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Abstract

Discussed is the propagation of optical beams in non-local nonlinear media modelled by 1 + 1D non-local nonlinear Schrödinger
equation (NNLSE). In the sub-strongly non-local case, an approximate analytical solution is obtained for an arbitrary response function
by a variational approach. Described by a combination of the Jacobian elliptic functions, the solution is periodic, and its period depends
on not only the input power but also the initial beam width, which is confirmed by the numerical simulation of the NNLSE.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Snyder and Mitchell�s work [1], in which an exact
Gaussian-shaped stationary solution called an accessible
soliton was found in a linear model, called Snyder–Mitchell
model [2], of the non-local nonlinearity with infinite char-
acteristic length, has stimulated a strong interest, an omen
of ‘‘a new surge of soliton activities’’ predicted by Shen [2],
on spatial solitons in non-local nonlinear media modelled
by the non-local nonlinear Schrödinger equation (NNLSE)
that the nonlinear term assumes a non-local form (convo-
lution integral) with a symmetric and real-valued response
kernel.

So far, more properties of such spatial solitons and the
related phenomena have been opened out. Given were
the reviews of the most advances on experiments [3], on
both theories and experiments [4], as well as on theories
with a little description of experiments [5], which presented
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general surveys of the subject from different angles. A study
by a variational approach was carried out with respect to
the specific power-law response kernel [6], and a tractable
model of the logarithmic non-local nonlinear media with
the Gaussian response kernel was presented [7]. Sub-wave-
length non-local spatial solitons were also studied [8]. Ex-
act solutions in the limit of weak non-locality were
obtained [9], modulational instabilities were analyzed
[10,11], and the properties of soliton stabilization with arbi-
trary degree of non-locality were investigated [12]. The
equivalence of quadratic solitons to the solitons in non-
local cubic media was presented [13], which provides new
physical insight into the properties of quadratic solitons.
A novel phenomenon was revealed that the phase shift of
a strongly non-local spatial soliton can be very large [14].
It was pointed out that [4] the specimen length for the p
phase shift of the soliton has an order less than 0.1 mm
in the visible spectrum region, hence the phenomenon
might have its great potential applications in integrated
photonic (all-optical) signal processing devices. In a
probe-pump (weak-strong) geometry, a probe beam is pre-
dicted to experience p nonlinear phase shift, which can be
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modulated by a pump beam via the probe-pump strongly
non-local nonlinear interaction, within a rather short dis-
tance [15]. Unusual attraction of dark solitons due to
non-locality was explored [16]. Both non-local incoherent
solitons [17] and non-local vortex solitons [18] were also
predicted. In experiments, a single non-local spatial soliton
[19], the interaction of such a soliton pair [20], and the related
phenomenon of a modulational instability [21] have been
observed in a nematic liquid crystal. Principle experiments
of all-optical switching and logic gates were implemented in
the nematic liquid crystal thanks to the phase-indepen-
dently attractive collisional behavior of non-locality [22].
The most exciting progress after Snyder and Mitchell�s
work, in author�s point of view, is the latest finished works
by Assanto�s group [23,24]. They demonstrated both theo-
retically [23] and experimentally [24] that the nematic liquid
crystal is indeed one of strongly non-local nonlinear media.
Before their work, it would be considered that the strongly
non-local nonlinear media had not been discovered [2].
Both the experiment and the theory of the propagation
of a non-local anisotropic spatial soliton in the nematic li-
quid crystal were reported [25]. The nematic liquid crystal
has been considered to be promising for novel generations
of all-optically addressable interconnects for computing
and communications [3].

