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Comparison Between Immersion-Based and
Toboggan-Based Watershed Image Segmentation

Yung-Chieh Lin, Yu-Pao Tsai, Yi-Ping Hung, and Zen-Chung Shih

Abstract—Watershed segmentation has recently become a pop-
ular tool for image segmentation. There are two approaches to im-
plementing watershed segmentation: immersion approach and to-
boggan simulation. Conceptually, the immersion approach can be
viewed as an approach that starts from low altitude to high alti-
tude and the toboggan approach as an approach that starts from
high altitude to low altitude. The former seemed to be more pop-
ular recently (e.g., Vincent and Soille), but the latter had its own
supporters (e.g., Mortensen and Barrett). It was not clear whether
the two approaches could lead to exactly the same segmentation
result and which approach was more efficient. In this paper, we
present two “order-invariant” algorithms for watershed segmenta-
tion, one based on the immersion approach and the other on the to-
boggan approach. By introducing a special RIDGE label to achieve
the property of order-invariance, we find that the two conceptually
opposite approaches can indeed obtain the same segmentation re-
sult. When running on a Pentium-III PC, both of our algorithms
require only less than 1/30 s for a 256 256 image and 1/5 s for
a 512 512 image, on average. What is more surprising is that
the toboggan algorithm, which is less well known in the computer
vision community, turns out to run faster than the immersion algo-
rithm for almost all the test images we have used, especially when
the image is large, say, 512 512 or larger. This paper also gives
some explanation as to why the toboggan algorithm can be more
efficient in most cases.

Index Terms—Immersion approach, order-invariance, toboggan
approach, watershed image segmentation.

I. INTRODUCTION

IMAGE segmentation plays a very important role in com-
puter vision. Many innovative methods have been proposed

in the last few decades, but automatic image segmentation for
general applications still remains to be an open problem. Re-
cently, watershed segmentation became a popular tool for dif-
ferent applications that require image segmentation, such as ma-

Manuscript received December 19, 2003; revised January 17, 2005. This
work was supported in part by the National Science Council, Taiwan, R.O.C.,
under Grant NSC 93-2752-E-002-007-PAE. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Eli Saber.

Y.-C. Lin is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. (e-mail:
cole@iadea.com).

Y.-P. Tsai is with the Institute of Information Science, Academia Sinica,
Taipei, Taiwan, R.O.C., and also with the Department of Computer and
Information Science, National Chiao-Tung University, Hsinchu 300, Taiwan,
R.O.C. (e-mail: gis90806@cis.nctu.edu.tw).

Y.-P. Hung is with the Department of Computer Science and Information En-
gineering, National Taiwan University, Taipei, Taiwan, R.O.C., and also with the
Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C., and
the Graduate Institute of Networking and Multimedia, National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C. (e-mail: hung@csie.ntu.edu.tw).

Z.-C. Shih is with the Department of Computer and Information Science,
National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
zcshih@cis.nctu.edu.tw).

Digital Object Identifier 10.1109/TIP.2005.860996

chine inspection, aerial image understanding, medical image
analysis, and video object segmentation [5], [6], [8], [12]–[15].
In fact, the watershed transform has been studied for a long time
and began to be used for image segmentation about two decades
ago, e.g., [11]. A brief historical review can be found in [6].

The basic idea of watershed segmentation is to consider the
regions to be extracted as catchment basins in topography. The
watershed lines are then the boundaries of catchment basins. If
one applies the watershed segmentation method directly to the
intensity image, he may not obtain meaning meaningful seg-
mentation results for most images. However, it will make more
sense if the watershed segmentation method is applied to gra-
dient magnitude images. That is, we can view the gradient mag-
nitude image as a simple topographic surface by treating the
gradient magnitude value as the height (or the altitude). Given
a grayscale image, the computation of gradient magnitude is
quite straightforward, though many variations exist (e.g., Sobel,
Gaussian, or Morphological gradient operator) [9]. As for color
images, an example of computing gradient magnitude for wa-
tershed segmentation can be found in [5].

An interesting thought closely related to watershed segmenta-
tion was the one presented by Fairfield in 1990, where an image
is segmented by first applying the toboggan contrast enhance-
ment and then a simple contrast segmentation [1]. The concept
of the toboggan contrast enhancement is very similar to wa-
tershed segmentation. An illustrative example of the toboggan
contrast enhancement is given below for comparison with the
watershed image segmentation.

