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Abstract

A continuous time Markov chain observed on a system following the dynamic behavior of an alternating renewal

process is studied. This alternating renewal process is assumed to have exponentially distributed durations. The limiting

behavior of the process is examined. Examples of applications are given.

r 2005 Published by Elsevier B.V.
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1. Introduction

Continuous time Markov chains are often applied in different areas of sciences including epidemiology,
manufacturing systems and queueing networks. Alternating renewal processes are frequently observed natural
phenomena, but do not appear often in the literature. Their practical applications include electric power
system (Mortensen, 1990) and healthy and sick periods (Ramsay, 1984). Some of their special cases, such as
machine breakdowns or servers on vacation, have been extensively studied with the queueing process (see, for
example, Doshi, 1990). There have not been many studies on continuous time Markov chains observed from a
system following an alternating renewal process.

In this paper we consider a stochastic process X(t) resulted from a continuous time Markov chain having
a discrete state space f0; 1; 2; . . .g, observed on a system which consists of a sequence Y ¼ fY

ð1Þ
1 ;

Y
ð2Þ
1 ; . . . ;Y

ðrÞ
1 ;Y

ð1Þ
2 ;Y

ð2Þ
2 ; . . . ;Y

ðrÞ
2 ; . . . ;Y

ð1Þ
n ;Y

ð2Þ
n ; . . . ;Y

ðrÞ
n ;Y

ð1Þ
nþ1 . . .g of mutually independent, exponential ran-

dom variables with EðY ðiÞn Þ ¼ 1=ai, for i ¼ 1; 2; . . . ; r, and n ¼ 1; 2; . . .. This system is a special case of an

alternating renewal process of r stages (see, for example, Karlin and Taylor, 1975, p. 207). In different stages
we assume this continuous time Markov chain may have different parameters but otherwise preserves its
properties as the original chain. In other words, for a realization of Y, X(t) is a piecewise continuous time
Markov chain. A typical example of this model is an M/M/1 queue with service breakdown as described in
e front matter r 2005 Published by Elsevier B.V.
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Avi-Itzhak and Noar (1963) or a more general model—a Markov modulated queue proposed by Regterschot
and de Smit (1986). Note that the model discussed in this paper belongs to the family of switching processes,
which can be found in Anisimov (1977) or the more recent related work, for example Anisimov (1995).

In Section 2, we study the limiting behaviors of this process and the embedded processes observed at the
beginning of each stage. The limiting probability distribution of the whole process is derived in terms of
stationary probabilities of the embedded processes. In Section 3, we apply these results in two models to
calculate their limiting probabilities. One application leads to the result that has not been previously
investigated. The other application confirms a well-known result.

2. Limiting probability distribution

Given a realization of Y, let PiðtÞ denote the transition probability matrices of X( � ) for duration t when the

system is on stage i; i ¼ 1; 2; . . . ; r. We shall consider the embedded processes X ðiÞn defined by X ðiÞn ¼

X ð
Pn¼1

l¼1

Pr
k¼1 Y

ðkÞ
l þ

Pi¼1
k¼1 Y ðkÞn Þ where i ¼ 1; 2; 3; . . . ; r, and n ¼ 1; 2; 3; . . .. Thus, X ðiÞn is the state of X(t) at the

beginning of stage i. Assume that the limiting probability vectors of X ðiÞn exist, for i ¼ 1; 2; 3; . . . ; r, and be

denoted by the row vectors pðiÞ: Then a standard result on Markov chains gives, for i ¼ 1; 2; 3; . . . ; r,

pðiÞAiAiþ1 � � �ArA1 � � �Ai�1 ¼ pðiÞ, (1)

where the matrices Ai ¼
R1
0 PiðtÞai expð�aitÞdt.

Lemma. If the limiting probabilities of X ð1Þn exist, then

pðjÞ ¼ pðiÞ
Yj�1
k¼i

Ak for 1pipjpr

and

pðjÞ ¼ pðiÞ
Yr

k¼i

Ak

 ! Yj�1
k¼1

Ak

 !
for 1pjoipr.