According to the degree of the non-locality determined
by the ratio of the extent of a material non-local nonlinear
response to the width of an optical beam, it is generally
considered that there are four categories of the non-locality
[10,12]: local, weakly non-local, generally non-local, and
strongly non-local. The way to control the degree of the
non-locality was suggested for the cases of both the qua-
dratic medium [13] and the nematic liquid crystal [23],
and was experimentally demonstrated in the nematic liquid
crystal very recently [26]. A local one is the limit situation
when the response function is a delta function. In this case,
the NNLSE is simplified into the standard NLSE that has a
stable sech-form soliton solution for 1 + 1D case, which
there have been an immense collection of literatures to
have dealt with [27]. A weak non-locality is when the char-
acteristic length of the response function is much narrower
than the width of the optical beam, and is modeled by a
modified NLSE [9]. The analytical bright and dark soliton
solutions in self-focusing and self-defocusing media,
respectively, were found for (1 + 1)-dimensional weakly
non-local nonlinear media [9]. Another extreme is a strong
non-locality [10,12–15], referred as a high non-locality in
some papers [1,23,24], that the characteristic length of non-
linear response is much broader than the width of the opti-
cal beam. By use of Taylor expansion of the response
function [10,12] to the second-order, one can deduce the
strongly non-local model [14,15], and further transform it
into Snyder–Mitchell (linear) model [15]. Snyder–Mitchell
model has an exact Gaussian-shaped single beam solution
[1], whose beam width is stationary (soliton state) when
the beam power equals exactly a critical power, but gener-
ally changes in the way by a combination of sine and cosine
functions. The other situation except the three limit cases
mentioned above is a generally non-local. In our point of
view, however, the general non-locality can further be di-
vided into two categories: sub-strong non-locality and
sub-weak non-locality. The former is the situation when
the beam width is about but less than the characteristic
length of the response function, while the latter is the
reverse case.

In this paper, we present an approximate variational
solution of the 1 + 1D NNLSE, which models the beam
behavior in a planar non-local cubic nonlinear medium
waveguide, for the sub-strongly non-local case. The solu-
tion also has a Gaussian-shaped form, but the beam width
is a combination of Jacobian elliptic functions, rather than
trigonometrical functions. Our result is independent of the
concrete form of response kernels.

2. A variational solution for sub-strong non-locality

The 1 + 1D NNLSE in non-local cubic nonlinear media
has the form [7,10,14]
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where w(x, z) is a paraxial beam, l = 1/2k, q = kg, k is the
wave number in the media without nonlinearity (that is,
k = xn0/c, and n0 is the linear refractive index of the med-
ia), g is a material constant (g > 0 or <0 corresponds to a
focusing or defocusing material.), z and x are the longitu-
dinal and transverse coordinates, respectively. Here, R is
normalized symmetrical real spatial response of the media
such that

R1
�1 RðnÞ dn ¼ 1. In the limit case that the charac-

teristic length of the material tends to zero, R(x)! d(x)
(Dirac delta function), then Eq. (1) will become standard
NLSE.

By the variational approach [28], Eq. (1) can be inter-
preted as an Euler–Lagrange equation corresponding to a
vanishing variation
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We optimize the function (2) by employing the Gaussian
ansatz for the trial solution

wðx; zÞ ¼ AðzÞ exp½iaðzÞ� exp � x2

2wðzÞ2
þ icðzÞx2

" #
; ð4Þ

where A and a are the amplitude and phase of the complex
amplitude of the solution, respectively, w is beam width, c
is the phase-front curvature, and they are all allowed to
vary with propagation distance z. Inserting the trial func-
tion above into the variational principle, Eq. (2), we obtain
the reduced variational problem
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where Lr ¼
R1
�1 Lg dx, and Lg denotes the result of

inserting the Gaussian ansatz (4) into the Lagrangian (3).
Generally, it is difficult to analytically determine Lr for
an arbitrary response function R(x). However, for the
sub-strongly non-local case that w/wm < 1, where wm is
the characteristic length of the material, the approximate
integration can analytically be obtained because R(x) can
be expanded in Taylor series like the case of the strong
non-locality [10,12,14]. Concretely, we first expand the re-
sponse R(x � n) with respect to n about n = 0 to the
fourth-order in the first integral over n, then expand again
the functions R(j)(x) in the result of the first integrand,
where R(j)(x) denotes ojR(x)/oxj, and j = 0, . . . , 4, with
respect to x about x = 0 till all of the R(4)(0) terms appear
before evaluation of the second integral over x [29]. In this
way, Lr can be analytically determined
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where RðjÞ
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0 ; c ¼ �Rð2Þ
0 > 0ðRð2Þ

0 < 0
because R0 is a maximum of R(x).

