
Information Processing and Management 42 (2006) 407–428

www.elsevier.com/locate/infoproman
Unique-order interpolative coding for fast querying and
space-efficient indexing in information retrieval systems

Cher-Sheng Cheng, Jean Jyh-Jiun Shann, Chung-Ping Chung *

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, 30050 Taiwan, R.O.C.

Received 17 May 2004; accepted 9 February 2005

Available online 30 March 2005
Abstract

This paper presents a size reduction method for the inverted file, the most suitable indexing structure for an infor-

mation retrieval system (IRS). We notice that in an inverted file the document identifiers for a given word are usually

clustered. While this clustering property can be used in reducing the size of the inverted file, good compression as well as

fast decompression must both be available. In this paper, we present a method that can facilitate coding and decoding

processes for interpolative coding using recursion elimination and loop unwinding. We call this method the unique-

order interpolative coding. It can calculate the lower and upper bounds of every document identifier for a binary code

without using a recursive process, hence the decompression time can be greatly reduced. Moreover, it also can exploit

document identifier clustering to compress the inverted file efficiently. Compared with the other well-known compres-

sion methods, our method provides fast decoding speed and excellent compression. This method can also be used to

support a self-indexing strategy. Therefore our research work in this paper provides a feasible way to build a fast

and space-economical IRS.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Information retrieval systems (IRSes) are widely used in many applications such as search engines, elec-

tronics libraries, e-commerce, electronics news, genomic sequence analysis, etc. (Kobayashi & Takeda,
2000; Williams & Zobel, 2002). To provide fast data retrieval, IRSes require an indexing structure so that
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the desired data can be located quickly. Compared with the signature file, the Pat tree, and the bitmap, the

inverted file is the most suitable indexing structure for an IRS due to its quick response time, high compres-

sion efficiency, scalability, and support for various search techniques (e.g. Boolean, ranked, phrase, and

proximity queries) (Faloutsos, 1985; Frakes & Baeza-Yates, 1992; Witten, Moffat, & Bell, 1999; Zobel,
Moffat, & Ramamohanarao, 1998). Compression of inverted files is essential to large-scale IRSes. This

is because the total time of transferring a compressed inverted list and subsequently decompressing it is

potentially much less than that of transferring an uncompressed inverted list. All the well-known inverted

file compression methods trade off between compression ratio and decompression time. Can we develop a

method that has both the advantages of compression ratio and fast decompression?
1.1. Inverted file compression and its difficulties

An inverted file contains, for each distinct term t in the collection, an inverted list of the form
ILt ¼<ft; id1; id2; . . . ; idft>;
where frequency ft is the total number of documents in which t appears, and idi is the identifier of the doc-

ument that contains t. To process a query, the IRS retrieves the inverted lists of the terms appearing in the

query, and then performs some set operations, such as intersection (\) and union ([), on the inverted lists

to obtain the answer list (Frakes & Baeza-Yates, 1992; Witten et al., 1999).

A popular compression technique (Witten et al., 1999) is to sort the document identifiers of each inverted

list in increasing order, and then replace each document identifier (except the first one) with the distance
between itself and its predecessor to form a list of d-gaps. For example, the inverted list <5;13,18,

22,35,42> can be transformed into d-gap representation as <5;13,5,4,13,7>. Although every document

identifier is distinct, their d-gaps show some probability distributions. Many coding methods, such as unary

coding (Elias, 1975), c coding (Elias, 1975), Golomb coding (Golomb, 1966; Witten et al., 1999), skewed

Golomb coding (Teuhola, 1978), batched LLRUN coding (Fraenkel & Klein, 1985; Moffat & Zobel,

1992), variable byte coding (Scholer, Williams, Yiannis, & Zobel, 2002), and word-aligned ‘‘Carryover-

12’’ mechanism (Anh & Moffat, 2005), have been proposed for compressing inverted lists by estimates

for these d-gaps probability distributions. The more accurately the estimate, the greater the compression
can be achieved. In this paper, Golomb coding means the ‘‘Local Bernoulli model’’ described in Witten

et al. (1999).

The document identifiers for any given word are not uniformly distributed, since the documents in the

collection are inserted in chronological order and the word�s popularity changes over time (Moffat & Stu-

iver, 2000). These document identifiers tend to be clustered, and inverted file compression may benefit if

this clustering can be taken into account. Based on the d-gap technique, some coding methods, such as

skewed Golomb coding and batched LLRUN coding, can capture clustering of documents via accurate

estimates to achieve satisfactory compression performance. However, the estimates in these methods
are relatively sophisticated, which require more decompression time, so they are not yet applied in real

IRSes.

Recently, Moffat and Stuiver (2000) have proposed interpolative coding. It is independent of the esti-

mates for the d-gaps probability distributions. By using clustering with a recursive process of calculating

ranges and codes in an interpolative order, superior compression performance can be achieved. However,

interpolative coding is computationally expensive due to a stack required in its implementation, which pro-

hibits it from being widely used in real-world IRSes.

Therefore, to solve problems such as the slow response time and the large disk space required in large
scale IRSes, a new method that provides high speed decoding and exploits clustering well to achieve good

compression should be developed.
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1.2. Research goal

In terms of query throughput rates, Trotman (2003) shows that for small inverted lists Golomb coding is

recommended, whereas for large inverted lists variable byte coding is recommended. Furthermore, Anh and

Moffat (2005) show that word-aligned ‘‘Carryover-12’’ mechanism allows a query throughput rate that is
higher than Golomb coding and variable byte coding, regardless of the lengths of the inverted lists.

Although these compression methods provide high query throughput rates, their compression efficiencies

need to be improved.

In this paper, we develop a new method based on interpolative compression combined with a d-gap com-

pression scheme. We call it the unique-order interpolative coding. The results of this research showed that

the unique-order interpolative coding can take advantage of document identifier clustering in inverted lists

to achieve good compression performance. Nevertheless, the decoding speed of this new method is even

faster than that of Golomb coding and word-aligned ‘‘Carryover-12’’ mechanism.
This paper is organized as follows. In Section 2, we present the interpolative coding that is the most

space efficient method known to compress inverted files. In Section 3, we present the unique-order interpo-

lative coding. Then we show the quantitative analysis and the simulation results in Sections 4 and 5. In Sec-

tion 6, we present some possible applications of the unique-order interpolative coding. Finally, Section 7

presents our conclusion.
2. Interpolative coding

2.1. Algorithm description

Moffat and Stuiver (2000) have proposed a compression technique called interpolative coding. It makes

full use of the clustering in a recursive process of calculating ranges and codes, and demonstrates superior

compression performance. In this method, the storing order as well as lower bound lo and upper bound

hi of every document identifier x are calculated, and then function Binary_Code(x, lo,hi) is called to

encode x in some appropriate manner. The simplest mechanism uses only binary code to encode x in
dlog2ðhi� loþ 1Þe bits. The algorithm is described in Fig. 1.

