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 Taxis make an important contribution to transport in 
many parts of the world, offering demand-responsive, door-
to-door transport. In larger cities, taxis may be hailed on-
street or taken from taxi ranks. Elsewhere, taxis are usually 
ordered by phone. The objective of a taxi dispatcher is to 
maximize the efficiency of fleet utilization. While the spatial 
and temporal distribution of taxi requests has in general a 
high degree of predictability, real time traffic congestion 
information can be collected and disseminated to taxis by 
communication technologies. The efficiency of taxi 
dispatching may be significantly improved through the 
anticipation of future requests and traffic conditions. A rolling 
horizon approach to the optimisation of taxi dispatching is 
formulated, which takes the stochastic and dynamic nature of 
the problem into account. Numerical experiments are 
presented to illustrate the performances of the heuristics, 
taking the time dependency of travel times and passenger 
arrivals into account. 
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1. Introduction 
 
 In many towns and cities, taxis are requested by telephone and then 
dispatched by a control centre. Taxis are in radio contact with their 
control centres from where they receive instructions about which job to 
go to next (and perhaps also the job after that). In some systems, the jobs 
are queued on a display in front of the driver, with the driver reporting 
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back to the control centre upon the completion of each job. This paper is 
concerned with taxi dispatching algorithms.  
 Perhaps the simplest and most practical algorithm is to send the taxi 
that can reach each request first. An existing taxi dispatching system has 
been studied recently by Lee et al. [2003]. A common practice adopted 
in dispatching systems using the Global Positioning System (GPS), 
employed by some taxi operators, is the assignment of the taxi nearest 
the request. As an alternative dispatching criterion, they propose 
assigning the closest taxi in travel time terms, as determined by real-time 
traffic conditions.  
 In this paper, we assume the travel time and taxi requests arise in a 
time-dependent environment. Taxis are assigned jobs by a central 
dispatcher with the objective of minimizing passenger waiting time. This 
objective can be regarded as synonymous with the maximisation of fleet 
utilisation. Dispatching the taxi that can reach a request first may, 
however, result in a sub-optimal assignment of taxis. It is conceivable 
that the taxi that can reach the request first might actually be better 
assigned to a subsequent request.  
 The principal of looking ahead to the next request could clearly be 
extended to looking ahead to the next two, three or more requests, 
probably with rapidly diminishing returns. An efficient method is 
required for finding the assignment of the next N taxis that minimises 
total expected customer waiting time based on a time-dependent 
probability for the origin and destination of the request and a time-
dependent headway between requests. This method can then be 
incorporated in a rolling horizon approach to taxi assignment, with the 
anticipation of future requests and traffic conditions. 
 In practice, finding the taxi that minimises the expected total wait 
over a rolling horizon is computationally very demanding, and for large 
zoning systems and fleets not possible in real time. Consequently a 
heuristic has also been devised which for each taxi compares the wait 
that would be experienced by the current requester if it were assigned 
now with the expected wait of the next requester if instead it were 
assigned to the next request. The benefits of a dispatching policy that 
looks ahead and the heuristic just outlined are tested in simulation. 
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2. Literature Review 
 