Following the standard procedures of the variational
approach [28], we have, respectively
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Eq. (7) represents the fact that the beam power is conserva-
tive, from which it can be obtained

A2 ¼ P 0ffiffiffi
p

p
w
; ð11Þ

where P0 is the input power at z = 0, and the power is
understood to be P ¼

R1
�1 jwj2 dx. Substitution of Eq. (7)

into Eq. (8) can determine a relation
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Solving Eqs. (9) and (10) gives out two ordinary differential
equations for the parameter c and a
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Substitution of Eqs. (12) and (13) into the first derivative of
Eq. (12) with respect to z reads
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where y(z) = w(z)/w0, w0 = w(z)|z = 0, and � ¼ w2
0R

ð4Þ
0 =4c. It

should be paid attention that � is a parameter determined
by the initial value of the beam and the material property,
similar to the parameter r (¼ R0=cw2

0) in [14]. The difference
between the two parameters is that r is positive, while � can
be either positive or negative, determined by the sign of the
forth derivative of the response function R(x) at the sym-
metrical (original) point, Rð4Þ

0 [30]. Observing two relations
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where the proportional coefficient Q is determined only by
the material property. The sign of Q is the same with the
sign of Rð4Þ

0 , and jQj has a order of 1. For the limit case that
wm tends to infinite, we have � tends to zero.

Like the case discussed in [14], Eq. (15) is equivalent to
Newton�s second law in classical mechanics for the motion
of an one-dimensional particle acted by an equivalent
force F ¼ 4l=w4

0y
3 � 2qcP 0yð1� 2�y2Þ. The first term of F

is a so-called diffractive force, and its second term is a
refractive force provided that 1 � 2�y2 > 0. Following the
treatment in [14], letting the two forces equal and
y = 1, we obtain the critical (input) power for the soliton
propagation

P c ¼
P c0

1� 2�
; ð17Þ

where P c0 ¼ 1=ðcw4
0k

2gÞ.
Assuming that the beam at z = 0 has dw(z)/dz|z = 0 = 0,

the one-time integration of Eq. (15) yields the first-order
ordinary differential equation
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Eq. (18) is analytically integrable. In the condition that
� < 1/3 and g > 0 (for self-focusing media), the result of
the integral reads

w ¼ w0½cn2ðbz; kmÞ þ K�sn
2ðbz; kmÞ�1=2; ð19Þ

where sn(z, km) and cn(z, km) are the sine-amplitude and
the cosine-amplitude of Jacobian elliptic functions [31],
respectively, km ¼
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Fig. 1. Comparison of the analytical variational beamwidths (solid curves)
with the exact numerical ones (dash-dot curves) and these from Snyder–
Mitchell model (dashed curves) for the beam evolution in the Gaussian-
shaped response material in the case that P0 < Pc. (a) w0/wm = 0.2 and
P0/Pc = 0.643, (b) w0/wm = 0.3 and P0/Pc = 0.698, (c) w0/wm = 0.4 and
P0/Pc = 0.696, as well as (d) w0/wm = 0.5 and P0/Pc = 0.756.
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Fig. 2. Comparison of the analytical variational beam widths (solid
curves) with the exact numerical ones (dash-dot curves) and these from
Snyder–Mitchell model (dashed curves) for the beam evolution in the
Gaussian-shaped response material in the case that P0 > Pc. (a)
w0/wm = 0.2 and P0/Pc = 1.537 (The dash-dot and solid curves are so
close that they almost can not be distinguished in this case.), (b)
w0/wm = 0.3 and P0/Pc = 1.338, (c) w0/wm = 0.4 and P0/Pc = 1.453, as
well as (d) w0/wm = 0.5 and P0/Pc = 1.273.
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The solution (19) is periodic, and its period is

T 0 ¼ 2KðkmÞ=b; ð21Þ
where K is the complete elliptic integral of the first kind
[31].

The phase-front curvature of the beam, c, can be found
by direct substitution of Eq. (19) into (12), and its phase
delay, a, can be obtained by a integration of Eq. (14).

By using the definition of the critical power, we can ob-
serve that when P0 = Pc, K� becomes 1, then Eq. (19) gives
w(z) = w0 because cn

2(z, km) + sn2(z, km) = 1 [31]. This is a
stationary solution, i.e., a spatial soliton. In such a situa-
tion, the beam diffraction is exactly balanced by the
beam-induced refraction. When P0 < Pc, the diffraction ini-
tially overcomes the refraction, and the beam initially ex-
pands, with w2=w2

0 vibrating between the maximum K�

(K� > 1 in this case) and the minimum 1, which is shown
by the solid curves in Fig. 1; whereas when P0 > Pc, the re-
verse happens and the beam initially contracts, with w2=w2

0

breathing between the maximum 1 and the minimum K�

(K� < 1 now), shown by the solid curves in Fig. 2.

