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Abstract

Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different
order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos.
Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error
dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos is undesirable in most engineering applications. Many researchers have devoted themselves to find new ways
to suppress and control chaos more efficiently. However, chaos is desirable under certain circumstances. Chaotic phe-
nomena are quite useful in many applications such as fluid mixing [1], human brain [2], and heart beat regulation [3],
etc. Therefore, making a regular dynamical system chaotic, or preserving chaos of a chaotic dynamical system, is mean-
ingful and worth to be investigated.

Chaos synchronization has been applied in many fields such as secure communication [4,5], chemical and biological
systems [6,7] and others [8–16] etc. A lot of researchers have studied synchronization between two identical chaotic sys-
tems. But, seldom researchers study synchronization of different order chaotic systems. This motivates us to investigate
this absorbing and challenging research topic.

The theme of this paper is brushless dc motor. The major advantage of BLDCM is the elimination of the physical
contact between the brushes and the commutators. BLDCM has been widely applied in direct-drive applications such
as robotics [17], aerospace [18], etc. In this paper, we investigate chaos anti-control of BLDCM and chaos synchro-
nization of different order systems. In order to verify periodic and chaotic phenomena of investigated systems, several
numerical techniques such as time history, phase portrait, bifurcation diagram and Lyapunov exponents are
employed.

This paper is organized as follows. Section 2 contains the dynamic characteristics of BLDCM [19–22]. First, the sys-
tem model is described. Second, the system equations are transformed to a compact form. Finally, the numerical results
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of periodic and chaotic phenomena are presented. In Section 3, one method is investigated to achieve anti-control of
chaos: the addition of a nonlinear term [23]. Chaos synchronization of different order systems [24] is discussed in
Section 4. Two different chaotic dynamical systems, Duffing system and BLDCM, are applied in this section. Three
methods are investigated to achieve chaos synchronization: the addition of the coupling terms, the use of Lyapunov
stability theorem and the linearization of the error dynamics [25]. Finally, the conclusions of the whole paper are briefly
stated.
2. Regular and chaotic dynamics of brushless dc motor

BLDCM is an electromechanical system [19–21]. By using an affine transformation and a single time scale transfor-
mation [22], its governing equations can be transformed into a dimensionless form as following:
d

d̂t
x̂1 ¼ v̂q � x̂1 � x̂2x̂3 þ qx̂3

d

d̂t
x̂2 ¼ v̂d � dx̂2 þ x̂1x̂3

d

d̂t
x̂3 ¼ rðx̂1 � x̂3Þ þ gx̂1x̂2 � bT L

ð2:1Þ
where q = 60, v̂q ¼ 0.168; v̂d ¼ 20.66, d = 0.875, g = 0.26, bT L ¼ 0.53 and the initial condition is x̂1ð0Þ ¼ x̂2ð0Þ ¼
x̂3ð0Þ ¼ 0.01.
Fig. 1. (a) Phase portrait. (b) Bifurcation diagram. (c) Lyapunov exponents for BLDCM.
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In addition, BLDCM is an autonomous system. It means that the period of the system is not explicitly known, so
different choice of Poincaré section would lead to different bifurcation diagrams. In the sections below, adding control
inputs changes the dynamics of the system, thus we have to modify the choice of Poincaré section. Modifying Poincaré
section, we obtain almost the same bifurcation diagram. The only difference is the shift in x̂3 axis. Therefore, we just
present the original bifurcation diagram.

The phase portrait, bifurcation diagram, and Lyapunov exponents are shown in Fig. 1. It can be observed that the
motion is period 1 for r = 4.05, period 2 for r = 4.15, and period 4 for r = 4.21. For r = 4.55, the motion is chaotic.
3. Anti-control of chaos

In order to preserve chaotic phenomena of BLDCM, a nonlinear term xjxj is added [23].

3.1. Adding one term of xjxj

First, we add an external nonlinear input k1x̂1jx̂1j to the first equation of (2.1). When k1 > 0, the process of choice and
the numerical results are shown in Fig. 2, it is quite clear that the chaotic phenomenon is not increased for k1 = 0.052.
Fig. 2. (a) Bifurcation diagram of x̂3 for k1 = 0.01–0.07. (b) Bifurcation diagram of x̂3 for k1 = 0.052. (c) Lyapunov exponents for
k1 = 0.052.



Fig. 3. (a) Bifurcation diagram of x̂3 for k1 = �0.49 to �0.01. (b) Bifurcation diagram of x̂3 for k1 = �0.2. (c) Lyapunov exponents for
k1 = �0.2.
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When k1 < 0, the process of choice and the numerical results are shown in Fig. 3, it is clear that the chaotic phenomenon
is increased for k1 = �0.2 by comparison of Figs. 1(c) and 3(c).