Proof. Eq. (1) along with the existence of pð1Þ guarantees existence pðjÞ. For the case when i ¼ j, the result
follows immediately from Eq. (1). Without loss of generality, we shall prove for the case when 1piojpr.
Post-multiplying the row vector pðiÞAi � � �Aj�1 � pðjÞ by Aj � � �ArA1 � � �Aj�1 and applying (1) to manipulate the
algebra, one can show that pðiÞAi � � �Aj�1 � pðjÞ is a row eigenvector of the matrix Aj � � �ArA1 � � �Aj�1

associated with the eigenvalue 1. Since, from (1) pðjÞ is also a row eigenvector associated with the same
eigenvalue, we have

pðiÞAi � � �Aj�1 � pðjÞ ¼ cpðjÞ (2)

for some constant c. Since pðiÞAi � � �Aj�1 and pðjÞ are both vectors of probability distributions, post-multiplying
both sides of (2) by the column vector 1 ¼ ð1; 1; . . . 1Þ0, algebraic manipulations lead to c ¼ 0. The proof of the
Lemma is completed. &

If for i ¼ 1; 2; 3; . . . ; r, the transition matrix PiðtÞ has an infinitesimal matrix Qi, then we can calculate Ai in
(1) as

Ai ¼

Z 1
0

expðQitÞai expð�aitÞdt. (3)

Note that, if the absolute values of all eigenvalues of Qi are less than ai, then (3) can be further simplified as

Ai ¼
X1
n¼0

Qi

ai

� �n

¼ I �
Qi

ai

� ��1
.
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It is clear that the non-lattice times
Pn�1

l¼1

Pr
k¼1 Y

ðkÞ
l ; n ¼ 1; 2; 3; . . . at the beginning of a new cycle form

multidimensional renewal times for X(t). Furthermore, the cycle times Ci ¼ Y
ð1Þ
i þ Y

ð2Þ
i þ � � � þ Y

ðrÞ
i , i ¼

1; 2; 3; . . . have a common finite expected length and are independent of the starting state. If their embedded

Markov chain X ð1Þn ; n ¼ 1; 2; 3; . . . is ergodic with stationary distribution pð1Þ, by the multidimensional renewal

theorem, the limiting distribution, of X(t) exists. Let q ¼ ðrjÞ
1
j¼1 denote this limiting distribution. Then the

stationary distribution of X(t) can be expressed as

rj ¼
EðW 1jÞ

EðC1Þ
, (4)

where W 1j is the duration that the process X(t) spent at j in the first cycle when it starts with pð1Þ.

Eq. (4) and algebraic manipulations lead to

q ¼
1Pr

k¼1
1
ak

Xr

k¼1

pðkÞ
Z 1
0

Z t

0

PkðsÞdsake
�akt dt

" #

¼
1Pr

k¼1
1
ak

pð1Þ
Xr

k¼1

Yk�1
i¼1

Z 1
0

PiðtÞaie
�ai t dt

 ! Z 1
0

Z t

0

PkðsÞds

� �
ake
�akt dt

� �" #

¼
1Pr

k¼1
1
ak

pð1Þ
Xr

k¼1

Yk�1
i¼1

Z 1
0

PiðtÞaie
�ai t dt

 ! Z 1
0

PkðsÞe
�aks ds

� �" #

¼
1Pr

k¼1
1
ak

pð1Þ
Xr

k¼1

1

ak

Yk

i¼1

Ai

 !" #
, ð5Þ

where the matrices Ais are defined in (1). Note that, in (5) the first equality follows from (4) and the fact that
the average time the process spent in j is equal to the weighted average of the average time the process spent in
j on each stage of the system. The second equality is a direct application of the Lemma. The third and fourth
equalities follow the algebraic calculations and the definition of Ais. Eq. (5) is derived when the process is
considered to start at the beginning of stage 1.

Similarly, if we observe the process starting at the beginning of stage i, i ¼ 1; 2; 3; . . . ; r, then we have

q ¼
1Pr

k¼1
1
ak

pðiÞ
Xr

k¼i

1

ak

Yk

j¼i

Aj

 !
þ
Xi�1
k¼1

1

ak

Yr

j¼i

Aj

 ! Yk

j¼1

Aj

 !" #
. (6)

From (5), (6) and the Lemma, we can state the following theorem.