3. Discussion

3.1. Comparison with numerical simulation of NNLSE

Figs. 1 and 2 show the comparison of the analytical var-
iational solutions for the sub-strong non-locality with the
exact results of numerical simulation of Eq. (1) together
with the input condition of a Gaussian function
wðx; zÞjz¼0 ¼
ffiffiffiffiffi
P 0

p

ð
ffiffiffi
p

p
w0Þ1=2

exp � x2

2w2
0

� �
. ð22Þ

The analytical variational predictions are found to be close
approximation to the simulations.

To simulate the propagation, we assume the material
response is the Gaussian function [10,14] RðxÞ ¼ exp
ð�x2=2w2

mÞ=ð
ffiffiffiffiffiffi
2p

p
wmÞ, and use the normalized transform

[15] X ¼ x=w0; Z ¼ z=w2
0k;W ¼ kw0g1=2w, where X, Z, and

W are the variables in the normalized coordinate system.
In such a normalized coordinate system, the evolution of
the optical beams described by the NNLSE (1) and the ini-
tial condition (22) is completely determined by the two free
parameters P0/Pc and w0/wm [15].

3.2. Comparison with strong non-locality

In the limit case that � tends to zero (wm ! 1), by use of
the related properties of Jacobian elliptic functions that
read [31] cn(z,0) = cos(z), sn(z,0) = sin(z), K(0) = p/2, we
can have that

b ! b0; km ! 0; K� ! P c0=P 0;

T 0 ! p=b0; P c ! P c0 ð23Þ
then Eq. (19) degenerates as

w ¼ w0 cos2ðb0zÞ þ
P c0

P 0

sin2ðb0zÞ
� �1=2

. ð24Þ

This is exactly the accessible soliton obtained by Snyder
and Mitchell [1], and Pc0, the critical power of the limit
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case, does be the critical power of the accessible soliton [By
using the Table in [4] (see, its reference [17]), one can con-
vert the quantities (symbols) in [1] to the corresponding
ones in this paper and vice versa.].

We can observe some differences between the two cases.
For the strong non-locality the width of the optical beam
with the Gaussian profile changes sinusoidally [1,14], while
it does in the way given by Eq. (19), a combination of Jaco-
bian elliptic functions, in the sub-strong non-locality.
Although the evolution of the beam for both of the two
cases is periodic, the dependence of the periods upon the
parameters is different. The period, given by Eq. (21), de-
pends on not only the input power, but also the initial
beam width (via �) for the sub-strong non-locality, but in
the case of the strong non-locality, the period (p/b0) is inde-
pendent of the initial width.

In order to show which of the results, the Jacobian
elliptic function or the trigonometrical function, is more
approximate to the exact solution, we compare the beam
evolution from the variational approach for the sub-strong
non-locality, the Snyder–Mitchell model for the strong
non-locality, and the numerical simulation in Figs. 1 and
2. We also compare the on-axis amplitude |w(0, z)| obtained
from the three different ways in Table 1. Through the com-
parison we can conclude that when w0/wm 6 0.1, both of
the variational approach and the Snyder–Mitchell model
have an excellent approximation to the NNLSE, but as
the non-locality becomes weaker (w0/wm becomes bigger),
the variational approach gives a more exact quantitative
description of the beam propagation in the non-local non-
linear media than the Snyder–Mitchell model and the pre-
cision of the former is almost one order higher than the
latter with a few exceptions. In the case that w0/wm = 0.5
and P0/Pc = 0.756 (Fig. 1(d)), Snyder–Mitchell model even
Table 1
The exact numerical results, the analytical Jacobian elliptic solutions (the variat
model), and their relative errors for the maximums (or minimums) of the on-

w0/wm 0.1 0.2
�(<1/3) 0.0075 0.03

The case that P0 < Pc (|w(0, z)| has the minimum)

P0/Pc 0.713 0.643
ERa 0.919 0.894
AVRb 0.918 0.891
ATRc 0.922 0.910
REV (%)e 0.1 0.3
RET (%)e �0.3 �1.8