This interpolative coding is best illustrated with an example. Consider the inverted list

<7;1,2,5,6,8,10,13> in a collection of N = 20 documents. According to the algorithm in Fig. 1, the middle

item in the list, the identifier 6, is encoded. This identifier must take on a value ranged from 1 to 20. Addi-

tionally, since there are three other identifiers on each side of this middle item, its possible value range is fur-

ther limited to from 4 to 17. We represent this fact with (x, lo,hi) = (6,4,17), indicating that the document

identifier x is within the range lo. . .hi. Once the coding of document identifier 6 is accomplished, the three

document identifiers on the left-hand side may take on values 1–5 and those three on the right-hand side
7–20. According to the same rule, the three document identifiers on the left can be processed first, followed

by those three on the right. Therefore, the complete sequence of (x, lo,hi) triples generated by algorithm

Interpolative_Code are (6,4,17), (2,2,4), (1,1,1), (5,3,5), (10,8,19), (8,7,9), and (13,11,20). Using the sim-

plest implementation of Binary_Code, the corresponding codewords are 4, 2, 0, 2, 4, 2, and 4 bits long.

Using a centered minimal binary code, the compression efficiency of interpolative coding can be further

improved (Moffat & Stuiver, 2000). The centered minimal binary code works in the following way. Support

that a number in the range 1. . .r is to be coded. A simple binary code assigns codewords dlog2re bits long to

all values 1 through r, and wastes 2dlog2re � r codewords. That is, 2dlog2re � r of the codewords can be short-
ened by one bit without loss of unique decodability. These minimal codewords are then centered on the

encoding range. Numbers at the extremes of the range requiring one bit more for storage than those in

the center.



Fig. 1. Interpolative coding.
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2.2. Observation and improvement

The major overhead of interpolative coding is that a recursive process is used to calculate the order and
range of every document identifier. Although a recursive process can be converted to a non-recursive one

(Tenenbaum, Langsam, & Augenstein, 1990), the converted code requires a stack, which makes the coding

and decoding very slow. This is why interpolative coding is not widely used in IRSes.

We observed that the calculation of the order and range for every document identifier can be accelerated

by storing partial results in memory. Consider a general inverted list ILt = <ft; id1, id2, . . ., idft>, where ft is

the number of documents containing term t, idk < idk+1, and all document identifiers are within the range 1–

N. Using the interpolative coding method in Fig. 1, for every ft, we can obtain the full sequence of triples for

the list. Some examples are shown in Table 1. These triple sequences are useful for interpolative coding
to calculate the order and range for each document identifier. For example, consider the inverted list

ILt = <ft = 5; id1 = 1, id2 = 2, id3 = 5, id4 = 7, id5 = 8> for a collection of N = 10 documents. The values of

this list can be calculated using ft = 5 triples in Table 1. The full sequence of triples are (id3,3,N � 2) =

(5,3,8), (id1,1, id3 � 2) = (1,1,3), (id2, id1 + 1, id3 � 1) = (2,2,4), (id4, id3 + 1,N�1) = (7, 6,9), and (id5,

i d4 + 1,N) = (8,8,10). Storing such a table containing a full set of triple sequences in memory is helpful

for the coding and decoding processes of interpolative coding. Compared with the method in Fig. 1, this

improved method eliminates need for a stack in the document identifier order and range calculation, saving

a large amount of time.
Table 1

Some examples of the full sequence of triples for the general inverted list

ft The full sequence of triples for the general inverted list

1 (id1,1,N)

2 (id1,1,N � 1), (id2, id1 + 1, N)

3 (id2,2,N � 1), (id1,1, id2 � 1), (id3, id2 + 1,N)

4 (id2,2,N � 2), (id1,1, id2 � 1), (id3, id2 + 1, N � 1), (id4, id3 + 1,N)

5 (id3,3,N � 2), (id1,1, id3 � 2), (id2, id1 + 1, id3 � 1), (id4, id3 + 1,N � 1), (id5, id4 + 1,N)



Fig. 2. Given a general inverted list ILt: <ft = 5; id1, id2, id3, id4, id5>, and set idftþ1 ¼ id6 ¼ 0 and idftþ2 ¼ id7 ¼ N . The corresponding

triples: (id3,3,N � 2), (id1,1, id3 � 2), (id2, id1 + 1, id3 � 1), (id4, id3 + 1,N � 1), (id5, id4 + 1,N) can be represented with the

I_Triple[ft][5].
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The triples for each ft can easily be represented as a two-dimensional array I_Triple consisting of ft
rows and 5 columns. This representation for ft = 5 is shown in Fig. 2. The first row of the array repre-

sents the first triple, and the second row represents the second triple, and so forth. The first column is
used to denote the index of the document identifier in the inverted list for the first element of the tri-

ple. For example, I_Triple[3][1] is 2, meaning the first value of No. 3 triple is id2. The second and third

columns denote the index of the document identifier in the inverted list and the offset for the second element

of the triple. For example, I_Triple[3][2] and I_Triple[3][3] are two 1s, meaning the second value of No. 3

triple is id1 + 1. Finally, the fourth and fifth columns denote the index of the document identifier in the

inverted list and the offset for the third element of the triple. For example, I_Triple[3][4] and I_Triple[3][5]

are 3 and �1, meaning the third value of No. 3 triple is id3 � 1. To make this representation more

practical and convenient, two extra values are used for each inverted list: idft+1 = 0 and idft+2 = N.
Therefore, the first triple (id3, 3, N � 2) in Fig. 2 can be represented as 3, 6, 3, 7, and �2. The algorithm

in Fig. 3 can be used to generate the corresponding triples for each ft and store them in I_Triple[ft] [5].