Consider Fig. 1, where f(x) shown in Fig. 1(a) is a one-dimen-
sional (1-D) signal. Let be the absolute value of
the first derivative of f(x), as shown in Fig. 1(c). When extending

to a two-dimensional (2-D) intensity image, will be
used to denote the magnitude of the image gradient. In Fig. 1(c),
we can find two local maxima, and , at the positions of
the inflective points of the original signal f(x). Notice that these
two peaks (or crest lines in 2-D gradient magnitude images) are
exactly the watershed points (or lines) for region segmentation.
Hence, the original signal can be partitioned into three segments
while enhanced to be the piecewise constant signal illustrated in
Fig. 1(d).

In Section II, we first review two typical approaches to im-
plementing toboggan image segmentation, one using immersion
approach and the other using toboggan simulation. Based on the
concept of immersion simulation, we introduce in Section III an
order-invariant version of the famous Vincent and Soille algo-
rithm. Then, in Section IV, we propose a new order-invariant
algorithm based on toboggan simulation. This toboggan algo-
rithm can achieve exactly the same segmentation result as what
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Fig. 1. Illustrative example of toboggan contrast enhancement and
segmentation.

is achieved by the immersion algorithm presented in Section IV.
We show in Section V that, surprisingly, this toboggan algo-
rithm is in general more efficient than the immersion algorithm.
Section VI gives some concluding remarks.

II. OVERVIEW OF TWO ALGORITHMIC APPROACHES

While the concept of the watershed image segmentation is
quite simple, its implementation turns out to be more involved,
especially when one wants to deal with the plateau and am-
biguous pixels in digital spaces in an appropriate way (more de-
tails will be discussed in Sections III and IV). Typically, there
are two approaches to implementing the watershed method: the
immersion approach and the toboggan simulation.

The immersion approach [6] is also referred to as the flooding
analogy. In the immersion simulation, we first pierce a hole in
every local minimum of the topographic surface formed by the
gradient magnitude image. Then, we slowly immerse the topo-
graphic surface in water. Starting from the minima of lowest al-
titude, the water will progressively fill up all the different catch-
ment basins. At some point, the rising water in any one specific
basin will start to merge with water coming from its neighboring
basins. Suppose that this merging can be prevented by con-
structing dams at the merging sites all the way up to the highest
surface altitude (or until the immersion procedure ends). At the
end of this immersion simulation, each basin will be completely
surrounded by dams and the location of dams corresponds to
watershed line. A good depiction of the 1-D example and its ex-
tension to 2-D can be found in [10].

Another approach to implementing watershed segmentation
is the toboggan approach [5]. This approach is called “tobog-
ganing” because of its similarity to riding a sled downhill to the
bottom of a basin. The toboggan approach is also referred to as
the drainage analogy (i.e., any two points are in the same region
if they drain to the same minimum point). This approach tries to
find a downstream path (along the steepest descent) from each

pixel of the gradient magnitude image to a local minimum of the
topographic surface. Pixels that slide into the same local min-
imum can be efficiently grouped together by assigning them a
unique label. A catchment basin (or watershed region) is then
defined to be the set of pixels having the same label. Here, adja-
cent watershed regions are divided by a boundary path where a
drop of water has equal chance of flowing into adjacent water-
shed regions. This boundary path is the watershed line, which
usually occurs along the peaks of ridge-like structure.

Conceptually, the immersion approach can be viewed as an
approach that starts from low altitude to high altitude, and the
toboggan approach an approach that starts from high altitude
to low altitude (even though the latter also requires an upward
backtracking after the downward tobogganing). The question
is can these two opposite simulations lead to exactly the same
image segmentation result? Vincent and Soille mentioned in
their classic work [6] that the toboggan approach (which they
called “steepest slope line”) was an intuitive approach but was
not well suited to practical implementations in digital spaces.
We agree with their first point but not the second one. It might
be true that their toboggan algorithm could yield biased results
in some cases (due to the ambiguity problem caused by the dig-
ital spaces, which will be explained in the next section), but
it would not be the case if they had used the order-invariant
toboggan algorithm proposed in Section IV. In fact, it can be
demonstrated that our simple toboggan algorithm proposed in
Section IV can always obtain exactly the same segmentation re-
sults as that is obtained by the immersion algorithm presented
in Section III. The C++ source code can be downloaded from
http://ippr.csie.ntu.edu.tw.