 The vehicle routing problem (VRP) has been studied for decades, 
and different approaches and algorithms have been developed to solve 
specific problems [Toth and Vigo, 2002]. The taxi dispatching problem 
is a form of VRP [Ghiani et al., 2003]. The traditional VRP seeks the 
optimal pick up and drop off schedules for a fleet of vehicles with finite 
capacities subject to time constraints of various kinds. Requests are 
generally known in advance, but dynamic requests can be treated by 
inserting these into the existing routes. The taxi dispatching problem 
differs from the traditional VRP in a number of important ways. 
Customer requests are dynamic, the pickup time is usually “as soon as 
possible” and the delivery to the drop off point should be without 
deviation. The taxi dispatching problem can be classified as strongly 
dynamic, compared with other problems like dial-a-ride or courier 
services. Larsen [2000] gives an overview of the dynamic vehicle routing 
problem (DVRP). 
 Most solution algorithms for real-time VRPs do not take historical 
information into account. For some of the emergency services, like fire 
and ambulance, which are also highly dynamic, the quality of a priori 
information is generally poor in terms of the locations of future requests. 
In the case of taxi dispatching, however, the spatial distribution of 
requests can be expected to follow a regular daily pattern, subject to 
stochastic variations [Gendreau et al., 1996]. This information about the 
future can be used to improve the efficiency of dispatching through a 
look ahead capability. The essentials of heuristics with a look ahead 
capability are discussed in Ghiani et al. [2003].  
 Another concern with VRPs is variation in congestion and travel 
time, which has received little attention. Nearly all models proposed in 
the literature adopt the assumption of constant travel time. Two reasons 
for this were pointed out by Fleischmann et al. [2004]. It adds 
complexity to the problem formulation which may require essential 
structural modifications in the algorithms, and the estimation and data 
collection for time-varying travel times are difficult so the reliability of 
the results are open to question. One example considering traffic 
congestion which is stochastic and time-dependent throughout the day is 
studied by Fu [2002], who investigated the dial-a-ride problem (DARP). 
With the uncertainty in travel time, the time windows for pickup and 
delivery are formulated probabilistically with pre-specified threshold of 
reliability. Although the travel time is stochastic and time-varying, the 
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requests are known in advance so their problem is not fully dynamic. In 
real time systems, planning decisions are frequent and the network 
condition and congestion level can always be updated at the moment of 
planning, which minimizes the offset of the decision from the optimal.  
 On the assessment of road traffic and congestion due to taxi 
movements, research on taxi modelling has recently been carried out by 
Yang and Wong [1998]. They modelled the equilibrium of street-hailed 
taxi services. They characterized taxi movements for a given and fixed 
customer O-D demand pattern in an uncongested road network. The 
model was further reformulated and extended to incorporate congestion 
effects and customer demand elasticity [Wong et al., 2001], for which 
network equilibrium with movements of vacant and occupied taxis is 
described. Relationships between taxis and customer waiting times, and 
the relationship between customer demand and taxi supply are further 
constrained and satisfied. Furthermore, the potential applications of the 
model have been demonstrated by several case studies of the urban area 
of Hong Kong [Yang et al., 2001, 2002]. In a more recent study, Wong 
et al. [2005] developed a model for the bilateral micro-searching 
behaviour of taxi drivers and customers. The absorbing Markov chain 
approach is employed to formulate the taxi movement within the network, 
where the local searching behaviour of taxis is specified by a logit model, 
and the O-D demand of passengers is also estimated by a logit model 
with a choice of taxi meeting point. 
 Taxi dispatching as considered in this paper is a form of real-time 
dispatching problem. Customer requests are dynamic, the requested 
pickup time is usually “as soon as possible”, and the delivery to the drop 
off point should be without deviation. The problem is therefore highly 
dynamic. The vehicle routing problem is a generalization of the 
travelling salesman problem, a well known combinatorial optimization 
problem, and consequently is NP-hard. Any optimal solution method to 
these problems may only be practical for small sized cases. As real-time 
VRP problems are more difficult to solve, given the dynamic nature of 
the problem, exact algorithms are not yet capable of handling typically 
large practical problems. This justifies the use of heuristics in real-time 
environments. In a previous work Bell et al. [2005] considered the 
problem in an environment where travel time and speed are assumed to 
be constant. In this paper, the model is extended and the time varying 
traffic condition for taxi dispatching will be considered with the look 
ahead approach. 
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3. Methodology 
 
 Assume a customer request with a defined pick-up point and 
delivery point is generated at a particular time. Let I and J be the set of 
origin and destination zones, and K be the taxi fleet. Further let 
 
 a(k) = Scheduled delivery time of taxi k 
 d(k)  =  Scheduled delivery point of taxi k 
 pij(t) = Probability of a taxi trip from i to j at time t 
 h(t)  = Expected headway between requests at time t 
 c(i, j, t) =  Travel time from i to j at the departure time t 
 
 The spatial and temporal distribution of request, pij(t) and h(t), is 
assumed to be time-dependent following a regular and predictable 
pattern. The travel time in the network, c(i, j, t), which varies through the 
day due to traffic congestion, can be modelled as a function of the 
departure time t. It could be predicted by a time dependent shortest path 
algorithm.  
 