For a sub-inverted list IL[index . . . (index + k � 1)] among idlo_index + lo and idhi_index + hi,Compute_I_Tri-

ple(index,k, lo_index, lo,hi_index,hi) can be called to generate the corresponding triples and store them in

a two-dimensional array I_Triple.
2.3. Remark

Although the procedure Compute_I_Triple in Fig. 3 also uses recursive process, it can be processed off-

line and one can store the I_Triples of different fts in memory. This can reduce the on-line decoding time

dramatically. With the I_Triple, one can easily find minimal binary code in encoding an inverted list, as

shown in the following:

for m :¼ 1 to ft do
output bitstring by invoking Binary_Code(IL[I_Triple[m][1]],

IL[I_Triple[m][2]] + I_Triple[m][3],
IL[I_Triple[m][4]] + I_Triple[m][5]);

However, this improved method still requires large memory space. For example, each triple contains five

integers. If an integer takes 4-byte storage space, the memory requirement for a triple is 20 bytes. Therefore,

in an inverted list with ft document identifiers, 20 · ft bytes are required. The maximum ft in present IRSes



Fig. 3. The algorithm for generating I_Triple.
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can reach up to thousands or millions, which means the memory space required for I_Triple storage is ten

thousands or even ten millions of bytes. This makes it impossible using memory to accelerate coding and

decoding with interpolative code. Furthermore, using I_Triple to encode and decode requires extra memory

access time, which makes the decoding speed slow.
3. Unique-order interpolative coding

The recursive process makes the decoding of interpolative coding slow. Although using memory to store

partial results of the recursive process can accelerate the coding and decoding of interpolative coding, a

large amount of memory is required to store the I_Triple for each ft. We develop a new method called

unique-order interpolative coding in which only one I_Triple is required for the entire coding and decoding

process of all inverted lists no matter how many different values of ft are present. Then we introduce loop
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unwinding to replace I_Triple with constant values. The number of memory accesses to I_Triple can there-

fore be reduced, which accelerates the whole process.

3.1. The coding method

This section presents the details of our proposed coding method. Two key decisions are to be made in the

coding method.

3.1.1. Decomposition of an inverted list into blocks to take advantage of interpolative coding

In an inverted list ILt = <ft; id1, id2, . . ., idft>, ft is the number of documents containing term t, idk < idk+1,

and all document identifiers are within the range 1–N. A group size g is first determined. Then ILt is divided

into m ¼ dftge blocks, each having g document identifiers except possibly the last block. We define the first

document identifier in each block to be a boundary pointer, the document identifiers between boundary

pointers to be inner pointers, and those in the last block except the boundary pointer to be residual point-
ers. ILt can then be compressed as follows. The boundary pointers and its subsequent residual pointers to-

gether can be regarded as a sub-inverted list, and a suitable d-gap compression scheme with high decoding

speed can be used for compression. The inner pointers in each block are compressed via interpolative cod-

ing. With this new method (see Fig. 4), each inner block contains a constant number (g � 1) of inner point-

ers, enabling the use of only one I_Triple in coding and decoding. Compared with interpolative coding, this

new method allows document identifiers to be stored in a fixed order, hence the name unique-order inter-

polative coding. When ft 6 g or m = 1 or g = 1, no inner pointers are present, and we apply only a d-gap

compression scheme.

3.1.2. Choice of a suitable coding method for boundary and residual pointers

Compared with the d-gaps of a traditional d-gap compression scheme, the d-gaps of unique-order inter-

polative coding extracted from every group of document identifiers are potentially much larger and may

cause a decrease in compression efficiency. Therefore, a suitable coding method is required to encode the

boundary pointers to improve compression efficiency. To simplify implementation, the boundary and resid-

ual pointers are encoded with the same method.

In this paper, we recommend Golomb coding and r coding for encoding the d-gaps of unique-order
interpolative coding. Golomb coding is very suitable for encoding the d-gaps of unique-order interpolative

coding, since the d-gaps extracted from every group of document identifiers are roughly of the same length.

Using c coding is also a relatively economical choice when the document identifiers in an inverted list are

also close together, and the d-gaps are small. Other coding methods are not disregarded. We are still
Fig. 4. The illustration of unique-order interpolative coding.
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looking for a faster and more compact coding method to encode the d-gaps of unique-order interpolative

coding.

To improve the compression efficiency of the d-gaps of unique-order interpolative coding, the value g is

subtracted from the d-gap of all boundary pointers (except the first one) without loss of unique decodabil-
ity. This approach works the best when the original d-gaps are small.
3.2. Illustration

This unique-order interpolative coding is best illustrated with an example. Given an inverted list

<11;5,8,12,13,15,18,23,28,29,32,33>, let the group size g be 4, the document identifiers 5, 15, and 29

are therefore the boundary pointers, the document identifiers 32 and 33 are the residual pointers, and

the others are the inner pointers. Let [idi, idi+1, . . ., idj] represent idi, idi+1, . . ., idj encoded in interpolative
code. Since the two successive boundary pointers must be known before interpolative coding of the inner

pointers, the boundary pointer of each block is stored before coding of the inner pointers. Therefore, the

inverted list is to be stored as
<11; 5; 15; ½8; 12; 13�; 29; ½18; 23; 28�; 32; 33>;
where [8,12,13] and [18,23,28] are in interpolative codes, and 5, 15, 29, 32, 33 in d-gaps. The resulted

list is
<11; 5; 10ð¼ 15� 5Þ; ½8; 12; 13�; 14ð¼ 29� 15Þ; ½18; 23; 28�; 3ð¼ 32� 29Þ; 1ð¼ 33� 32Þ>:

Next, since there are three document numbers between each pair of boundary pointers, the list can be sim-

plified as
<11; 5; 7ð¼ 10� 3Þ; ½8; 12; 13�; 11ð¼ 14� 3Þ; ½18; 23; 28�; 3; 1>:

In decoding, the first two d-gaps, 5 and 7, are retrieved to obtain the first two boundary pointers, which are

5 and 15 (=5 + 7 + 3). Interpolative coding is then used to obtain [8,12,13]. Then, the d-gap, 11, is retrieved

to obtain the next boundary point, 29 (=15 + 11 + 3), and interpolative coding is used to obtain [18,23,28].

Finally, the residual pointers 32 (=3 + 29) and 33 (=1 + 32) are obtained by the remaining d-gaps.

Now, consider a general inverted list ILt = <ft; id1, id2, . . ., idft> encoded using unique-order interpolative

coding with group size g = 4, the ILt can be represented as
<ft; id1; id5; ½id2; id3; id4�;

id9; ½id6; id7; id8�;

id13; ½id10; id11; id12�; . . .>;
where id1, id5, id9, id13 are encoded using a d-gap coding method and [id2, id3, id4], [id6, id7, id8], [id10, id11, id12]

are encoded using interpolative coding. The example list can be further represented (using triple represen-

tation in Section 2) as
< ft; id1; id5 � id1 � 3; ðid3; id1 þ 2; id5 � 2Þ; ðid2; id1 þ 1; id3 � 1Þ; ðid4; id3 þ 1; id5 � 1Þ;

id9 � id5 � 3; ðid7; id5 þ 2; id9 � 2Þ; ðid6; id5 þ 1; id7 � 1Þ; ðid8; id7 þ 1; id9 � 1Þ;

id13 � id9 � 3; ðid11; id9 þ 2; id13 � 2Þ; ðid10; id9 þ 1; id11 � 1Þ; ðid12; id11 þ 1; id13 � 1Þ; . . .>:
We observed that the I_Triple for [idi, idi+1, idi+2] can be converted to the I_Triple for [idi+4, idi+5, idi+6] by

adding 4 (which is the value of g) to the indices of document identifiers in the I_Triple for [idi, idi+1, idi+2].