Theorem 1. If the limiting probabilities of X ð1Þn exist, then

q ¼
1Pr

k¼1
1
ak

pðiÞ
Xr

k¼i

1

ak

Yk

j¼i

Aj

 !
þ
Xi�1
k¼1

1

ak

Yr

j¼i

Aj

 ! Yk

j¼1

Aj

 !" #
¼

1Pr
k¼1

1
ak

Xr

k¼1

1

ak

pðkþ1Þ

 !

for i ¼ 1; 2; 3; . . . ; r, where, for notational convenience pðrþ1Þ ¼ pð1Þ.

Remark 1. Under the conditions stated in Theorem 1, if P1ðtÞ ¼ P2ðtÞ ¼ � � � ¼ PrðtÞ, then q ¼ pð1Þ ¼ pð2Þ ¼

� � � ¼ pðrÞ: This is also intuitively true, since the process in this case is independent of the underlying system.

Remark 2. Although X(t) is Markov on any given stage and the sojourn time on each stage is exponentially
distributed, the process may not preserve the Markov property.

3. Applications

In this section, we apply the results in Theorem 1 to two examples available in the literature.
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Example 1. Consider an M/M/1 queue with server breakdown and customer discouragement. Thus, the
system alternates between working and repair periods; each follows an exponential distribution. During the
working periods, the system operates as an M/M/1 queue with arrival rate l and service rate m, and during the
breakdown periods, no customers are served and the customers present will be discouraged and leave with a
constant probability y ¼ 1� d. In addition, if a breakdown occurs at time T, then the number of customers
left in the system at time Tþ is assumed to follow a binomial distribution B(X(T), d). This example is to
calculate the limiting probability distribution r. The necessary and sufficient conditions of its existence, along
with other characteristics of this process have been proposed and examined by Chan et al. (1993). The limiting
probability distribution of the whole process has not been previously investigated.

We shall first consider this problem as it were observed on a three-stage alternating renewal process, namely
the working period, the occurrence of breakdown period and the repair period. The duration of each period is
assumed to follow an exponential distribution with mean 1=a1, 1=a2 and 1=a3, respectively. After applying
Theorem 1, we shall approach this problem by letting 1=a2 converge to 0.

For a fixed a2, Theorem 1 leads to

r ¼
1

1
a1
þ 1

a2
þ 1

a3

1

a1
pð1ÞA1 þ

1

a2
pð1ÞA1A2 þ

1

a3
pð1Þ

� �
,

where we adopt the corresponding notation as previously defined. In this example, A1 ¼ ½aij� and A2 ¼ ½bnk�

can be calculated as follows.
From Eq. (1), we have aij ¼

R1
0 PijðtÞa1 expð�a1tÞdt; where PijðtÞ is the transition probability from state i to

state j for an M/M/1 queue. For i ¼ 0, Kleinrock (1975, p. 77) provides the explicit formula of P0jðtÞ and hence
a0j. Observing that

P00ðtÞ ¼

Z t

0

l expð�ltÞP10ðt� tÞdtþ
Z 1

t

l expð�ltÞdt

¼

Z t

0

l expð�lðt� tÞÞP10ðtÞdtþ e�lt

¼ le�lt

Z t

0

expðltÞP10ðtÞdtþ e�lt

we can obtain eltP00ðtÞ ¼ l
R t

0 l expðltÞP10ðtÞdtþ 1 and thus P10ðtÞ ¼ P00ðtÞ þ ð1=lÞP000ðtÞ. Similarly, one can
calculate P1jðtÞ ¼ P0jðtÞ þ ð1=lÞP00jðtÞ and Piþ1;jðtÞ ¼ ð1=lÞðP0ijðtÞ þ ðlþ mÞPijðtÞ � mPi�1;jðtÞÞ, for iX1. From
these iterative formulas of PijðtÞ and the relationshipZ 1