III. ORDER-INVARIANT IMMERSION ALGORITHM

This section presents the details of our order-invariant
immersion algorithm for image segmentation. Similar to
the one proposed by Vincent and Soille in [6], this algo-
rithm first requires a sorting of the pixels in the increasing
order of their gradient magnitude values before running the
level-by-level flooding step. It is this sorting step that has made
the level-by-level flooding step efficient enough so that the
Vincent and Soille algorithm can surpass its predecessors in
computational efficiency. However, this sorting step is also one
of the reasons that have made the immersion algorithm slightly
less efficient than the toboggan algorithm presented in the next
section.

Let be a gradient magnitude image, where D
is the indexing domain of the image (e.g., ). Let min(G)
and max(G) be the minimum value and the maximum value of
G, respectively. By sorting the pixels of G in the increasing order
of their gradient magnitude values, we can easily decompose D
into a finite number of disjoint level sets, each denoted by

That is, we have , ,
and if . Different sorting techniques can be
used here. For better efficiency, our algorithm uses counting sort
if the data type of the gradient magnitude is fixed point, while it
uses quick sort if the data type is floating point.
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Fig. 2. Example of decomposing a topographic surface into disjoint level sets.
Here, darker regions in (a) represent areas of lower altitude, or deeper water
after immersion. The pixels in white region have altitudes greater than 2 and
need not to be considered in this example.

Once the pixels are sorted, we can simulate the immersion
process efficiently with a level-by-level flooding step. At each
level h, we have a set of connected components whose union
constitutes the level set . Fig. 2(a) shows an example of three
level sets, , , and . Without loss of generality, we as-
sume here that , for the simplicity of the fol-
lowing explanation.

Suppose that water has risen to a particular level h-1 during
the immersion process. Let . Notice that
can also be viewed as a union of connected components, i.e.,

, where each connected component
contains one or more than one catchment basin. The catchment
basin here can be referred to as a pre-h catchment basin because
it is formed right before the water level rises up to level-h. For
example, in Fig. 2(b) contains three connected components,
denoted by , , and . Note that contains two pre-2
catchment basins separated by a watershed line, while each of

and contains only one pre-2 catchment basin.
Next, by letting the water level goes up to level h, we have a

new level set , which can also be viewed as a union of con-
nected components, i.e., . An example is given
in Fig. 3. The relation between and is
quite important for understanding the two order-invariant algo-
rithms proposed in this paper because contains
all the pre-h catchment basins, which are all the areas already
beneath the water level right before water floods into the level
set and, hence, are the sources where water floods from. We
then classify each connected component in into one
of the following three types based on the number of its con-
necting pre-h catchment basins.

Type-2 Component: More than one pre-h catchment basin
is connected to this type of connected component. For
example, in Fig. 3 is a type-2 component because it

Fig. 3. Example of the relation between D and C , where D =

D D D and C = C C C , as shown in Fig. 2.

connects to three pre-2 catchment basins. Notice that
actually contains two pre-2 catchment basins.
Type-1 Component: Exactly one pre-h catchment basin
is connected to this type of connected component. For
example, in Fig. 3 is a type-1 component because it
has only one pre-2 catchment basin, .
Type-0 Component: No pre-h catchment basin is con-
nected to this type of connected component. For example,

in Fig. 3 is a type-0 component.
Notice that when the flooding has been completed up to level

h-1, every pixel having altitude less than or equal to h-1 will
have already been assigned a unique catchment basin label. As
the water level goes up from level h-1 to level h, water (or
catchment basin labels) will flood into all the three types of
components. The direction of flooding motivates and guides the
labeling process of the immersion algorithm. For a type-2 com-
ponent, water emerging from its multiple neighboring catch-
ment basins will meet at watershed lines, as depicted in Fig. 3.
For a type-1 component, water can only emerge from one single
catchment basin, and, hence, all the pixels in this component
will have the same label as its neighboring catchment basin. Fi-
nally, for a type-0 component having no neighboring catchment
basin, we have to pierce a hole in it to let water flood in. That is,
this connected component, in , is detected as a new
local-minimum, i.e., a newly discovered catchment basin, and
will be assigned a new label.