Therefore, only one I_Triple is required in coding and decoding, which accelerates the whole process. If we
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use Golomb coding to encode boundary pointers and residual pointers, this new coding method can be

shown as the program in Fig. 5.

3.3. Implementation optimization

This section presents how to use loop unwinding to accelerate the encoding and decoding of unique-
order interpolative coding. Note that once the group size g is determined, the program in Fig. 5 can be fur-

ther accelerated. For example, for g = 4, the following program segment in Fig. 5
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for i :¼ 0 to (m � 1) do

index :¼ i · g;
//encode boundary pointer

append Golomb_Code(IL[index + g + 1] � IL[index + 1] � g + 1, b) to Bitstring;
// encode inner pointers, 8 memory accesses are required for encoding each inner

// pointer: 5 for I_Triple accesses and 3 for IL accesses

for j :¼ 1 to g � 1 do

append Binary_Code(IL[index + I_Triple[j][1]],

IL[index + I_Triple[j][2]] + I_Triple[j][3],

IL[index + I_Triple[j][4]] + I_Triple[j][5]) to Bitstring;
can be converted to

for i :¼ 0 to (m � 1) do
index :¼ i · 4;
// encode boundary pointer

append Golomb_Code(IL[index + 5] � IL[index + 1] � 3,b) to Bitstring;
// loop unwinding, only 3 memory accesses of IL are required for encoding each

// inner pointer

append Binary_Code(IL[index + 3], IL[index + 1] + 2, IL[index + 5] � 2) to Bitstring;

append Binary_Code(IL[index + 2], IL[index + 1] + 1, IL[index + 3] � 1) to Bitstring;

append Binary_Code(IL[index + 4], IL[index + 3] + 2, IL[index + 5] � 1) to Bitstring;

In other words, once the group size g has been determined, the I_Triple accesses in loop can be elimi-

nated in unique-order interpolative coding. So the 8 � 3 = 5 times memory accesses for each document

identifier can be avoided, which in turn accelerates the encoding process. By using the same approach,

the decoding of unique-order interpolative coding can also be accelerated.
4. Analysis

Give an inverted list IL = <f; id1, id2, . . ., idf>, where idk < idk+1, and all document identifiers are within the

range 1–N. As stated in Section 3, the first step in unique-order interpolative coding is to determine the group

size g. Once g is determined, the ILwill be divided intom ¼ dfge blocks, with the first (m � 1) blocks containing

g document identifiers and the last block containing f � (m � 1)g document identifiers. The boundary point-

ers and the residual pointers will be coded by efficient prefix-free coding methods such as Golomb coding and

c coding, in d-gap manner, and the inner document identifiers will be coded by the interpolative coding.

Let the function F(N, f ) represent bits needed for compressing the f document identifiers ranging from 1

to N. Theoretically, the following approximate formulas can then be achieved (Elias, 1975; Gallager & Van
Voorhis, 1975; Golomb, 1966; Mcllroy, 1982; Moffat & Stuiver, 2000).
Golomb coding : GðN ; f Þ 6 f � 2þ log2
N
f

� �
ð1Þ
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c coding : cðN ; f Þ 6 f � 1þ 2� log2
N
f

� �
ð2Þ

Interpolative coding : IðN ; f Þ 6 f � 2:5783þ log2
N
f

� �
ð3Þ
If Golomb coding is used to encode the boundary pointers and residual pointers, then the maximum

number of bits required to store these f � (m � 1)(g � 1) boundary and residual pointers is
ðf � ðm� 1Þðg � 1ÞÞ � 2þ log2
N

f � ðm� 1Þðg � 1Þ

� �
ð4Þ
If we use c coding to encode these pointers, then the maximum number of bits required is
ðf � ðm� 1Þðg � 1ÞÞ � 1þ 2� log2
N

f � ðm� 1Þðg � 1Þ

� �
ð5Þ
Based on Eq. (3), the number of bits required to code the inner pointers ((m � 1) groups, (g � 1) document

identifiers in each group) is
Xm�1

i¼1

ðg � 1Þ � 2:5783þ log2
Ni

g � 1

� �� �
; where Ni ¼ idg�iþ1 � idg�ði�1Þþ1 � 1 ð6Þ
Since
Xm�1

i¼1

Ni 6 N ð7Þ
and the sum of the logarithms of the (m � 1) individual ranges is maximized when all Ni
g�1

are equal, one

obtains
Xm�1

i¼1

ðg � 1Þ � 2:5783þ log2
Ni

g � 1

� �� �
6 ðm� 1Þðg � 1Þ � 2:5783þ log2

N
ðm� 1Þðg � 1Þ

� �
ð8Þ
Therefore, if Golomb coding is used to encode the boundary and residual pointers, then the maximum

number of bits required by the unique-order interpolative coding is at most
ðf � ðm� 1Þðg � 1ÞÞ � 2þ log2
N

f � ðm� 1Þðg � 1Þ

� �
þ ðm� 1Þðg � 1Þ

� 2:5783þ log2
N

ðm� 1Þðg � 1Þ

� �
ð9Þ
Or if we use c coding, it is
ðf � ðm� 1Þðg � 1ÞÞ � 1þ 2� log2
N

f � ðm� 1Þðg � 1Þ

� �
þ ðm� 1Þðg � 1Þ

� 2:5783þ log2
N

ðm� 1Þðg � 1Þ

� �
ð10Þ
Eqs. (9) and (10) can be simplified under the condition that no residual pointers exist. For example, when

f = (m � 1)g + 1, Eq. (9) can be rewritten as:



Table 2

Some examples of the maximum number of bits required for unique-order interpolative coding if Golomb coding is used to encode

boundary pointers under the condition that no residual pointers exist

g Maximum number

of bits required

2 f � 3:29þ log2
N
f

� �

4 f � 3:25þ log2
N
f

� �

8 f � 3:05þ log2
N
f

� �

16 f � 2:88þ log2
N
f

� �

32 f � 2:76þ log2
N
f

� �
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f �
2þ log2g þ 2:5783� ðg � 1Þ þ ðg � 1Þ � log2

g
g � 1

� �

g
þ log2

N
f

2
664

3
775 ð11Þ
and some examples of the maximum number of bits required for unique-order interpolative coding are de-

rived in Table 2.