Taxi assignment without look-ahead 
 
 In the case of taxi assignment without look ahead, a simple 
dispatching rule is to assign the taxi which minimises the wait time of the 
current requester. Suppose a request with pick up point i and delivery 
point j is generated at time t. The customer wait time if taxi k is assigned 
is 
 

( ) ( )( ) ( )( ) ( ) ( )( )( )tkatikdctkaikdkatw −++−=  ,0max, , ,0max , , , ,  
  Kk  ..., ,2 ,1=  (1) 
 
where the travel time c is evaluated for the moment when the vehicle is 
immediately available to the passenger. The dispatcher assigns the taxi 
that can reach the requester first, so 
 

( ) ( )( )( )ikdkatwk
k

 , , ,minarg* = ,   Kk  ..., ,2 ,1=  (2) 

 
 If the taxi arrived at its scheduled delivery point before this job is 
assigned to it, we assume it remained idle at that location. The idle time 
for taxi k* is therefore 
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 ( )( ) ( )( )* ,0max*, katkatl −=  (3) 
 
 In practice, many taxi dispatchers would reposition their idle taxis to 
be closer to where future requested pickups are likely to arise.  
 The scheduled delivery time and delivery point of taxi k* are then 
updated as follows 
 
 ( ) ( ) ( )( ) ( ) ( )( )( )ikdkatwtjicikdkatwtka  ,* ,* ,,, ,* ,* ,* +++=  (4) 
 
 ( ) jkd =*  (5) 
 
where c in Eq. (4) is calculated for the time that passenger is reached by 
the taxi. While this dispatching strategy is likely to be reasonably 
efficient, and is equivalent in some respects to a greedy algorithm, a 
better assignment could be made if the dispatcher were to anticipate 
future requests and allow this to modify the current assignment. 
 
Taxi assignment with look-ahead 
 
 Assume the dispatcher knows the probabilistic request profile (i.e. 
the probability the next request will correspond to a particular OD pair) 
and the average headway between requests. The expected time of the 
next request is t+h(t), where h(t) is the time dependent headway between 
requests. The probability that this request has pickup point i and delivery 
point j is pij(t+h(t)). The expected time of the next nth request can be 
calculated by ( )∑ ∑= −=′ ′++

Nn nn nn htht
..1 1..1

, where the time dependent 

headway is updated with the look head steps. For simplicity it is 
approximated in the first order as t+nh(t) in the following calculations. 
Suppose the dispatcher looks ahead to the next N assignments and seeks 
to minimize total expected waiting time. The problem can be formulated 
as a Dynamic Programming (DP) problem with a finite horizon. In the 
terminology of dynamic programming, let the dispatching policy be π = 
{k0, …, kn, …, kN}, where kn is the taxi dispatched at stage n. In the N-
stage problem, the expected cost of a policy π, given the initial customer 
pick up location i0, is  
 
 ( ) ( ) ( )( ) ( ) ( ) ( )( )∑ =

++=
Nn nn kdkatnhtikdkatwiJ

..10000π  , , , , , ψ  (6) 
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where cost is measured in terms of expected waiting time, and  
 
 ( ) ( ) ( )( ) =+ nn kdkatnht  , ,ψ   

( ) ( )( ) ( ) ( ) ( )( )( )( ) ( )( )∑ +−−++−−
ij ijnnn tnhtptnhtkatikdctnhtka  ,0max, , ,0max

