T H  * * 

LEFT_THI  . . 

RIGHT LE 

LEFT_LEG 

BRAS_WID * 

WAIST_WI . 

Neural Network Decision Tree 

HIP_WIDT 

BRAS_PRO 

Logistic Regression Rough Set 

WAIST_PR * * 

HIP_PROF "k 

HEAD_VOL "k 

HEAD_SUR 

TRUNK_VO "k 

TRUNK_SU * 

LEFT_ARM * 

LT AR S 

RIGHT AR 

RT AR SR 

LT_LEG_V * 

LT_LEG_S 

RT_LEG_V * * 

RT_LEG_S * 

1 

0 

0 

0 

4 

4 

1 

1 

1 

2 

Total 

2 

2 

2 

1 

1 

2 

4 

1 

1 

0 

0 

0 

1 

0 

3 

1 

Summary  of feature selections from four da t a  mining approaches  are  shown in Table 4. Each 

approach  has its a lgor i thm or function to provide some factors which are significant. Thus,  we can 

calculate the  significant number  (frequency) of the  four approaches  based  on their  functions in the 

last  column. A to ta l  frequency as per  these four approaches  shows t ha t  the  volume of t runk,  right 

th igh circumference, and left th igh circumference are greater  t han  the  other  an thropomet r ica l  
factors. The ones following after t ha t  are waist circumference, volume of right leg, and  subjec ts '  

age. 

3 .3 .5 .  R u l e  i n d u c t i o n  

We choose six impor t an t  an thropomet r ica l  factors including volume of t runk,  r ight  th igh cir- 

cumference, left th igh circumference, waist  circumference, volume of r ight  leg, and  subjec ts '  age 

as per  Table 4 to  perform the rule induction.  Again,  See 5 was implemented  and rules with an 

accuracy greater  t han  80% are shown in Table 5. I t  is in teres t ing to note  tha t  one of the  rules 
was descr ibed as "if a subjects '  age is under 51 years  of age, he cannot  suffer from DM".  



No. 

1 

2 

3 

4 

6 

Data Mining 

Table 5. Summary of accuracy of classification for rules. 

Accuracy of 
Rule Diagnosis Classification 

TRUNK_VO < =  46184.23 
Negative 90.9% 

& RT_LEG_V > 3857.71 

WAIST_CI <=  103.65 
& LEFT_THI > 49.67 Negative 93.7% 

& TRUNK_VO < =  50366.44 

AGE <=  51 Negative 94.8% 

WAIST_CI < =  72.7755 Negative 97.2% 

AGE > 60 

& WAIST_CI <=  103.65 

& RIGHT_TH <=  52.0715 

& L E F T  THI >49.67 

& TRUNK_VO > 50366.44 

&RT_LEG V>6361.76 

AGE E (55, 69) & 

WAIST_CI E (103.65, 107.25) 

& RIGHT_TH <-= 55.28 

& LEFT_THI 48.7 

& TRUNK_VO E (43706, 50183.94) 

Positive 

Positive 

85.7% 

83.3% 

1089 

4. D I S C U S S I O N  

We found the different body factors from these four data mining approaches. The accuracy 
of the classification of the models conducted from these four approaches all exceeded 80%. The 
result of that  is acceptable when compared with other epidemiological research. Many epidemio- 
logical researches often use a statistics approach, such as logistic regression, to predict a disease. 
However, we can't  obtain the full meaning of input x to output y even though this relationship is 
significant via logistic regression approach. Therefore, the other approaches, i.e., neural network, 
decision tree and rough set were introduced in this study. The order of accuracy of these four 
models is decision tree, rough set, logistic regression, and with neural network the least accurate. 
Note that  decision tree with a function of adjusting cost is helpful for the classification tasks. So, 
it is a principal cause that  the performance of decision is greater than all the other approaches, 
perhaps. 

In clinical practice, impaired fasting glucose (IFG) and fasting plasma glucose level (FPG) 
are often two predictors for diabetes mellitus. Nevertheless, there exists no accurate and precise 
measure for body composition. Although some researches indicate that  BMI and WHR are 
related to metabolic syndrome, hypertension, diabetes and hyperlipidemia, pure height and/or 
weight measure vary significantly across ethnic groups [29,30]. However, the result of this study is 
not restricted to BMI and WHR, i.e. height, weight, waist circumference, and hip circumference. 
Obviously, the artificial intelligence approach brings with it new features which are different from 
the traditional statistics. 