Second, we add an external nonlinear input k2x̂2jx̂2j to the second equation of (2.1). When k2 > 0, the process of
choice and the numerical results are shown in Fig. 4, it is clear that the chaotic phenomenon is increased for
k2 = 0.0051. When k2 < 0, the process of choice and the numerical results are shown in Fig. 5, it is clear that the chaotic
phenomenon is not increased for k2 = �0.0011.

Third, we add an external nonlinear input k3x̂3jx̂3j to the third equation of (2.1). When k3 > 0, the process of choice
and the numerical results are shown in Fig. 6, it is clear that the chaotic phenomenon is not increased for k3 = 0.001.
When k3 < 0, the process of choice and the numerical results are shown in Fig. 7, it is clear that the chaotic phenomenon
is increased for k3 = �0.6.

From above numerical results, we can get some comments. First, when we choose positive value of k1, k2, k3, only
the choice of k2 is successful. On the other hand, when we choose negative values of k1, k2, k3, only the choice of k2
fails. The effect of negative k3 is better than that of negative k1, and effect of negative k1 is better than that of positive
k2.



Fig. 4. (a) Bifurcation diagram of x̂3 for k2 = 0.001–0.006. (b) Bifurcation diagram of x̂3 for k2 = 0.0051. (c) Lyapunov exponents for
k2 = 0.0051.
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3.2. Adding two terms of xjxj

First, we choose two positive values of k1 and k2, the process of choice and the numerical results are shown in Fig. 8,
it is clear that the chaotic phenomenon is increased. We also investigate two negative values of k1 and k2, the process of
choice and the numerical results are shown in Fig. 9, it is clear that the chaotic phenomenon is also increased.

Second, we choose two positive values of k1 and k3, the process of choice and the numerical results are shown in
Fig. 10, it is clear that the chaotic phenomenon is not increased. We also investigate two negative values of k1 and k3,
the process of choice and the numerical results are shown in Fig. 11, it is clear that the chaotic phenomenon is
increased.

Third, we choose two positive values of k2 and k3, the process of choice and the numerical results are shown in Fig.
12, it is clear that the chaotic phenomenon is increased. We also investigate two negative values of k2 and k3, the process
of choice and the numerical results are shown in Fig. 13, it is clear that the chaotic phenomenon is increased.

From above numerical results, we can get some comments. When we choose two positive values of k1 and k3, the
result fails. For the other choices, the results are all successful. The effects of two negative values of k1, k3 and two neg-
ative values of k2, k3 are the best.



Fig. 5. (a) Bifurcation diagram of x̂3 for k2 = �0.02 to 0.0. (b) Bifurcation diagram of x̂3 for k2 = �0.0011. (c) Lyapunov exponents for
k2 = �0.0011.
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From the results in this section, we find that the necessary condition for success of increase of chaos is that there
exists at least one successful addition of nonlinear term.
4. Chaos synchronization of different order systems

We discuss chaos synchronization of two different order systems [24] in this section. These two systems are the
autonomous third-order BLDCM system and the nonautonomous second-order Duffing system. Three methods are
applied: the addition of the coupling terms, the Lyapunov stability theorem, and the linearization of the error dynamics
[25].

BLDCM is described by
_x1 ¼ V q � x1 � x2x3 þ px3
_x2 ¼ V d � Bx2 þ x1x3
_x3 ¼ aðx1 � x3Þ þ h; x1x2 � T 3

ð4:1Þ



Fig. 6. (a) Bifurcation diagram of x̂3 for k3 = 0.0–0.09. (b) Bifurcation diagram of x̂3 for k3 = 0.001. (c) Lyapunov exponents for
k3 = 0.001.
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where Vq = 0.168, p = 60, Vd = 20.66, B = 0.875, a = 4.55, h = 0.26, T3 = 0.53, and the initial condition is
x1(0) = x2(0) = x3(0) = 0.01.

Duffing system is described by
_y1 ¼ y2

_y2 ¼ y1 � y31 � dy2 þ a cosxt
ð4:2Þ
where d = 0.15, a = 0.3, x = 1.0, and the initial condition is y1(0) = y2(0) = 0.
4.1. Chaos synchronization of coupled different order chaotic systems

First, we choose BLDCM as the master system and Duffing system as the slave system. For leading (y1,y2) to
(x1,x2), we add two coupling terms, k1(x1 � y1) and k2(x2 � y2), to the first and second equation of (4.2),
respectively.