To implement the flooding step, we divide the pixels in
into the following three classes and label the pixels in each class
one by one. It is worth mentioning that the classification of the
connected components in is for understanding the algorithm,
while the following classification of the individual pixels in
is for implementing the algorithm.

Class-I Pixel: A pixel in is called a class-I pixel if
its altitude is strictly greater than the altitude of its lowest
neighbor, i.e., if , where

. If we consider each con-
nected component in as a plateau (i.e., a set of con-
nected pixels having constant altitude) in the topographic
surface, then class-I pixels are those locating located on
the descending boundaries of plateaus. Note that a single
pixel is also a plateau (of unit area). As can be seen in
Fig. 4, and of Fig. 3 contain some class-I pixels
while contains no class-I pixels because has no
pre-h catchment basins connecting to it.
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Fig. 4. Illustrative example of three classes of pixels contained inD .

Class-II Pixel: A pixel in is called a class-II pixel if
it is contained in a type-2 or type-1 component but is not a
class-I pixel. This class of pixels can be viewed as interior
pixels of nonlocal-minimum plateaus. Fig. 4 shows some
examples of class-II pixels.
Class-III Pixel: Pixels in type-0 components of are
class-III pixels. All the pixels in one type-0 component
will be assigned a new and unique label. An example is
given in Fig. 4.

Based on the above classification of pixels, we can summarize
the immersion algorithm for watershed segmentation as follows.

Algorithm 1. Immersion Approach

Step 1. Sorting Step:
Sort all the pixels in the

gradient magnitude image G to
obtain level sets in in-
creasing .

Step 2. Flooding Step:
For each level set , in

the increasing order of .
Step 2.1. Simulate flooding for all

the class-I pixels in
by labeling each class-I
pixel with the label of its
lowest neighbor (care has
to be taken for ambiguous
cases, as explained below).
All these class-I pixels
are pushed into a FIFO
queue for region growing in
Step 2.2.

Step 2.2. Simulate flooding for all
class-II pixels in by
region growing from class-I
pixels using the FIFO queue
initialized in Step 2.1.

Step 2.3. Simulate flooding for
class-III pixels in by
assigning a new and unique
label to each of the type-0
components in .

In step 2.1, we first label each class-I pixel in with the
label of its lowest neighbor. If the pixel has more than one lowest

neighbor, we then check if these multiple lowest neighbors have
the same catchment basin label (note that all the lower neigh-
bors have been labeled at previous iterations). If the labels of
the multiple lowest neighbors are consistent, we simply label
this pixel with the consistent label. If they are not consistent,
we then have an ambiguous situation, which occurs only in the
digital spaces. In this situation, one possibility for label assign-
ment is to choose the label of any of the lowest neighbors, either
randomly or based on the visiting order of neighbor scanning.
However, this kind of arbitrary assignment will result in the bi-
ased segmentation results, which Vincent and Soille have criti-
cized the toboggan algorithm for [6].

To solve the above ambiguity problem, we assign a spe-
cial label, RIDGE, to those ambiguous pixels, and achieve
an order-invariant segmentation algorithm, i.e., an algorithm
whose segmentation results are independent of the visiting
order of neighbor scanning. It is the property of order-invari-
ance that makes both the immersion and toboggan algorithms
obtain exactly the same segmentation results.

The following is the pseudocode for this algorithm.

1 PROCEDURE Watershed-Algorithm
2 INPUT: Gradient Image
3 OUTPUT: Label Image

.
4 Sort
5 FOR UPTO DO
6 Initiate FIFO

7 FOR-EVERY DO
8

9 IF THEN
10

11 IF has a unique label
THEN
12
13 ELSE
14
15 END-IF
16
17
18 END-IF
19 END-FOR

20 WHILE is not empty DO
21
22
23 FOR-EVERY AND

DO
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24 IF is not assigned THEN
25
26
27
28 ELSE-IF AND

THEN
29
30 END-IF
31 END-FOR
32 END-WHILE

33 FOR-EVERY AND is
not assigned DO
34
35
36 WHILE is not empty DO
37
38 FOR-EVERY AND

DO
39 IF is not assigned
THEN
40
41
42 END-IF
43 END-FOR
44 END-WHILE
45 END-FOR
46 END-FOR
47 END-PROCEDURE.