  (7) 
If kn ∈ π then 
 
 ( ) =+1nka  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )ikdkatwtnhtjicikdkatwtnht nnnn  , , ,,, , , , +++++  (8) 
 
And 
 
 ( ) jkd n =+1  (9) 
 
Otherwise 
 
 ( ) ( )nn kaka =+1  (10) 
 
And 
 
 ( ) ( )nn kdkd =+1  (11) 
 
The optimal policy is  
 
 ( ) ( )( )iJiJ ππ

min*π =  (12) 

 
 Note that as a consequence of (8) and (9), which update the delivery 
time and point for the assigned taxi, the expected wait for the nth request, 
ψ(t+nh(t), a(kn), d(kn)), depends on the preceding n-1 assignments and 
corresponding requests. Consequently the calculation of Jπ(i) is 
computationally very demanding. If the taxi fleet consists of K taxis then 
the total number of possible assignments is KN+1. For each assignment 
after the first, all possible requests need to be considered. Consequently 
computational complexity is O(KN+1ODN), where OD is the number of 
origin-destination pairs.  
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 Given its recursive structure, Bellman’s decomposition may be 
applied [see Bertsekas, 1995]. However, finding the taxi that minimises 
the expected total wait over the rolling horizon remains computationally 
very demanding, and for large fleets is impractical in real time 
(Bellman’s “curse of dimensionality”). Consequently, a heuristic has 
been devised which for each taxi compares the wait that would be 
experienced by the current request if it were assigned now with the 
expected wait of the next request if instead it were assigned to the next 
request.  
 
A heuristic algorithm 
 
 The concept of this heuristic is to search for a taxi which minimizes 
the difference between the wait incurred if the taxi is assigned to the 
current request at point i and α times the expected wait if the taxi is 
assigned instead to the next request. 
 
H1 (α): 
 
 ( ) ( )( )(   , , ,minarg* ikdkatwk

k
=

 ( ) ( ) ( )( ) ( )( ))∑ ++−
ij ij thtpikdkathtw  , , ,α , 

  Kk  ..., ,2 ,1=  (13)  
 
where α is a parameter which discounts future waiting time. Experiments 
show that the best value of α lies between 0.5 and 0.75. Each taxi is 
looked at once, so the computational complexity is only O(K* OD). As 
the following simulation results demonstrate, this heuristic is able to 
reduce total waiting time considerably, particularly during periods when 
the demand for taxis is high. 
 
 
4. Simulation Experiments 
 
 In order to demonstrate the effectiveness of the proposed 
methodology, a simulation is used to verify the improvement offered by 
looking ahead periods of different durations. Monte Carlo simulation is 
adopted to generate the customer requests, while a taxi dispatcher assigns 
taxis using the proposed methods.  
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 In this section, the effects of various factors on the performance of 
the algorithm are examined. We assume a network in the shape of a strip 
with 9 zones as shown in Figure 1. The travel time and trip rates between 
each pair of zones are assumed to be time dependent as in Figure 2, from 
7am to 9pm for a total of 14 hours. The travel distances between zones 
are displayed in Table 1. Travel times between zones are assumed to be 
linear with the distances and inversely proportional to the travel speed, 
which is time-varying and set at 40 km/hr in the off peak period but 
drops to 20 km/hr during the morning and evening peak periods. The 
time varying travel time can be formulated as a function of the departure 
time and obtained by a time-dependent shortest path algorithm. In this 
example, it is calculated by summing the quotients of the travel distance 
from i to j divided by the piecewise linearized travel speed from time t 
(with a step of 1 minute say) until the vehicle reaches j. As a result, the 
travel time within zones varies between 7.5 and 15 minutes (for 5 
kilometres), and between 45 and 90 minutes (for 30 kilometres) from 
zone 1 to zone 9, depending on the departure time of the vehicle. 
 
