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Abstract

A theory was developed to deal with inelastic interactions for an electron moving parallel to the axis of a cylindrical structure. For-
mulas for the differential inverse inelastic mean free path (DIIMFP) and the total inverse inelastic mean free path (IIMFP) were derived
using dielectric response theory. A sum-rule-constrained extended Drude dielectric function with spatial dispersion was applied to cal-
culate DIIMFPs and IIMFPs for a solid wire and a cavity in solid. The calculated results showed that surface excitations occurred as the
electron moved near the boundary either inside or outside the solid, whereas volume excitations arose only for electron moving inside the
solid. It was found that the probability for surface excitations increases and that for volume excitations decreases for an electron moving
close to the surface. Near the surface, the decrease in volume excitations is compensated by the increase in surface excitations. For a
cavity in solid, the IIMFP inside the solid can be approximated by a constant value equal to the IIMFP for the infinite solid, except
in the immediate vicinity of the cavity boundary.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, technology developments permitted the
production of nanometric devices with different shapes.
Studies of these devices are of growing interest in surface-
sensitive electron spectroscopies. The electron inelastic-
interaction cross section plays an important role in the
quantitative analysis of these spectra. Although the most
widely studied geometry for these interactions was planar
[1–5], several theoretical treatments of a cylindrical system
were developed [6–8] due to improvements in the nanofab-
rication of cylindrical wires. Of these treatments, the single
plasma resonance dielectric model was often used.
Although this model is a good approximation for materials
that exhibit single pole energy-loss peak, it is not so well for
solids that have complex band structures.
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In surface-sensitive electron spectroscopies, electron
inelastic cross sections comprise mainly the contributions
from volume and surface excitations. Volume and surface
excitations occur when electrons travel, respectively, inside
the bulk of the material and near the surface inside or out-
side the solid [9]. These excitations can be described using
dielectric response theory. In this theory, the excitations
are characterized in terms of the dielectric function of the
materials. The experimental optical data and the extrapola-
tion of these data from the optical limit to other momen-
tum transfers are frequently used to obtain the full
spectrum of the dielectric function [10–12]. Previously, an
extended Drude dielectric function with spatial dispersion
[13] was established with parameters determined from opti-
cal data [14]. This function was constrained by sum-rules to
assure the accuracy and examined to confirm critical-point
energies in the interband transitions and plasmon energies
in the collective excitations. In addition, a background
dielectric constant was included to account for the influ-
ence of polarized ion cores [15]. In the present work, such
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a dielectric function was used to calculate the differential
inverse inelastic mean free path (DIIMFP) and the total in-
verse inelastic mean free path (IIMFP) in a cylindrical sys-
tem. These calculations were made for an electron moving
parallel to the axis of the cylinder (Si wire and cavity in Si
or Cu). The dependences of DIIMFP and IIMFP on elec-
tron position and energy were then analyzed. Note that all
quantities are expressed in atomic units (a.u.) unless other-
wise specified.
2. Theory

Fig. 1 illustrates the configuration in which an electron
with velocity �v moves parallel to the axis of a cylinder of
radius a and dielectric function e1(k,x). This cylinder is
embedded in a surrounding medium of dielectric function
e2(k,x). At time t, the electron is at a position �x0 ¼
ðq0; 0; vtÞ in cylindrical coordinates.

In the case that the electron moves inside the cylinder,
i.e. q0 < a, the scalar potentials can be written as [16]
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Fig. 1. A sketch of the configuration studied in the present work. An
electron of velocity~v moves parallel to and at a distance q0 from the axis
of an infinitely long cylinder of radius a. The media inside and outside the
cylinder have dielectric functions e1ð�k;xÞ and e2ð�k;xÞ, respectively.
for q < a and
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for q > a, where Am and Bm are to be determined, Im and
Km are the modified Bessel functions, respectively, and
q> = max(q,q0) and q< = min(q,q0). The Fourier trans-
forms of these potentials are
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where d is the delta function. Applying boundary condi-
tions, i.e. continuity of the potential and the normal compo-
nent of electric displacement at the interface q = a, one finds
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and
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where I 0mðxÞ ¼ dImðxÞ=dx and K 0

mðxÞ ¼ dKmðxÞ=dx. Remov-
ing the vacuum potential of an electron from the scalar
potential and taking the inverse Fourier transform, the
induced potential at q < a is given by
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The stopping power, �dW
ds