The results in Table 2 showed that when Golomb coding is used to encode boundary pointers, the maxi-

mum number of bits required in unique-order interpolative coding has inverse relationship with group size
g: the maximum number of bits decreases with increase in group size g and increases with decrease in g. On

the other hand, if the number of document identifiers is less than (g + 1), unique-order interpolative coding

cannot be used. We design an experiment in Section 5 to find a suitable group size g.

The results in Eqs. (9), (10), and Table 2 can be improved if Eq. (3) can be improved. For example, the

maximum number of bits required for interpolative coding to encode an inverted list with three document

identifiers ranging from 1 to N is
log2ðN � 2Þd e þ log2ad e þ log2bd e ð12Þ

since the middle item requires dlog2ðN � 2Þe bits, and the left and right items require dlog2ae þ dlog2be bits
where a, b are two positive integers and a + b = (N � 1). Since
log2ðN � 2Þd e < 1þ log2N ð13Þ

and
log2ad e þ log2bd e < ð1þ log2aÞ þ ð1þ log2bÞ < 2þ log2
N
2
þ log2

N
2

ð14Þ
hence
log2ðN � 2Þd e þ log2ad e þ log2bd e < 3� 1:92þ log2
N
3

� �
ð15Þ
We replace Eq. (3) with Eq. (15) when group size g = 4, and the maximum number of bits required for the
unique-order interpolative coding under the condition that no residual pointers exist is therefore
f � 2:76þ log2
N
f

� �
ð16Þ
Compared with the figure in Table 2, a much tighter upper bound is obtained.
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To further understand the characteristics of unique-order interpolative coding, we conducted following

experiments. We used encoding methods such as Golomb coding, skewed Golomb coding, batched

LLRUN coding, interpolative coding, variable byte coding, Carryover-12 mechanism, unique-order

interpolative coding 1 (group size g = 4; boundary pointers and residual pointers by Golomb coding), un-
ique-order interpolative coding 2 (group size g = 4; boundary pointers and residual pointers by c coding) in

compression. In the first experiment (Table 3(a)), f = 1,000,000 gaps were drawn from a geometric distri-

bution and compressed using the eight methods. The Golomb coding performs the best, since it is a min-

imum-redundancy code for geometric gap distribution (Gallager & Van Voorhis, 1975). Compared with

other methods, unique-order interpolative coding is not suitable for a geometric distribution when

2 < N
f < 256. But when N

f increases, the performance of unique-order interpolative coding 1 improves pro-

portionally. When N
f 6 2, the results of unique-order interpolative coding 2 are satisfying. For most cases in

the first experiment, both variable byte coding and Carryover-12 mechanism are inefficient in compression.

In the second experiment, for each value of N
f the sequence of f = 1,000,000 geometrically distributed

gaps was broken into chunks of 200 contiguous values. The chunks were then placed in groups of five.

In the first three chunks of each group, all gaps were multiplied by a factor of 0.1; whereas in the other

two chunks all gaps were multiplied by a factor of 2.35. This process created artificial clusters of gaps much

similar than the average, and about 60% of the values were coded into these clusters, while the overall aver-
age gap remained the same. This better resembles the distribution of real document collections. The results

are shown in Table 3(b). Compared with skewed Golomb coding, batched LLRUN coding, and interpola-

tive coding, the compression efficiency of Golomb coding is not as good as others, meaning it is unable to

exploit clustering well. The compression results of unique-order interpolative coding for a skewed geomet-

ric distribution are better than that for a geometric distribution. This means that unique-order interpolative

coding does take a good advantage of the clustering property. For N
f 6 32, we prefer to use the unique-order
Table 3

Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps: average bits per gap

Coding methods Average gap N/f

1 2 4 8 16 32 64 128 256 512 1024 2048

(a) Geometric distribution

Golomb coding 1.00 2.33 3.30 4.39 5.43 6.45 7.46 8.47 9.47 10.47 11.47 12.47

Skewed Golomb coding 1.00 2.53 3.51 4.60 5.64 6.66 7.67 8.68 9.68 10.68 11.68 12.68

Batched LLRUN coding 1.00 2.27 3.46 4.50 5.53 6.52 7.52 8.52 9.52 10.52 11.52 12.53

Interpolative coding 0.00 2.15 3.45 4.59 5.66 6.69 7.70 8.71 9.71 10.71 11.71 12.72

Variable byte coding 8.00 8.00 8.00 8.00 8.00 8.14 9.08 10.93 12.87 14.24 15.07 15.52

Carryover-12 mechanism 1.07 2.88 4.11 5.17 6.18 7.38 8.75 9.90 10.58 12.30 14.41 15.56

Unique-order interpolative coding 1 3.00 4.19 5.13 5.97 6.76 7.53 8.29 9.06 9.89 10.77 11.68 12.77

Unique-order interpolative coding 2 0.25 2.33 3.91 5.31 6.64 7.92 9.19 10.45 11.70 12.96 14.21 15.46

Self-entropy 0.00 2.00 3.24 4.35 5.40 6.42 7.43 8.44 9.44 10.44 11.43 12.43

(b) Skewed geometric distribution

Golomb coding 1.40 2.60 3.30 4.29 5.33 6.37 7.39 8.40 9.40 10.40 11.40 12.41

Skewed Golomb coding 1.80 2.31 2.92 3.76 4.80 5.79 6.80 7.82 8.82 9.83 10.83 11.83

Batched LLRUN coding 1.40 2.31 2.86 3.60 4.61 5.66 6.70 7.71 8.71 9.71 10.70 11.71

Interpolative coding 0.84 1.53 2.07 2.90 3.97 5.07 6.15 7.19 8.21 9.23 10.23 11.24

Variable byte coding 8.00 8.00 8.00 8.00 8.10 8.58 9.38 10.11 10.63 11.28 12.43 13.80

Carryover-12 mechanism 1.07 2.36 2.90 3.72 4.84 6.02 6.98 7.9 9.35 10.90 12.08 12.57

Unique-order interpolative coding 1 3.60 3.96 4.30 4.80 5.51 6.30 7.11 7.94 8.76 9.60 10.51 11.62

Unique-order interpolative coding 2 1.25 1.90 2.47 3.33 4.53 5.88 7.21 8.53 9.81 11.07 12.33 13.60

Self-entropy 0.97 1.77 2.30 3.05 4.06 5.10 6.15 7.18 8.19 9.19 10.19 11.20
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interpolative coding 2; while for N
f > 32, we suggest unique-order interpolative coding 1. Similar to that for

a geometric distribution, the unique-order interpolative coding 1 performs better as N
f becomes larger.