Studies have reported a steady increase in the incidence of chronic diseases such as diabetes with 
increasing BMI. However, physicians may find some inconsistent conditions in their diagnosis. 
Such as with some metabolic diagnosis, a patient without obesity, i.e., although BMI in normal, 
he/she has been suffering from diabetes for a long time. On the other hand, some patients do 
not suffer from diabetes but their BMI are classed in the abnormal level. Furthermore, ethnic 
groups create a bias across the BMI [31-33]. Thus, the BMI seems to have limitations in the 
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interpretation of its association with diabetes. Physicians may risk making a misdiagnosis for 
diabetes if they base their assessment solely on BMI. 

In practice, some research shows that  body fat is related to diabetes [12,13,30]. For adults, the 
fat usually disperses uniformly to viscera and subcutaneous tissue. However, Erwin et  al. [12] 
consider that  the subcutaneous adipose tissue in people with diabetes, especially in the lower 
trunk, is greater than in healthy people. Furthermore, some research shows that  the visceral 
fat is a major risk for impaired fasting glucose [29,30]. Therefore, they infer that  the visceral 
fat is a risk factor for diabetes. However, we obtained a crude index when we based on WHR, 
i.e., waist circumference, to evaluate visceral fat in relation to diabetes. It  was relatively easy to 
do, even though advanced medical techniques, such as computer topography (CT) and magnetic 
resonance imaging (MRI) are available to evaluate visceral fat. These techniques however are 
much too expensive for screening all patients, and it could reduce the wish to be examined for 
diabetes for some patients. Thus, a simple and accurate approach is worthy of performing. 

In this study, we find six factors associated with diabetes, and they are in order of impor- 
tance: volume of trunk, left thigh circumference, right thigh circumference, waist circumference, 
volume of right leg, and subjects' age. This result provides a new approach for the diagnosis of 
diabetes. It  is not only a simple approach, but the accuracy of classification is satisfied in the 
diabetes diagnosis when we measure the patient 's thighs. Furthermore, we may obtain a better 
performance of DM diagnostic using thighs because the body weight is almost entirely loaded on 
the thighs. Some studies show that  patients with a metabolic syndrome such as diabetes have 
dimensions that  are greater than that  of the healthy group. As anticipated, their thighs also 
have dimensions larger than that  of the healthy group. In addition, this noncontact method of 
making measurements may decrease some problems, such as bacterium infection. Basically, when 
using our approach, the evaluation of subcutaneous adipose tissue of the thigh is more accurate 
than the evaluation of the visceral fat at the waist. Nevertheless, this study shows that  the waist 
circumference is also an important factor, and it is consistent with previous researches [34]. 

5. C O N C L U S I O N  

The aim of this study was to investigate what the risk factors were for anthropometrical data 
of Type II  diabetes using four data mining approaches. Accuracy of classification was used to 
evaluate the performance of these four models. First, we found six factors including right thigh 
circumference, left thigh circumference, volume of trunk, waist circumference, volume of right leg 
and subjects' age to diagnose DM. Compared with the traditional approach for diagnosing DM, 
in particular the biochemical test, our study provides a new way with regard to anthropometry 
interventions, for doing that. We also found that  the thigh circumference is a good factor (i.e., 
with high weight or significance) among the anthropometrical data  in any one of these four 
approaches. I t  is obvious that  using the thigh circumference to diagnose DM is a better  alternative 
than using BMI or WHR. Furthermore, measuring the thigh circumference can be done quickly 
and simply, but the 3D-whole-body-scanning procedure can reduce the discomfort of the subjects. 

At the same time, the accuracy of classification of all of the models was greater than 80%. 
This indicates that  all the approaches of either the statistics-based or the AI-based could provide 
a good performance of classification of the case. Even though each approach is founded in 
a strong theory, the performance of the decision tree (entropy-based) and the rough set (via 
indiscernibility) are still greater than the logistic regression and neural network. In addition, the 
decision tree with a flow-chart-like tree structure is good at interpreting the results, and is a good 
tool for persons who have no informatics knowledge, such as physicians. Also, the rules from the 
decision tree induction are helpful in a physician's diagnosis, and are also good for the prevention 
of DM in clinical medicine. Concerning DM diagnosis, in particular the evaluation of the risk 
for contracting DM using anthropometrical data such as thigh circumference, is certainly worth 
investigating in future study. 
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