ð1Þ
, is related to the derivative of

Uð1Þ
indðq;/; z; tÞ at the electron position. One obtains



Fig. 2. Calculated DIIMFPs for a 500 eV electron moving parallel to the
axis of a Si cylinder (radius a = 20 a.u.) in vacuum for several electron
distances q0 from the axis.
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Note that this equation contains contributions from all rel-
evant excitations including volume, surface and interface
excitations. For an electron moving inside a cylindrical
cavity, i.e. taking e1 = 1, e2 = e and x = kv in Eq. (8),
one obtains the formula derived by Arista et al. [7] which
contains only surface excitations but no volume and inter-
face excitations.

Since the stopping power is expressed in terms of the
DIIMFP, l(1), through
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one obtains
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A similar approach can be made for an electron moving
outside the cylinder, i.e. q0 > a. The DIIMFP is given by

lð2ÞðE;xÞ ¼ �2

pv2
X1

m¼�1
Km

x
v
q0

� �
Im

Cm
x
v ;x

� �
e2 x

v ;x
� �

" #(

þ Im
x
v
q0

� �
Im

1

e2 x
v ;x

� �
" #)

; ð11Þ

where
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Taking a ! 1 and e1 = e2 = e in Eq. (10) or a = 0 and
e1 = e2 = e in Eq. (11), the DIIMFP in an infinite medium
is obtained as
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The IIMFP may be calculated according to

lðiÞðEÞ ¼
Z E

0
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where i = 1 and 2 for an electron moving inside and outside
the cylinder, respectively.

3. Results and discussion

Using Eqs. (10) and (11), the DIIMFP was calculated
for an electron moving parallel to the axis of a cylindrical
structure. In these calculations, a sum-rule-constrained ex-
tended Drude dielectric function with dispersion [17] was
applied. Fig. 2 shows the results of this DIIMFP as a func-
tion of energy loss x for a 500 eV electron at several dis-
tances q0 from the center of a Si cylinder of radius
a = 20 a.u. For an electron moving inside the solid, i.e.
q0 < a, the DIIMFP (upper diagram) contains two peaks
corresponding to surface and volume excitations. As the
electron moves closer to the cylinder surface, i.e. q0 ! a,
the volume excitation peak (�17 eV) decreases in intensity,
whereas the surface excitation peak (�12 eV) increases in
intensity. For an electron moving in vacuum, i.e. q0 > a,
the DIIMFP (lower diagram) is due entirely to contribu-
tions from surface excitations. The DIIMFP becomes smal-
ler for larger electron distance from the surface. A close
view of Fig. 2 reveals that the DIIMFP possesses a fine
structure at low energy losses which corresponds to the
band structure of Si.

Similar results for the DIIMFP of a 500 eV electron
moving parallel to the axis of a cylindrical cavity in Si
are plotted in Fig. 3. Again, surface excitations (�12 eV)
occur for an electron moving either in the cavity (upper
diagram) or in Si (lower diagram), whereas volume excita-
tions (�17 eV) occur only for an electron in Si. For an elec-



Fig. 3. Calculated DIIMFPs for a 500 eV electron moving parallel to the
axis of a cylindrical cavity (radius a = 20 a.u.) in Si for several electron
distances q0 from the axis.

Fig. 4. DIIMFPs calculated using the extended Drude dielectric function
(solid curves) and the single plasma resonance dielectric function (dotted
curves) for a 500 eV electron moving parallel to and at a distance
q0 = 19 a.u. from the axis of a cylindrical cavity (radius a = 20 a.u.) in Si
and Cu.

Fig. 5. Calculated DIIMFPs for an electron moving parallel to and at a
distance q0 = 21 a.u. from the axis of a Si cylinder (radius a = 20 a.u.) in
vacuum for several electron energies.
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tron outside the cavity (lower diagram), the contributions
from surface and volume excitations become smaller and
larger, respectively, for increasing q0. At q0 � 30 a.u., the
DIIMFP is due entirely to volume excitations.