 
 
 
Figure 1.   The example network 
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Figure 2.  Time-dependent travel speed and trip rates profile 

 

1 
 

3 
 

2 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 



K.I. Wong and M.G.H. Bell 

 

212

Table 1. Travel distance table (km) 
Zone 1 2 3 4 5 6 7 8 9 
1 5 8 11 14 17 20 23 26 30 
2 8 5 8 11 14 17 20 23 26 
3 11 8 5 8 11 14 17 20 23 
4 14 11 8 5 8 11 14 17 20 
5 17 14 11 8 5 8 11 14 17 
6 20 17 14 11 8 5 8 11 14 
7 23 20 17 14 11 8 5 8 11 
8 26 23 20 17 14 11 8 5 8 
9 30 26 23 20 17 14 11 8 5 

 
 
 The rate of trip generation varies with the time, between 10 and 30 
requests per hour. The trip rate tables are inversely proportional to the 
travel distance, and we considered two directions of flow. One is right to 
left (Table 2a), in which there is more traffic going from zone 9 to zone 1 
than from zone 1 to zone  9; and the other is left to right (Table 2b), in 
which more traffic is moving from zone 1 to zone 9, a reversal compared 
to Table 2a. The zones in the table correspond to those in Figure 1. An 
element in the table represents the possibility of a trip that a particular 
OD pair corresponds to, and the sum of all elements in the table equals 
100. We assumed two scenarios: (P1) constant trip rate with traffic from 
right to left (see Table 2a) throughout the day and (P2) varying trip rate 
pattern, with right to left (see Table 2a) from 7am to 2pm and left to right 
(see Table 2b) from 2pm to 9pm. P1 characterizes the simple case where 
the OD pattern is fixed, while P2 illustrates the case with morning peak 
and evening peak where the flow pattern is tidal but in opposite 
directions.  
 Taking the trip rate table as the means, the requests are generated by 
Monte Carlo simulation. Trip generation follows a Poisson process with 
a time-varying headway calculated from Figure 2, and a total of 220 trips 
are considered. For each request, the taxi dispatcher assigns a taxi. Once 
assigned, the taxi cannot be substituted with another. The simulation is 
performed with 5 different seed numbers and the results are averaged to 
account for the effect of the seeds. For the same comparison between 
heuristics, the demand sequences are kept the same for each of the seed 
numbers. 
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Table 2a. Trip rate table (%): right to left [insert Table 2b here] 
Zone 1 2 3 4 5 6 7 8 9 
1 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 
2 1.31 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 
3 1.15 1.31 1.48 1.48 1.48 1.48 1.48 1.48 1.48 
4 0.99 1.15 1.31 1.48 1.48 1.48 1.48 1.48 1.48 
5 0.82 0.99 1.15 1.31 1.48 1.48 1.48 1.48 1.48 
6 0.66 0.82 0.99 1.15 1.31 1.48 1.48 1.48 1.48 
7 0.49 0.66 0.82 0.99 1.15 1.31 1.48 1.48 1.48 
8 0.33 0.49 0.66 0.82 0.99 1.15 1.31 1.48 1.48 
9 0.16 0.33 0.49 0.66 0.82 0.99 1.15 1.31 1.48 

 
Table 2b. Trip rate table (%): left to right 
Zone 1 2 3 4 5 6 7 8 9 
1 1.48 1.31 1.15 0.99 0.82 0.66 0.49 0.33 0.16 
2 1.48 1.48 1.31 1.15 0.99 0.82 0.66 0.49 0.33 
3 1.48 1.48 1.48 1.31 1.15 0.99 0.82 0.66 0.49 
4 1.48 1.48 1.48 1.48 1.31 1.15 0.99 0.82 0.66 
5 1.48 1.48 1.48 1.48 1.48 1.31 1.15 0.99 0.82 
6 1.48 1.48 1.48 1.48 1.48 1.48 1.31 1.15 0.99 
7 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.31 1.15 
8 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.31 
9 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 