Fig. 7. (a) Bifurcation diagram of x̂3 for k3 = �1.5 to �0.05. (b) Bifurcation diagram of x̂3 for k3 = �0.6. (c) Lyapunov exponents for
k3 = �0.6.
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We use the random optimization method [26] to find the critical coupling strength. If the critical coupling
strength does exist, the coupling strength should converge to some constant value, and the difference U should be
zero.

Define U by
U ¼
Z T

0.9T
jx� yj2 dt ð4:3Þ
where x = [x1 x2]
T, y = [y1 y2]

T, and T is the simulation time.
In numerical simulation, the larger the coupling strength, the better the synchronization is. The difference U can be

rather small but not zero, this means that chaos synchronization of different order systems can be practically achieved.
The numerical results are shown in Figs. 14 and 15.

Second, we choose Duffing system as the master system and BLDCM as the slave system. For leading (x1,x2) to
(y1,y2), we add two coupling terms, k1(y1 � x1) and k2(y2 � x2), to the first and second equation of (4.1), respectively.



Fig. 8. (a) Bifurcation diagram of x̂3 for k1 = 0.052, k2 = 0.001–0.005. (b) Bifurcation diagram of x̂3 for k1 = 0.052, k2 = 0.003.
(c) Lyapunov exponents for k1 = 0.052, k2 = 0.003.
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The numerical results are shown in Figs. 16 and 17. Chaos synchronization of different order systems can be practically
achieved.

Up to now, the coupling methods are both uni-directional. The bi-directional coupling method is studied now. We
add two coupling terms, k1(y1 � x1) and k2(y2 � x2), to the first and second equation of (4.1). We also add two coupling
terms, k1(x1 � y1) and k2(x2 � y2), to the first and second equation of (4.2). The numerical results are shown in Figs. 18
and 19. Chaos synchronization of different order systems can be practically achieved.
4.2. Chaos synchronization of different order systems by Lyapunov stability theorem

BLDCM is chosen as the master system and Duffing system is chosen as the slave system. For leading (y1,y2) to
(x1,x2), we add u1 and u2 on the first and second equation of (4.2), respectively.
_y1 ¼ y2 þ u1

_y2 ¼ y1 � y31 � dy2 þ a cosxt þ u2
ð4:4Þ



Fig. 9. (a) Bifurcation diagram of x̂3 for k1 = �0.2, k2 = �0.006 to �0.001. (b) Bifurcation diagram of x̂3 for k1 = �0.2, k2 = �0.0015.
(c) Lyapunov exponents for k1 = �0.2, k2 = �0.0015.
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Subtracting Eq. (4.4) from the first two equations of (4.2), we can obtain the error dynamics
_e1 ¼ V q � x1 � x2x3 þ px3 � y2 � u1

_e2 ¼ V d � Bx2 þ x1x3 � y1 þ y31 þ dy2 � a cosxt � u2
ð4:5Þ
where e1 = x1 � y1, e2 = x2 � y2.
Choose a Lyapunov function of the form
V ðe1; e2Þ ¼
1

2
ðe21 þ e22Þ ð4:6Þ
its derivative along the solution of Eq. (4.5) is
_V ¼ e1ðV q � e1 � y1 � x2x3 þ px3 � y2 � u1Þ þ e2ðV d � Be2 � Bx2 þ x1x3 � y1 þ x31 þ dy2 � a cosxt � u2Þ ð4:7Þ



Fig. 10. (a) Bifurcation diagram of x̂3 for k1 = 0.052, k3 = 0.0–0.03. (b) Bifurcation diagram of x̂3 for k1 = 0.052, k3 = 0.001.
(c) Lyapunov exponents for k1 = 0.052, k3 = 0.001.
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Choose
u1 ¼ V q � y1 � x2x3 þ px3 � y2
u2 ¼ V d � Bx2 þ x1x3 � y1 þ x31 þ dy2 � a cosxt
Eq. (4.7) can be rewritten as
_V ¼ �e21 � Be22 < 0
this means that chaos synchronization between different order systems, Duffing system and BLDCM, can be achieved.
The numerical results are shown in Fig. 20.

4.3. Chaos synchronization of different order systems by linearization of error dynamics

BLDCM is chosen as the master system and Duffing system is chosen as the slave system. For leading (y1,y2) to
(x1,x2), we add u1 and u2 on the first and second equation of (4.2), respectively.