Again, both variable byte coding and Carryover-12 mechanism are inefficient in compression for most cases

in the second experiment. From Table 3(b), interpolative coding can even outperform self-entropy. This is
due to the fact that interpolative coding does not use the gap value in encoding directly, but instead uses a

minimal binary code to encode every gap after it is converted to a triple.
5. Experiments

An experimental information retrieval system was implemented to evaluate the various coding methods.

Experiments were conducted on some real-life document collections, and query processing time and storage
requirements for each coding method were measured.

5.1. Document collections and queries

Five document collections were used in the experiments. Their statistics are listed in Table 4. In this

table, N denotes the number of documents; n is the number of distinct terms; F is the total number of terms

in the collection; and f indicates the number of document identifiers that appear in an inverted file.

Collection Bible is the King James version of the Bible, in which each verse is considered as a document.
The second collection, DBbib, is a set of citations to papers appearing in the database literature. The third

and fourth collections, FBIS (Foreign Broadcast Information Service) and LAT (LA Times), are disk 5 of

the TREC-6 collection that are used internationally as a test bed for research in information retrieval tech-

niques (Voorhees & Harman, 1997). The final collection TREC includes the FBIS and LAT collections.

Since effectiveness of coding methods relies heavily on clustering of documents, inverted files for these

collections were built with a Greedy-NN algorithm (Shieh, Chen, Shann, & Chung, 2003). These inverted

files were then used to test the advantages and shortcomings of various coding methods.

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries. For each
document collection, 1000 documents were randomly selected to generate a query set. A query was gener-

ated by selecting words from a word list of a specific document, combined by some randomly generated

Boolean operators ANDs and ORs. To form the document word list, words in the document were case

folded, and stop words such as ‘‘the’’ and ‘‘this’’ were eliminated. For example, a query word list may

be ‘‘inverted file document collection built’’, a query may be ‘‘(inverted <AND> file <AND> document

<AND> collection) <OR> built’’. For each query, there existed at least one document in the document

collection that satisfied the query. The generated queries followed a Zipf-like distribution P � 1/q0.55, where
P is the probability of accessing each query, and q is the popularity rank for the test query stream. This is
Table 4

Statistics of document collections

Collection

Bible DBbib FBIS LAT TREC

Documents N 31,101 32,472 130,471 131,896 262,367

# of terms F 884,746 2,320,610 72,922,893 72,087,460 145,010,353

Distinct terms n 8965 58,536 214,310 168,251 317,393

# of document identifier count f 701,304 1,694,491 28,628,698 32,483,656 61,112,354

Average gap size N · n/f 398 1122 977 683 1363

Total size (Mbytes) 4.69 21.30 470 475 945
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widely believed to closely resemble the distribution of real queries (Breslau, Cao, Fan, Phillips, & Shenker,

1999).

5.2. Compression performance of unique-order interpolative coding

In this section, Golomb coding was used to code both boundary pointers and residual pointers. This is

due to the fact that the average gap sizes in Table 4 are relatively big, Golomb coding was recommend

according to Table 3(b). The compression result is shown in Table 5, and the metric used is the average

number of bits per document identifier BPI, defined as follows:
Table

Compr

Group

1

2

3

4

5

6

7

8

9

10
BPI ¼ The size of the compressed inverted file

number of document identfiers f
:

For each term t, the cost of using r coding to encode the frequency ft is calculated and included in the

presented results.
Note that for group size g = 4 and g = 8, unique-order interpolative coding achieved good compression.

For a simple implementation, we suggest using g = 4. In the following experiments, Golomb coding was

used to code both boundary pointers and residual pointers for unique-order interpolative coding, and

group size g was set to 4 unless otherwise stated.

5.3. Compression performance of different coding methods

We now compare the effectiveness of the eight coding methods: c coding, Golomb coding, batched
LLRUN coding, skewed Golomb coding, interpolative coding, variable byte coding, Carryover-12 mech-

anism, and unique-order interpolative coding. For each term t, the cost of using r coding to encode the fre-

quency ft is calculated and included in the presented results. Moreover, any necessary overheads, such as

the complete set of models and model selectors for the batched LLRUN coding, are also calculated and

included. However, the cost of storing the parameter b for each inverted list in Golomb coding (Witten

et al., 1999) is not calculated nor included. This is because the parameter b for each inverted list in Golomb

coding can be calculated via stored frequency ft using Witten�s approximation. The results are shown in

Table 6. Notice that:

1. Both variable byte coding and Carryover-12 mechanism are inefficient in compression of inverted

files.
5

ession performance of unique-order interpolative coding versus different group size g

size g Collection

Bible DBbib FBIS LAT TREC

6.11 6.20 5.27 5.31 5.49

5.64 5.47 4.84 4.91 4.99

5.61 5.31 4.80 4.89 4.94

5.46 5.11 4.66 4.74 4.78

5.52 5.13 4.71 4.80 4.82

5.52 5.10 4.71 4.79 4.81

5.47 5.04 4.65 4.74 4.75

5.42 4.98 4.59 4.68 4.69

5.47 5.01 4.64 4.72 4.73

5.51 5.03 4.67 4.75 4.76



Table 6

Compression performance of different coding methods

Coding methods Collection

Bible DBbib FBIS LAT TREC

c coding 6.58 5.96 5.38 5.63 5.63

Golomb coding 6.11 6.20 5.27 5.31 5.49

Batched LLRUN coding 5.52 4.88 4.63 4.78 4.84

Skewed Golomb coding 5.92 5.75 5.04 5.07 5.10

Interpolative coding 5.37 4.89 4.58 4.65 4.62

Variable byte coding 9.10 9.54 8.88 8.89 8.84

Carryover-12 mechanism 7.14 7.99 6.23 6.13 5.95

Unique-order interpolative coding 5.46 5.11 4.66 4.74 4.78
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2. For the other coding methods, the compression efficiencies of both c coding and Golomb coding are

relatively low because of the simple models they use.

3. The compression efficiencies of batched LLRUN, skewed Golomb, interpolative, and unique order inter-

polative coding methods are relatively good. This shows that clustering is a good compression aid.

4. The compression efficiency of unique-order interpolative coding is only inferior to that of interpolative

coding, meaning that it does take a good advantage of the clustering property.