 
 The dispatching algorithms are tested for different demand 
intensities. When the demand is relatively low, one would expect all 
requests to be met while the waiting times could depend on the 
dispatching policy. For heavy demand, in the peak hour, the system may 
not be able to keep up with the demand, so delay may increase 
continuously. The results of typical simulation runs for different taxi 
fleet sizes are shown in Table 3 for P1 and Table 4 for P2. Tables 3a and 
4a display the average customer wait in minutes and Tables 3b and 4b 
show the average taxi idle time in minutes. It can be seen that the 
customer wait is generally decreasing with the number of taxis in 
operation for all the algorithms, as the taxis would be less busy and have 
a higher availability. The customer waiting time is very high when the 
number of taxis is less than about 10.  
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Table 3a. Average customer waiting times (minutes) for P1 

Number 
of taxis 

Custom
ers per 
taxi 

Without 
look 
ahead 

1-step 
look 
ahead 

2-step 
look 
ahead 

H1,  
α = 0.5 

H1,  
α = 0.6 

H1,  
α = 0.7 

6 36.7  323.9  297.8 281.2 295.2 286.4 281.7 
7 31.4  214.7  200.0 188.7 195.6 188.2 183.2 
8 27.5  139.6  127.3 119.0 121.8 119.9 117.9 
9 24.4  91.5  84.8 81.0 82.4 81.7 80.1 
10 22.0  72.3  66.4 64.0 66.2 65.7 64.3 
11 20.0  60.0  55.7 53.9 55.3 54.7 54.4 
12 18.3  51.9  48.2 46.1 47.1 47.1 46.9 
13 16.9  45.7  42.0 40.2 42.2 41.9 41.3 
14 15.7  40.3  37.0 35.6 37.3 36.7 36.8 
15 14.7  36.3  33.7 32.4 33.6 33.4 33.8 
16 13.8  33.2  30.6 29.9 30.8 31.0 31.0 
17 12.9  30.8  28.8 28.1 29.0 28.9 29.5 
18 12.2  28.6  26.7 25.9 26.7 27.2 27.8 
19 11.6  26.8  25.0 24.3 25.3 25.7 26.3 
 
 
 