The case that P0 > Pc (|w(0, z)| has the maximum)

P0/Pc 1.348 1.537
ER 1.078 1.117
AVR 1.078 1.117
ATR 1.082 1.131
REV (%) 0.0 0.0
RET (%) �0.4 �1.3

a ER: exact numerical results to Eq. (1) along with the initial condition of t
b AVR: analytical variational results to Eq. (1), jwð0; zÞjmax½jwð0; zÞjmin�=wð0
c ATR: analytical trigonometrical results to Eq. (1), |w(0, z)|max[|w(0, z)|min]/w
d This is the case that the analytical result fails to give right prediction.
e RE: relative errors, REV = (ER � AVR)/ER, and RET = (ER � ATR)/ER
fails to give a right prediction. As a result, the Jacobian
elliptic function give more exact prediction than the trigo-
nometrical function in the sub-strong non-locality.
3.3. Conditions for the variational solution

In this section, we discuss the limits of the parameters
where the solution (19) is valid.

First, the condition for solution (19) is � < 1/3. This limit
come from the process of the integral of Eq. (18), and it
turns out that

w0

wm

<

ffiffiffiffiffiffi
1

3Q

r
. ð25Þ

This equation tells us that ð3QÞ�1=2 is a up limit of the ratio
w0/wm for the variational solution (19). For Gaussian re-
sponse media where Q ¼ 3=4, the up limit of the ratio
(w0/wm)up limit = 2/3.

Second, as mentioned in the foregoing, R(x) is expanded
to the fourth-order to analytically determine Lr, and this
demands that w/wm 6 D � 1, where D is the up limit for
the expansion holding. On the other hand, when P0 < Pc,
the beam width will initially diffracts to its maximum wmax.
If nonlinearity is not strong enough, wmax/wm will exceed
D, and the much more error of the approximate solution
(19) to the exact one will be introduced. From Eq. (19),
we observe that w2

max ¼ w2
0K�, then it is obtained that

K��=Qð¼ w2
max=w

2
mÞ 6 D2, which turns out to be

P 0 P P vc ¼
ð1� 2�Þ�P c

D2Qð1� �� D2QÞ
: ð26Þ

Here Pvc gives out another critical value, than which input
power should be larger to insure that Eq. (19) yields a right
ional approach), the analytical trigonometrical solutions (Snyder–Mitchell
axis amplitude |w(0, z)|/w(0, 0)

0.3 0.4 0.5
0.0675 0.12 0.1875

0.698 0.696 0.756
0.912 0.916 0.961
0.905 0.892 0.885
0.948 0.978 1.049d

0.8 2.6 7.9
�3.9 �6.8 Xd

1.338 1.453 1.273
1.082 1.118 1.111
1.081 1.113 1.083
1.115 1.176 1.195
0.1 0.4 2.5

�3.0 �5.2 �7.6

he Gaussian function.
; 0Þ ¼ K�1=4

� .
(0, 0) = (P0/Pc0)

1/4.

.
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prediction. Taking example for Gaussian response, we have
Pvc � 0.8Pc if taking � = 1/5(w0/wm � 1/2) and D = 0.8.

4. Conclusion

We discuss the evolution of the optical beam in the planar
non-local cubic nonlinear medium waveguide, modelled by
the 1 + 1D NNLSE with a symmetric and real-valued re-
sponse kernel. The approximate variational solution is ob-
tained for the sub-strong non-locality case, which is
confirmed by the numerical simulation of the NNLSE.

The strong non-locality is the case that the characteristic
length of nonlinear response is much larger than the spatial
extent occupied by light beams, while the sub-strong non-
locality the situation when the extent occupied by the light
beams is about but less than the characteristic length of the
response function. The evolution of the beam width of a
single Gaussian-shaped beam is qualitatively periodic for
both cases, but the quantitative description is different. It
is described by a combination of the Jacobian elliptic func-
tions for the sub-strong non-locality, while by the trigono-
metric functions for the strong non-locality. The period
depends on not only the input power, but also the initial
beam width for the sub-strong non-locality, which is differ-
ent from that in the strong non-locality where the period is
independent of the initial width.

It is reasonable for us to believe that the extension of the
variational approach from the 1 + 1D case to the 1 + 2D
case should be feasible.
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