5.4. Search performance of different coding methods

The query processing time includes (1) disk access time, (2) decompression time, and (3) document iden-

tifiers comparison time. Experiments showed that disk access time and decompression time occupy more

than 90% of query processing time. And document identifier comparison time is not a function of the cod-

ing method used. Therefore the search performance metric is defined as
Search Time ðSTÞ ¼ Disk Access Time ðATÞ þDecompression Time ðDTÞ:

And the speedups of all coding methods relative to Golomb coding, for all test collections, were calculated.

All experiments described in this section were run on an Intel P4 2.4GHz PC with 256MB DDR memory

running Linux operating system 2.4.12. The hard disk was 40 GB, and the data transfer rate was 25 MB/s.

Intervening processes and disk activities were minimized during experimentation. All decoding mechanisms

were written in C, complied with gcc, and optimized as follows:

1. Replaced sub-routines with macros.
2. Careful choice for compiler optimization flags.

3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

4. Implemented the integer logarithm function dlog2ðiÞe with a lookup table.

Let z be a 256-entry array, and z[k] be dlog2ðk þ 1Þe where 0 6 k 6 255. The function dlog2ðiÞe can be

implemented in C as follows (v is the returned value of dlog2ðiÞe):

do {

register int_i = (i)�1;

(v) =_B_i�16 ? (_B_i�24 ? 24 + z[_B_i�24] : 16 + z[_B_i�16]):
(_B_i� 8 ? 8 + z[_B_i�8] : z[_B_i]);

} while (0);
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5. Implemented the integer logarithm function blog2ðiÞc also with a lookup table.

The array z is the same as that used in the function dlog2ðiÞe. The function blog2ðiÞc can be implemented

in C as follows (v is the returned value of blog2ðiÞc):

do {

register int_i = (i);
(v) =_B_i�16 ? (_B_i�24 ? 23 + z[_B_i�24] : 15 + z[_B_i�16]):

(_B_i� 8 ? 7 + z[_B_i�8] : z[_B_i] - 1);

} while (0);

6. A 256-entry lookup table is used to locate the exact bit location of the first ‘‘1’’ bit in a byte.

For example, in the byte 00101000 the first ‘‘1’’ bit is in location 3. This can accelerate the decoding pro-

cess of unary codes because no bit-by-bit decoding is required.

7. Access to binary codes with masking and shifting operations, and no bit-by-bit decoding is required.

With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-bit

decoding is required.

Other optimizations included: The Huffman code of batched LLRUN coding was implemented with

canonical prefix codes (Turpin, 1998). The canonical prefix codes can be decoded via fast table look-up.

And for the interpolative coding method, recursive process was transformed to non-recursive process, at

the cost of an explicit stack (Tenenbaum et al., 1990).

The search performance measurements are shown in Table 7. Key findings are:

1. Although variable byte coding and Carryover-12 mechanism gave fast decoding, r coding and unique-

order interpolative coding achieved higher query throughput rates. This is because the disk access time

(AT) of variable byte coding and Carryover-12 mechanism is much higher than that of r coding and

unique-order interpolative coding.

2. For collection DBbib, the decoding times (DT) of r coding and unique-order interpolative coding are less

than that of Carryover-12. This is because a large portion of the d-gaps of frequently used query terms

for DBbib is of value 1. Both r coding and unique-order interpolative coding can encode these d-gaps

very economically. This also makes the decoding times of r coding and unique-order interpolative coding
for these d-gaps very low.

3. Batched LLRUN coding, skewed Golomb coding, and interpolative coding gave better compression

rates than Golomb coding. However, their complex decoding mechanisms prohibited them from being

used in real-world IRSes.

4. Experimental results showed that r coding, Carryover-12 mechanism, and unique-order interpolative

coding were recommended for real-world IRSes. Their query throughput rates were all much higher than

that of Golomb coding.

5. To obtain better compression rates, Golomb coding and unique-order interpolative coding use a mini-
mal binary code in their codewords. To decode a minimal binary code, ‘‘toggle point’’ calculations are

required and slow down query evaluation. Rice coding is a variant of Golomb coding where the value b

is restricted to be a power of 2. The advantage of this restriction is that there is no ‘‘toggle point’’ cal-

culation required. The disadvantage of this restriction is the slightly worse compression than that of

Golomb coding. If we use Rice coding to encode the boundary and residual pointers in unique-order

interpolative coding and use a simple binary code to encode the (x, lo,hi) triples for the inner pointers,

there is no ‘‘toggle point’’ calculation required for unique-order interpolative coding. Table 8 showed

that Rice coding allowed query throughput rates of approximately 8% higher than Golomb coding,
and unique-order interpolative coding without ‘‘toggle point’’ calculation allowed query throughput



Table 7

Search performance of different coding methods (AT is the disk access time, DT is the decoding time, ST = AT+DT is the search time,

and SP is the performance relative to the Golomb coding)

Coding method Collection

Bible DBbib FBIS LAT TREC

c coding

AT(us) 125 202 1125 1168 2149

DT(us) 70 188 952 980 1696

ST(us) 195 390 2077 2148 3845

SP 1.14 1.50 1.20 1.23 1.20

Golomb coding

AT(us) 131 306 1282 1321 2422

DT(us) 92 280 1200 1314 2179

ST(us) 223 586 2482 2635 4601

SP 1.00 1.00 1.00 1.00 1.00

Batched LLRUN coding

AT(us) 116 381 1101 1134 2086

DT(us) 130 192 1688 1771 3013

ST(us) 246 573 2789 2905 5099

SP 0.91 1.02 0.89 0.91 0.90

Skewed Golomb coding

AT(us) 117 331 1120 1150 2097

DT(us) 122 201 1492 1577 2696

ST(us) 239 532 2612 2727 4793

SP 0.93 1.10 0.95 0.97 0.96

Interpolative coding

AT(us) 111 137 1024 995 1916

DT(us) 243 688 3094 3266 5598

ST(us) 354 825 4118 4261 7514

SP 0.63 0.71 0.60 0.62 0.61

Variable byte coding

AT(us) 214 918 3134 3489 5506

DT(us) 22 90 336 388 633

ST(us) 236 1008 3470 3877 6139

SP 0.95 0.58 0.72 0.68 0.75

Carryover-12 mechanism

AT(us) 145 311 1498 1491 2566

DT(us) 52 190 765 825 1368

ST(us) 197 501 2263 2316 3934

SP 1.13 1.17 1.10 1.14 1.17

Unique-order interpolative coding

AT(us) 113 182 1066 1076 2011

DT(us) 82 169 1041 1041 1909

ST(us) 195 351 2107 2117 3920

SP 1.14 1.67 1.18 1.24 1.17
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rates of approximately 30% higher than Golomb coding. Experimental results further showed that the

decoding time of unique-order interpolative coding without ‘‘toggle point’’ calculation is even less than

that of Carryover-12 mechanism.