0

P0ijðtÞa1 expð�a1tÞdt ¼ a1e�a1tPijðtÞ
1

0

���� þ

Z 1
0

a21 expð�a1tÞPijðtÞdt ¼ a1dij þ a1aij ; iX1,

one can derive the iterative formulas for aij as a1j ¼ a0j þ ð1=lÞða1dij þ a1a1jÞ and aiþ1;j ¼ ð1=lÞ
ða1dij þ a1aij þ ðlþ mÞaij � mai�1;jÞ, iX1, where dij is the Kronecker delta. For the computation of bnk, we
create a surrogate second stage renewal time, called Y ð2Þn;m that satisfies the assumption of Theorem 1 and has
the same limiting behavior as of our occurrence of breakdown period. Let

ðQ2;mÞij ¼
m

i

j

 !
ð1� yÞjyi�j ; joi

�mðð1� ð1� yÞiÞ; j ¼ i

8>><
>>:

and Y ð2Þn;m ¼ min ðthe first jump time after t; VmÞ, where t ¼
Pn�1

l¼1

P3
k¼1Y

ðkÞ
l þ Y ð1Þn is the beginning of the

second stage, X ðtÞ ¼ i and Vm is exponentially distributed with rate mð1� yÞi. Then Y ð2Þn;m has an exponential
distribution with rate m. As m!1, Y ð2Þn;m converges to the degenerate distribution and behavior like our
occurrence of breakdown period. For any m, Eq. (1) implies bnk ¼ ð

n
k
Þdk
ð1� dÞn�k; for kpn and bnk ¼ 0

otherwise. Although Y ð2Þn;m depends on X(t), the property of convergence to a degenerate distribution vanishes
this dependence.
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Now, letting a2 ¼ m!1, we have

q ¼
1

1
a1
þ 1

a3

1

a1
pð1ÞA1 þ

1

a3
pð1Þ

� �
. (7)

Note that the probability generating function (p.g.f.) H(s) of the limiting probability distribution p(1) at the
beginning of the working period can be obtained by using the results of Chan et al. (1993), in which the p.g.f.
at the beginning of each working period is provided as

EðzX n X 0Þ ¼
Yn

j¼1

bjðzÞ

" #����� ½anðzÞ�
X 0 þ

Xn�1
i¼0

dnði; zÞ
Yi

j¼1

bjðfÞ

" #
½aiðzÞ�

X 0 ,

where

aiðzÞ ¼ dizþ 1� di; biðzÞ ¼ �a1a3aiðzÞ=fl½ða3 þ lyð1� ai�1ðzÞÞÞðaiðzÞ � fÞðaiðzÞ � cÞ�g

and

dnðn� i; zÞ ¼
Yi�1
j¼1

bjðfÞ

" #
ciðfÞ þ

Xi�1
m¼1

dnðn� i þm; zÞ
Ym�1
j¼1

bjðfÞ

" #
cmðfÞ.

In the last equation, ciðzÞ ¼ �a1a3fð1� aiðzÞÞ=flð1� fÞ½ða3 þ lyð1� ai�1ðzÞÞÞðaiðzÞ � fÞðaiðzÞ � cÞ�g.
Hence, the p.g.f. GðsÞ of the limiting probability distribution r of the whole process can be calculated as
follows.

Let s ¼ ðs0; s1; . . . ; sn; . . .Þ then GðsÞ ¼
P1

k¼0 rksk ¼ qs0 and HðsÞ ¼ pð1Þs0. From (7) we can express GðsÞ as

GðsÞ ¼ qs0 ¼
1

1
a1
þ 1

a3

1

a1
pð1ÞA1s0 þ

1

a3
pð1Þs0

� �
. (8)

Using the conventional notation Pð1ÞðtÞ ¼ ðpjkðtÞÞ for the transition matrix of the working period and assuming
the arrival rate for the M/M/1 queue is l and the service rate is m, then we have

½A1�jk ¼ ajk ¼

Z 1
0

pjkðtÞa1 expð�a1tÞdt

� �
.