Calculated DIIMFPs for a 500 eV electron moving
inside a cylindrical cavity (a = 20 a.u.) in Si and Cu at
q0 = 19 a.u. are shown in Fig. 4. The solid curves are re-
sults using the extended Drude dielectric function. Corre-
sponding results using the single plasma resonance
dielectric function [18,19] are plotted (dotted curves) for
comparison. For Si, the peak position of DIIMFPs calcu-
lated using either of those dielectric functions is nearly
the same, with only a small difference in the peak magni-
tude. This is because Si exhibits a single pole energy-loss
peak which can be described well by the electron-gas
model. For Cu, although the general behavior of DIIMFP
curves is similar, there is a noticeable difference between
these curves. The smooth broad peak of the single plasma
resonance dielectric model is the feature considering only
the plasmon excitations. Whereas, a broad peak with struc-
tures is due to both plasmon and single-electron excitations
of the extended Drude dielectric model. For Cu with com-
plex band structures, the interband and intraband transi-
tions are prominent.
Fig. 5 is a plot of the DIIMFP for an electron moving
outside the Si cylinder (a = 20 a.u.) at q0 = 21 a.u. for sev-
eral electron energies. It is seen that the DIIMFP, due only
to surface excitations, decreases with increasing electron
energy. The position of the surface plasmon loss peak,
however, remains unchanged.

Fig. 6 shows a plot of the IIMFP for an electron moving
inside (q0 < a) or outside (q0 > a) a cylindrical cavity in Si
as a function of distance from the cavity center, q0, for
several electron energies. The solid and dotted curves are
results calculated using the extended Drude dielectric func-
tion and the single plasma resonance dielectric function,
respectively. It is seen that the IIMFP decreases with
increasing electron energy for all solid and dotted
curves. For a given electron energy, some discrepancies be-
tween solid and dotted curves are found. In spite of these



Fig. 6. IIMFPs calculated using the extended Drude dielectric function
(solid curves) and the single plasma resonance dielectric function (dotted
curves) for an electron moving parallel to the axis of a cylindrical cavity
(radius a = 20 a.u.) in Si for several electron energies.
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differences, the dependences of the IIMFP on electron
position are all similar. In the region q0 P a, the IIMFP
has contributions from both volume and surface excita-
tions. The contribution from surface excitations is localized
to the cavity boundary and increases as q0 ! a. On the
other hand, the contribution from volume excitations is re-
duced near the boundary. The decrease in volume excita-
tions is, to a good approximation, compensated by the
increase in surface excitations [9]. This result makes the
IIMFP spatially non-varying and approaching the value
for infinite Si until the electron is closer than �2 a.u. from
the cavity boundary. The contribution from volume excita-
tions then becomes negligibly small, and the IIMFP drops
abruptly. For q0 < a, i.e., electron inside the cavity, the
IIMFP is non-zero due to surface excitations. The IIMFP
decreases with decreasing q0, i.e., increasing electron dis-
tance from the cavity boundary.

4. Conclusions

Analytic formulas were derived to deal with the differen-
tial and total inverse inelastic mean free paths for an elec-
tron moving parallel to the axis of a cylindrical structure
based on dielectric response theory. All relevant inelastic
interactions including surface and volume excitations are
considered. An extended Drude dielectric function with
spatial dispersion was applied to DIIMFP and IIMFP cal-
culations for cylindrical wire and cavity. The dependences
of the DIIMFP and IIMFP on the electron position and
energy have been analyzed for an electron moving inside
and outside the solid. These calculations showed that sur-
face excitations are important for an electron moving near
the surface. The DIIMFP and IIMFP outside the solid are
entirely due to surface excitations, whereas the DIIMFP
and IIMFP inside the solid are due to contributions from
surface and volume excitations. The DIIMFP and IIMFP
both decrease with increasing electron energy. The formu-
las derived in the present work can be applied to any
charged particle and to a cylindrical system of arbitrary
materials. Information on electron inelastic interactions
with cylindrical structures is essential in the applications
of electron surface spectroscopies, involving nanowires
and microcapillaries.
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