Fig. 11. (a) Bifurcation diagram of x̂3 for k1 = �0.2, k3 = �0.4 to �0.1. (b) Bifurcation diagram of x̂3 for k1 = �0.2, k3 = �0.3.
(c) Lyapunov exponents for k1 = �0.2, k3 = �0.3.
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_y1 ¼ y2 þ u1

_y2 ¼ y1 � y31 � dy2 þ a cosxt þ u2
ð4:8Þ
Define
e1 ¼ x1 � y1

e2 ¼ x2 � y2
Subtracting Eq. (4.8) from the first two equations of (4.1), we can obtain the error dynamics
_e1 ¼ �e1 þ e2 þ V q � x2x3 þ px3 � y1 � x2 � u1

_e2 ¼ e1 � ðBþ dÞe2 þ V d þ x1x3 þ y31 � a cosxt � By2 � x1 þ dx2 � u2
ð4:9Þ



Fig. 12. (a) Bifurcation diagram of x̂3 for k2 = 0.0051, k3 = 0.01–0.09. (b) Bifurcation diagram of x̂3 for k2 = 0.0051, k3 = 0.05. (c)
Lyapunov exponents for k2 = 0.0051, k3 = 0.05.
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To delete the nonlinear terms in Eq. (4.9) [25], we design u1 and u2 as
u1 ¼ V q � x2x3 þ px3 � y1 � x2 þ k11e1 þ k12e2

u2 ¼ V d þ x1x3 þ y31 � a cosxt � By2 � x1 þ dx2 þ k21e1 þ k22e2
Eq. (4.9) can be rewritten as
_e ¼ Ae
where
A ¼
�1� k11 1� k12

1� k21 �ðBþ d þ k22Þ

" #

If each eigenvalue of A is negative, e would converge to zero. By designing k11 = 0, k12 = 0, k21 = 2, and

k22 = �0.025, we can get two negative eigenvalues of A: �1 and �1. Thus u1 and u2 can be obtained, and e would con-
verge to zero. This means that chaos synchronization between different order systems, Duffing system and BLDCM,
can be achieved. The numerical results are shown in Fig. 21.



Fig. 13. (a) Bifurcation diagram of x̂3 for k2 = �0.0011, k3 = �0.5 to �0.1. (b) Bifurcation diagram of x̂3 for k2 = �0.0011, k3 = �0.3.
(c) Lyapunov exponents for k2 = �0.0011, k3 = �0.3.

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

step number

k1
k2

0 10 20 30 40 50 60 70 80 90 100
100

105

1010

step number

U

Fig. 14. Time evolution of k1 and k2 by random optimization process.
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Fig. 15. Time history of errors for k1 = 5105.007381, and k2 = 4434.127551.
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Fig. 16. Time evolution of k1 and k2 by random optimization process.
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Fig. 17. Time history of errors for k1 = 4951.462167, k2 = 5040.654891.
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Fig. 18. Time evolution of k1 and k2 by random optimization process.
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Fig. 19. Time history of errors for k1 = 5285.682274, k2 = 4652.413356.

0 20 40 60 80 100 120 140 160 180 200
-50

0

50
Lyapunov's stability theorem

x 1-y
1

0 20 40 60 80 100 120 140 160 180 200
-50

0
50

100
150

x 2-y
2

130 140 150 160 170 180 190 200
-1

0

1

x 1-y
1

130 140 150 160 170 180 190 200
-1

0

1

x 2-y
2

t(sec)

Fig. 20. Time history of errors.
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Fig. 21. Time history of errors for k11 = 0, k12 = 0, k21 = 2 and k22 = �0.025.
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5. Conclusions

Brushless dc motor (BLDCM) is studied in this paper. It is an autonomous third-order electromechanical system. In
order to verify periodic and chaotic phenomena of investigated systems, several numerical techniques such as time his-
tory, phase portrait, bifurcation diagram, and Lyapunov exponents are employed.

The dynamic characteristics of BLDCM are discussed in Section 2. The system model is described, and the numerical
results of periodic and chaotic phenomenon are presented.

In Section 3, the nonlinear term kx̂jx̂j added to achieve anti-control of chaotic BLDCM. When one nonlinear posi-
tive term is added, only the choice of k2 succeeds. However, whenone nonlinear negative term is added, only the choice
of k2 fails. The effect of negative k3 is better than that of negative k1, and effect of negative k1 is better than that of
positive k2. When we add two nonlinear terms, the necessary condition for success of increase of chaos is that there
exists at least one successful addition of nonlinear term.

Three methods to achieve chaos synchronization of different order systems are investigated in Section 4. Two dif-
ferent chaotic dynamical systems, Duffing system and BLDCM, are applied. First, the coupling terms are added.
We study two kinds of uni-directional coupling methods and a bi-directional coupling method. The larger the coupling
strength, the better the synchronization is. The difference can be rather small but not zero, this means that chaos syn-
chronization of different order systems can be practically achieved. Second, Lyapunov stability theorem is used. Chaos
synchronization between different order systems can be achieved. Third, linearization of the error dynamics is used.
Chaos synchronization between different order systems can be achieved.
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