IV. ORDER-INVARIANT TOBOGGAN ALGORITHM

This section introduces a new order-invariant toboggan al-
gorithm for watershed segmentation. Our toboggan algorithm
originates from the toboggan contrast enhancement proposed by
Fairfield [1]. The basic idea of toboggan contrast enhancement
is very simple, and it took only seven lines for Fairlield to write
down its pseudocode. One drawback of his algorithm is that too
many small regions may be generated due to the existence of
nonsingle-pixel plateaus in the topographic surface. A simple
keep-sliding technique can be used to solve this problem [3].
However, the algorithms presented in [1] and [3] require con-
trast segmentation as a post processing in order to acquire image
segmentation results. Hence, they cannot obtain the same seg-
mentation result as the immersion algorithm.

Recently, Mortensen and Barrett proposed a toboggan seg-
mentation algorithm that did not require contrast segmentation
as a post processing, and successfully integrate it with intelli-
gent scissors [5]. The major problem with their algorithm is that
it did not deal with the ambiguity problem mentioned in the pre-
vious section, and, thus, is not order-invariant.

Based on the understanding of the immersion algorithm pro-
vided in the last section, it is not hard to comprehend our to-
boggan algorithm given below.

Algorithm 2. Toboggan Approach

Step 1. Simulation of Sliding:
This step records the sliding

directions for all the class-I
and class-II pixels in D (not
just in ).

Step 1.1. Simulate sliding for each of
the class-I pixels in D by
recording its lowest neigh-
bors in a sliding list. All
these class-I pixels are
pushed into a FIFO queue as
the seeds for region growing
in Step 2.2.

Step 1.2. Simulate keep-sliding for all
class-II pixels in D by re-
gion growing from class-I
pixels (using the FIFO queue
initialized in Step 2.1).

Step 2. Label assignment for all the
class-III pixels:
Label all the local-minimum

plateaus (i.e. all the bottom
levels of catchment basins).

Step 3. Tobogganing Step:
Assign label to each unla-

beled pixel (i.e., class-I and
class-II pixels) by first to-
bogganing and then backtracking,
using best first search.

It is interesting to observe the similarity between Algorithm
1 and Algorithm 2. In fact, the functions of Steps 1.1, 1.2, and
2 in Algorithm 2 are very much like those of Steps 2.1, 2.2, and
2.3 in Algorithm 1. They both deal with class-I, class-II, and
class-III pixels in the same order, except that Steps 1.1 and 1.2
in Algorithm 2 only record the sliding directions of class-I and
class-II pixels without actual labeling, while Steps 2.1 and 2.2
immediately assign label to class-I and class-II pixels and are
perform level-by-level. Because the toboggan algorithm does
not require level-by-level processing, it does not need the ex-
pensive sorting at the beginning. Instead, it needs to resolve the
labeling problem at the end by tobogganing and backtracking,
but this can be done by efficient depth first search and has been
implemented by utilizing transition table in our C++ code.

The details of the above algorithm can be better known with
the following pseudocode.

48 PROCEDURE Toboggan-Algorithm
49 INPUT: a gradient magnitude image,

50 OUTPUT: a label image,
51 Initialize FIFO

52 FOR-EVERY DO
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53
54
55 IF THEN
56

57
58

59
60 ELSE
61
62 END-IF
63 END-FOR

64 WHILE is not empty DO
65
66
67
68 FOR-EVERY AND

DO
69 IF THEN
70 Append to
71
72
73 ELSE-IF THEN
74 Append to
75 END-IF
76 END-WHILE

77 FOR-EVERY AND
DO

78 IF is not assigned THEN
79
80
81
82 WHILE is not empty DO
83
84 FOR-EVERY AND

DO
85 IF is not assigned
THEN
86
87
88 END-IF
89 END-FOR
90 END-WHILE
91 END-IF
92 END-FOR

93 FOR-EVERY DO
94
95 END-FOR

96 PROCEDURE Resolve
97 INPUT: Pixel site
98 IF is not assigned THEN
99
100 FOR-EVERY DO
101
102 END-FOR
103 IF has a unique label
THEN
104
105 ELSE
106
107 END-IF
108 END-IF
109 END-PROCEDURE