Furthermore,

pð1ÞA1s
0 ¼

X1
j¼0

Z 1
0

X1
k¼0

pjkðtÞs
k

" #
a1 expð�a1tÞdt

" #
p
ð1Þ
j

¼ a1
X1
j¼0

sjþ1 � ð1� sÞjjþ1ð1� jÞ�1

�lðs� jÞðs� ZÞ

� �
pð1Þj

¼ a1
sHðsÞ � ð1� sÞ j

1�j HðjÞ

�lðs� jÞðs� ZÞ
, ð9Þ

where

j ¼
ðlþ mþ a1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ a1Þ

2
� 4lm

q
2l

and

Z ¼
ðlþ mþ a1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ a1Þ

2
� 4lm

q
2l

are from the Laplace transform of the p.g.f. of the M/M/1 queue size. The derivation of this Laplace transform
can be found in, for example Bailey (1964).
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Note that the first equality in (9) follows the definition of A1 and the second equality is the result of Fubini’s
theorem. The third equality comes from the expression of the Laplace transform of the p.g.f. of the M/M/1
queue size and the last equality is a routine algebraic manipulation. Combining (8) and (9), we obtain the p.g.f.
of the limiting probability distribution r of the whole process as

GðsÞ ¼
1

1
a1
þ 1

a3

sHðsÞ � ð1� sÞ j
1�j HðjÞ

�lðs� jÞðs� ZÞ
þ

1

a3
HðsÞ

 !
.

Example 2. Consider a G/M/1 queue with the mean inter-arrival time 1/l, and the mean service time 1/m. One
can define a two-stage alternating renewal process embedded from this queue. The first stage is the period
between two consecutive arrivals and the second stage is the instant that the new arriving customer joins the
system. Mathematically, the second stage will be treated as an exponentially distributed period with mean
converging to 0. Assuming the distribution of the inter-arrival time is G(t), then, in this alternating process
F1ðtÞ ¼ GðtÞ and F2ðtÞ ¼ 1� e�a2t with a2!1. If the G/M/1 queue is observed on this alternating renewal
process, then the vector of limiting probabilities of queue size seen by the new arrivals, will be equal to pð1Þ.
Similar to the techniques presented in Example 1, we can obtain the limiting probability distribution q.

Let pð1Þ ¼ ðpð1Þ0 ;p
ð1Þ
1 ;p

ð1Þ
2 ; . . .Þ; then it is known that pð1Þk ¼ ð1� bÞbk; k ¼ 0; 1; 2; . . . where

b ¼
R1
0

e�mtð1�bÞ dGðtÞ, (see, for example, Ross, 1996, p. 179–180). Hence, (5) implies

q ¼ pð1Þ
R1
0

R t

0 PðsÞdsdGðtÞ
1
l

,

where

PðsÞ ¼ ðPijðsÞÞ with Pi;iþ1�jðsÞ ¼ e�ms ðmsÞj

j!
; j ¼ 0; 1; 2; . . . ; i; and Pi;0ðsÞ ¼

X1
k¼iþ1

e�ms ðmsÞk

k!

(as presented by Ross (1996, p. 165)).
Thus, for kX1 we have

rk ¼ l
Z 1
0

Z t

0

X1
i¼0

pð1Þi PikðsÞdsdGðtÞ ¼ l
Z 1
0

Z t

0

X1
i¼k�1

ð1� bÞbi e
�msðmsÞiþ1�k

ði þ 1� kÞ!
dsdGðtÞ

¼ l
Z 1
0

Z t

0

X1
m¼0

ð1� bÞbmþk�1 e
�msðmsÞm

m!
dsdGðtÞ

¼ lð1� bÞbk�1

Z 1
0

Z t

0

e�ðm�bmÞs dsdGðtÞ

¼ lð1� bÞbk�1

Z 1
0

1� e�ðm�bmÞt

m� mb
dGðtÞ

¼ lð1� bÞbk�1 1� b
m� mb

¼
l
m
ð1� bÞbk�1

which coincides with the results in Kleinrock (1975, p. 251).
Note that the same limiting probabilities for the G/M/m queue can also be calculated using this method.

The expressions forPijðtÞ and pð1Þ are different from those in the G/M/1 queue. Their recursive form can be
found in Kleinrock (1975, p. 254).
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