Table 3b. Average taxi idle times (minutes) for P1 

Number 
of taxis 

Custom
ers per 
taxi 

Without 
look 
ahead 

1-step 
look 
ahead 

2-step 
look 
ahead 

H1,  
α = 0.5 

H1,  
α = 0.6 

H1,  
α = 0.7 

6 36.7  0.3  0.2  0.3  0.3  0.3  0.3  
7 31.4  0.4  0.4  0.4  0.4  0.4  0.4  
8 27.5  0.5  0.6  0.7  0.6  0.7  0.8  
9 24.4  1.9  2.1  2.5  2.4  2.6  2.9  
10 22.0  4.9  5.1  5.4  5.5  5.7  5.9  
11 20.0  8.1  8.3  8.5  8.8  9.0  9.1  
12 18.3  11.1  11.4  11.7  12.2  12.0  12.2  
13 16.9  14.3  14.6  14.9  15.1  15.2  15.3  
14 15.7  17.5  17.9  17.9  18.2  18.3  18.4  
15 14.7  20.7  20.9  21.1  21.5  21.2  21.8  
16 13.8  23.7  24.0  24.2  24.5  24.8  25.1  
17 12.9  26.3  27.1  27.3  27.6  28.1  28.3  
18 12.2  29.8  30.2  30.3  31.1  31.1  31.2  
19 11.6  33.1  33.3  33.5  34.3  34.5  34.9  
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 The waiting time decreases initially and then tends to be flat with 
increasing numbers of taxis, as more taxis improve the service and the 
waiting time approaches the quickest response time (the intrazonal travel 
time). In almost all cases, the 2-step look ahead outperforms the 1-step 
look ahead and the 1-step look ahead outperforms the case without any 
look ahead. The performance of the heuristic depends on alpha and the 
demand level in number of customers per taxi. When the taxi fleet is 
small and the system is very busy, the heuristic with alpha value of 0.7 
performs the best of all the algorithms tested. With the case of 10 taxis, it 
saved more than 10% of the customer wait for both P1 and P2 when 
compared with the algorithm without look ahead. However, when the 
number of taxis is greater than about 15, it shows no advantage over 1-
step look ahead. The heuristic with alpha of 0.5 or 0.6 is better than 1-
step look ahead for those cases with 13 taxis or less, but becomes less 
effective when the system is less busy.  When compared to the heuristic 
with alpha of 0.7, it tends to be more stable and closer to the look ahead 
results for lower demand intensities. The heuristics with larger α values 
generally perform well when the demand level is high, but it generates 
higher waiting time when the demand level is low, when compared to the 
without look-ahead case. This could be explained by the fact that the 
strategy with a higher α value tends to reserve the system capacity for 
future demand. 
 The average taxi idle time for P1 is shown in Table 3b. It is 
interesting to note that for all cases of taxi fleet the heuristics with alpha 
value of 0.7 generates the highest taxi idle wait compared to other 
heuristics, no matter the average passenger wait is higher or lower than 
that of other heuristics. The taxi idle time has a strong relation with the 
vacant taxi mileages, from the conservation of total taxi time, i.e., total 
taxi time is equal to the sum of occupied taxi time,  vacant taxi time and 
taxi idle time [Wong et al., 2001]. Since total taxi time and occupied taxi 
time are fixed for each scenario, longer taxi idle time implies shorter 
vacant taxi hours or mileages in general, without taking into account the 
effect of congestion over the day. This confirms that the saving in 
passenger wait by the heuristics comes from the better assignment of 
vehicles and the decrease in the vacant mileages of taxis. 
 Similar conclusions can be drawn for the problem P2, as shown on 
Table 4. This suggests that the performances of the heuristic depend on 
the chosen discount factor (alpha), and the best alpha depends on the 
demand intensity. This dependency is worth further investigation.  
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Table 4a. Average customer waiting times (minutes) for P2 

Number 
of taxis 

Custom
ers per 
taxi 

Without 
look 
ahead 

1-step 
look 
ahead 

2-step 
look 
ahead 

H1,  
α = 0.5 

H1,  
α = 0.6 

H1,  
α = 0.7 

6 36.7  314.2  288.0  287.7  282.9  273.6  269.2  
7 31.4  205.1  193.8  193.0  184.6  178.0  172.5  
8 27.5  131.1  121.2  121.1  113.6  110.9  108.6  
9 24.4  84.9  78.7  78.5  76.9  75.3  74.0  
10 22.0  66.0  60.5  60.5  59.4  59.6  58.9  
11 20.0  53.1  49.2  49.1  48.3  47.9  48.2  
12 18.3  44.9  41.2  41.1  40.2  40.3  40.7  
13 16.9  38.5  35.5  35.5  35.0  34.7  35.4  
14 15.7  33.4  30.7  30.7  30.3  30.6  31.0  
15 14.7  29.6  27.5  27.5  27.8  27.9  28.0  
16 13.8  27.2  25.2  25.2  25.5  26.1  25.8  
17 12.9  25.2  23.6  23.6  23.7  24.0  24.5  
18 12.2  22.9  21.7  21.8  22.0  22.0  22.8  
19 11.6  21.3  20.2  20.2  20.7  20.9  21.4  
 