V. EXPERIMENTAL RESULTS

Four different watershed algorithms are mentioned in this
paper, which are order-variant immersion (Vincent’s algorithm
[6]), order-variant toboggan, order-invariant immersion, and
order-invariant toboggan. In our experiments, we focus on
comparing the segmentation result and the computational time
of the proposed toboggan and immersion algorithms. We have
tried our best in implementation both algorithms by carefully
designing the data structure and memory management while
making sure that the segmentation results obtained by using
both algorithms are the same. In our implementation, the data
type of the gradient magnitude can be either short integer
or floating point. If the short integer is chosen, the counting
sort algorithm is used for the watershed algorithm, and the
values of the gradient magnitudes are rounded to the unit. If
the floating point is chosen, the quick sort algorithm is used
for the watershed algorithm, and the values of the gradient
magnitudes are rounded to the single precision. The program
of our implementation is written in C++ and compiled by the
Microsoft Visual C++ compiler 6.0.

In the following experiments, the gradient image is computed
by using the multiscale morphological gradient operation de-
scribed in [8]. Sobel or other operations can be used as well, but
the segmentation result may be a little different. Fig. 5(a) shows
an example of the image segmentation results obtained by our
order-invariant watershed algorithms. Since our immersion al-
gorithm and toboggan algorithm always obtain exactly the same
segmentation result, only one result needs to be shown here.
It should be noted that without any preprocessing, the results
obtained by the watershed method are usually severely over-seg-
mented, as shown in Fig. 5(a). In order to solve the over-segmen-
tation problem, one popular method is to apply some prepro-
cessing, such as geodesic reconstruction, to the gradient image
before using the watershed algorithm. For example, the gradient
image is first reconstructed by erosion in [8]. In this paper, we
use a modified version of reconstruction by closing introduced
in [7]. Fig. 5(b) shows that the over-segmentation problem has
been largely overcome by the geodesic reconstruction.

Fig. 6 shows some results on an artificial image to show the
differences between these algorithms. In 4-connected cases, the
Vincent’s immersion algorithm generates straight watershed.
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Fig. 5. Watershed image segmentation without and with the preprocessing of
geodesic reconstruction. (a) Without geodesic reconstruction. (b) With geodesic
reconstruction.

Fig. 6. Test results of the four difference watershed algorithms (order-invariant
toboggan and order-invariant immersion produce the same results). The upper
row is 4-connected results and the lower row is 8-connected results.

However, the order-invariant algorithm yields an additional
ridge due to the difficulties of counting distances on grid. The
order-variant algorithm produces nonstraight watershed, which
is considered as the worst result. In 8-connected cases, no
algorithms produce straight watershed.

It is not unexpected that both of our algorithms, immersion-
based and toboggan-based, can obtain exactly the same image
segmentation result since we have purposely introduced a spe-
cial RIDGE label to achieve the property of order-invariance.
What is more surprising is that the toboggan algorithm, which
is less well-known in the computer vision community, turns out
to run faster than the immersion algorithm for most of the test
images we have tried. The efficiency gain of the toboggan al-
gorithm will become even larger when the size of the image
increases. This phenomenon can be easily observed from the
following experiments, which use 77 images arbitrarily chosen
from the USC-SIPI image database, or more precisely, from the
image groups of “aerials” and “miscellaneous” (can be down-
load from http://sipi.usc.edu/services/database/Database.html).

Fig. 7(d) shows six typical images of the 77 images men-
tioned above. Fig. 7(a) and (b) shows the execution time for the

TABLE I
WITH RECONSTRUCTION, 4-CONNECTIVITY

TABLE II
WITH RECONSTRUCTION, 8-CONNECTIVITY

TABLE III
WITHOUT RECONSTRUCTION, 4-CONNECTIVITY

six images of size 512 512 and 2048 2048, respectively.
Notice that the USC-SIPI images have different sizes, ranging
from 256 256 to 1024 1024. To perform the experiments,
we apply subsampling to generate a smaller image form a large
one and apply repeating to generate a larger image from a small
one. Each execution time shown is the average of ten experi-
mental results, using a Pentium-III PC running at 1.0 GHz with
256-MB RAM running at 133 MHz. This execution time does
not include the time used for the generation and reconstruction
of the gradient image. From Fig. 7(a), we can see that the to-
boggan algorithm is in general faster than the immersion algo-
rithm, no matter 4-connected or 8-connected neighborhood is
used. For images of size 2048 2048, the computational gain
of the toboggan algorithm becomes even larger, as can be seen
in Fig. 7(b).