Table 8

Search performance of Rice coding and unique-order interpolative codinga (AT is the disk access time, DT is the decoding time,

ST = AT + DT is the search time, and SP is the performance relative to the Golomb coding)

Coding method Collection

Bible DBbib FBIS LAT TREC

Rice coding

AT(us) 133 286 1305 1345 2462

DT(us) 74 267 1004 1069 1808

ST(us) 207 553 2309 2414 4270

SP 1.08 1.06 1.07 1.09 1.08

Unique-order interpolative codinga

AT(us) 119 193 1128 1137 2127

DT(us) 55 141 747 772 1363

ST(us) 174 334 1875 1909 3490

SP 1.28 1.75 1.32 1.38 1.32

a The boundary and residual pointers are encoded in Rice codes, the (x, lo,hi) triples for the inner pointers are encoded in simple

binary codes, and group size g is 4.
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6. Experimental results showed that a good coding method must be characterized by both high

compression ratio and high decompression rate. The unique-order interpolative coding is such a good

method.
6. Other applications

Unique-order interpolative coding, like interpolative coding, can be directly applied to encode strictly

ascending integer sequences. One such example is encoding of within-document frequencies of inverted lists.

If ranked queries are to be supported, it is also necessary to store with each document identifier the fre-

quency of the term appearing within that document, giving the inverted list the form:
<ft; ðid1; ft;1Þ; ðid2; ft;2Þ; . . . ; ðidft; ft;ftÞ>;
where ft is the number of documents containing term t, idk < idk+1, and ft,i is the frequency of term t in doc-

ument i, 1 6 i 6 ft. The within-document frequencies can be compressed in exactly the same manner of
compressing document pointers: if there are ft entries in an inverted list and a total of Ft occurrences of

that term in the collection, the sequence of cumulative sums of the ft,i values also forms a strictly increasing

integer sequence, and all of the existing compression methods are applicable. Because the within-document

frequencies are typically small, according to Table 3(b), unique-order interpolative coding should use c
coding to encode within-document frequencies. Table 9 shows the cost, in bits per pointer, of storing the

within-document frequencies for the five test collections. Test results showed that unique-order interpola-

tive coding achieved very good compression, second to only the interpolative coding. Considering also the

performance results in Section 5.4 and implementation cost, we conclude that the unique-order inter-
polative coding is very suitable for encoding within-document frequencies of inverted lists.

Unique-order interpolative coding can also support a self-indexing strategy with a little additional stor-

age space. Typically, a query evaluation involves only a few document identifiers in an inverted list (Moffat

& Zobel, 1996; Vo &Moffat, 1998). However, most compressed inverted lists do not support random acces-

ses. An inverted list must be completely decompressed in order to be randomly accessed to any document

identifier, and the full decompression is expensive. Recently, Moffat presented the skipped inverted lists

(using self-indexing strategy) to support random access and reduce the query response time (Moffat &



Table 9

Within-document frequency index compression of all inverted lists, in average bits per pointer

Coding methods Collection

Bible DBbib FBIS LAT TREC

Unary coding 1.26 1.37 2.55 2.22 2.37

c coding 1.38 1.44 2.14 2.00 2.07

Golomb coding 1.30 1.50 2.29 2.09 2.20

Batched LLRUN coding 1.38 1.44 2.14 2.00 2.05

Skewed Golomb coding 1.45 1.60 2.39 2.26 2.35

Interpolative coding 0.86 0.92 1.78 1.77 1.75

Variable byte coding 8.11 8.19 8.04 8.02 8.03

Carryover-12 mechanism 2.04 2.75 3.22 2.99 3.07

Unique-order interpolative codinga 0.96 1.02 1.92 1.76 1.84

a The boundary and residual pointers are encoded in r codes and group size g is 4.
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Zobel, 1996). The technique is to divide the inverted list into blocks, and store the first document identifier

of each block (called critical document identifier) separately from other document identifiers. Document

identifier search proceeds in two steps. The first step is searching in the critical document identifier list

and the second step is searching in one targeted block. Experimental results show that the self-indexing

strategy can improve response time for both Boolean AND queries and ranked queries. The only shortcom-

ing of the self-indexing strategy is that every critical document identifier requires some extra bits to specify

the location of the next critical one.

Compared with the self-indexing strategy by Moffat, the unique-order interpolative coding is more effi-
cient in generating skipped inverted lists. We illustrate this with an example. In Fig. 6, when the group size

g = 4, each boundary pointer can be regarded as a critical document identifier in the self-indexing strategy,

while the number of bits needed to store the inner pointers can be calculated using the value of the two

boundary pointers and Eq. (17).
Max: required bits of inner pointers when g ¼ 4 ¼

0 if N ¼ 3

2 if N ¼ 4

3ðk þ 1Þ þ 1 if 4 < N < 3� 2k þ 3

3ðk þ 1Þ þ 2 if 3� 2k þ 3 6 N

8>>><
>>>:

ð17Þ
where N is the gap of two successive boundary pointers and k ¼ dlog2ðN � 2Þe � 2. Eq. (17) is the upper

bound of Eq. (12) (in Section 4) expressed in closed form, which can be obtained by simulation and vali-

dated by experiment. Since the number of bits for each inner pointer is known, those inner pointers that are

useless in set operations during query processing can be skipped easily. Such a method is called skipped

unique-order interpolative coding. The results in Table 10 showed that this method does not require extra
Fig. 6. Skipped unique-order interpolative coding with group size g = 4.



Table 10

Compression performance of Golomb coding and skipped unique-order interpolative coding

Coding methods Collection

Bible DBbib FBIS LAT TREC

Golomb coding 6.11 6.20 5.27 5.31 5.49

Skipped unique-order interpolative coding 5.87 5.50 5.06 5.14 5.16
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bits to specify the location of the critical document identifiers, and the storage consumed is even less than

that of a Golomb code. This method is also simple, so we suggest that it be widely used in IRSes.
7. Conclusion

This paper proposes a novel coding method, the unique-order interpolative coding, for compressing in-

verted files in IRSes. This method is much easier to implement than interpolative coding. Furthermore, it is
custom designed to suit the clustering property of document identifiers, a property that has been observed

in real-world document collections. Experiments with the inverted files of five test databases show that this

method yields superior performance in both fast querying and space-efficient indexing. Also shown is that it

can support the self-indexing strategy efficiently. This work shows a feasible way in building a responsive

and storage-economical IRS.
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