Table 4b. Average taxi idle times (minutes) for P2 

Number 
of taxis 

Custom
ers per 
taxi 

Without 
look 
ahead 

1-step 
look 
ahead 

2-step 
look 
ahead 

H1,  
α = 0.5 

H1,  
α = 0.6 

H1,  
α = 0.7 

6 36.7  0.3  0.2  0.2  0.3  0.3  0.3  
7 31.4  0.4  0.4  0.4  0.4  0.4  0.4  
8 27.5  0.5  0.6  0.6  0.7  0.8  0.9  
9 24.4  2.1  2.3  2.3  2.7  2.9  3.2  
10 22.0  5.1  5.5  5.5  6.0  6.1  6.3  
11 20.0  8.5  8.7  8.7  9.2  9.4  9.6  
12 18.3  11.7  11.8  11.9  12.5  12.5  12.6  
13 16.9  14.9  14.9  14.9  15.6  15.8  15.9  
14 15.7  18.0  18.5  18.5  19.0  18.9  19.1  
15 14.7  21.5  21.6  21.4  21.9  22.2  22.4  
16 13.8  24.5  24.9  25.0  25.2  25.7  25.7  
17 12.9  27.7  27.8  27.8  28.6  28.9  28.8  
18 12.2  31.0  31.5  31.5  31.7  32.2  32.2  
19 11.6  34.2  35.1  35.1  35.3  35.9  35.7  
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The efficiency of dispatching algorithms determines the response time to 
requests and/or the number of taxis needed. 
 Different dispatching rules can give different distributions of 
customer waits, even if their average values are the same. To investigate 
this, we select a case where the taxi fleet has size 8. The cumulative 
frequencies of customer waiting times for three algorithms are shown in 
Figure 3. The cumulative frequency for the algorithm without look ahead 
increases approximately linearly from zero to about 120, and then 
increases rapidly to its maximum value. By contrast, for the 2-step look  
ahead and the heuristic algorithms, the cumulative frequency starts to 
increase more rapidly around 70. The gap between the two cumulative 
frequency curves equals the saving in passenger waiting time due to 
looking ahead. It also shows that the 2-step look ahead and the heuristic 
algorithms are similar in equity terms as the cumulative distribution 
functions are parallel. The corresponding statistics of maximum, 
minimum, average and standard deviation of the passenger waiting time 
for the three algorithms are shown in Table 5. Both the 2-step look ahead 
and the heuristic have smaller waiting time standard deviations. While 
the heuristic shows a smaller average and standard deviation compared 
with the 2-step look ahead method, it has a higher maximum. 
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Figure 3. Cumulative frequency of customer waiting times for different 
algorithms
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Table 5. Statistical values of various dispatching algorithms 

  Without  
look ahead 

2-step  
look ahead 

Heuristic,  
α = 0.7 

Maximum 265.0  239.8  246.3  

Minimum 7.5  7.5  7.5  

Average 166.7  141.9  137.1  

Standard Deviation 52.9  47.7  47.5  

 
 
5. Conclusions  
 
 The real-time dispatching of taxis in response to incoming requests 
is studied, with the objective of minimising the total wait experienced by 
requesters over time. Several dispatching rules are examined. Given the 
distribution of future requests, which may be obtained from historical 
trip origin and destination data, a rolling horizon approach is formulated. 
As finding the taxi that minimises the expected total wait over a rolling 
horizon is computationally very demanding, a heuristic has been devised. 
A simulation model is developed and the properties of several 
dispatching algorithms are explored, taking into account the time 
dependency of travel times and passenger arrivals. The results of both the 
rolling horizon and the heuristic approaches are promising, but depend 
on the demand intensity. The performance of the rolling horizon 
approach improves with the number of look ahead stages, but the “curse 
of dimensionality” is the bottleneck to practical applications. The 
heuristic presented in this paper looks particularly promising when 
demand is high, but further investigation is required. 
 A limitation of the proposed heuristic algorithm is that we did not 
make use of the free time between the arrivals of calls to do further 
calculations. Some studies suggested the use of meta-heuristics in that 
spare period to further optimize the decisions, while some simple 
heuristic rules are used in the first instance of request arrival to reduce 
the computing requirement. This type of "double-horizon" heuristic can 
be considered in further research.  
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