In Fig. 7(c), we show that the computational difference is less
significant when the image size is relatively small. However,
when the image size becomes larger, the execution time for the
toboggan algorithm can be two or three times faster than the im-
mersion algorithm. Notice that Fig. 7(c) is shown in logarithmic
scale to accommodate the large span of the execution time.

Tables I–III show the average time of all the 77 test images
with different sizes, where and are the average execution
time for the immersion algorithm and the toboggan algorithm,
respectively. To disclose more information, we have also shown
the percentage of the images for which the toboggan algorithm
is faster than the immersion algorithm. We can see that, as the
image size is large enough, say 1024 1024, the toboggan al-
gorithm is always faster than the immersion algorithm.

As mentioned in Section III, the immersion algorithm needs
an initial sorting operation, which makes its overhead slightly
larger than the toboggan algorithm. However, the main reason
that the immersion algorithm is less efficient in terms of ex-
ecution time, especially for large images, is probably due to



LIN et al.: IMMERSION-BASED AND TOBOGGAN-BASED WATERSHED IMAGE SEGMENTATION 639

Fig. 7. Some experimental results of the order-invariant watershed segmentation. The test platform is a PC based on Intel Pentium III 1.0-GHz CPU with 256-MB
RAM. The execution time is in milliseconds (ms). The test images are from the USC-SIPI image database.

the fact that the memory access pattern of the immersion al-
gorithm is more distributed (or less localized) since it considers
one level set per iteration. On the other hand, the toboggan algo-
rithm tends to focus its operations within a nearby region at any
time instant. This implies that less memory swapping is required
for the toboggan algorithm in general. With the current CPU de-
sign, cache memory is much faster than the main memory, and,
hence, the memory access pattern plays a very important role
for the efficiency of the algorithm.

The results in Table II show that, when 8-connected neigh-
borhood is used instead of 4-connected neighborhood, both al-
gorithms become slower. The reason is the computation for each
pixel is doubled. The efficiency differences between the two al-
gorithms do not change much when the neighborhood system
changes from 4-connectivity to 8-connectivity.

An interesting observation can be found from Table III. In this
experiment, we do not apply the reconstruction preprocessing
to the gradient images prior to the watershed segmentation. This
makes the segmentation results contain more smaller fragments.
In these cases, (the average execution time of immersion
algorithm) of Table III is smaller slower than of Table I,
but (the average execution time of toboggan algorithm) of
Table III is faster greater than of Table I. This should be be-
cause when the fragments are smaller, the memory access pat-
tern of the toboggan algorithm becomes even more localized.
Meanwhile, more fragments bring more overhead to the immer-
sion algorithm. Thus, the difference between the efficiencies of
the two algorithms becomes larger.

VI. CONCLUSION

In this paper, we have presented two order-invariant water-
shed segmentation algorithms, one based on the immersion ap-
proach and the other on the toboggan approach. By introducing
a special RIDGE label to achieve the property of order-invari-
ance, we find that the two conceptually opposite approaches

can indeed obtain the same segmentation result. The similarity
and difference between the two algorithms are thoroughly ana-
lyzed and discussed in this paper. Four different watershed algo-
rithms are compared by experiment, which are order-variant im-
mersion (Vincent’s algorithm [6]), order-variant toboggan [5],
order-invariant immersion, and order-invariant toboggan. Ac-
cording to our experiments, the order-variant immersion algo-
rithm is the slowest one, and order-variant toboggan algorithm is
fastest. The two order-invariant algorithms produce the same re-
sults, but the order-invariant toboggan algorithm is faster in our
experiments. Moreover, the toboggan algorithm requires less
memory than the watershed algorithm, because the sliding list
and the label image used in the toboggan algorithm can actually
share memory (because they are used in different steps), while
the immersion algorithm requires additional memory for storing
the sorting results.

The source codes of the two algorithms are available in our
website, http://ippr.csie.ntu.edu.tw, and it is recommended that
the toboggan algorithm be used for most applications.
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