RADIO SCIENCE, VOL. 41, RS1004, doi:10.1029/2005RS003262, 2006

Correlation between a negative group velocity
and a slanted stop band in two-dimensionally

periodic structures

R. B. Hwang

Department of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan

Received 28 February 2005; revised 15 July 2005; accepted 7 November 2005; published 10 February 2006.

[11 In this paper, we employed the rigorous mode-matching method to carry out the
calculation for the scattering characteristics of a two-dimensionally periodic structure
made up of metallic rectangular cylinders. From the scattering characteristics, the
interesting phenomenon of an anomalous dispersion was observed to possess negative
group velocities. In order to understand the underlying physics involved, we begin with
the investigation of the band structure associated with the corresponding structure of
infinite extent; thereby, the band structures are classified into two types: vertical stop band
that is mainly due to the effect of periodicity in a single direction and slanted stop
band that is due to the combined effects of periodicities in two directions. Notably, the
negative group velocity (delay) within the slanted stop band of a two-dimensional
periodic structure was directly related to the experimentally measurable scattering

characteristics of the finite structure.
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1. Introduction

[2] The class of periodic structures has been a subject
of continuing interest in the literature. The main effort in
the past had been on the scattering and guiding of waves
by one-dimensionally periodic structures [Rotman, 1951;
Elliott, 1954]. Recently, considerable attention has been
focused on the study of wave phenomena associated with
two-dimensional (2-D) ones, particularly in conjunction
with the properties of photonic band gap [Fan et al.,
1996; Sigalas et al., 1995]. Since wave propagation is
forbidden in the stop band, this allows us to mold the
power flow or to inhibit spontaneous emission. Conse-
quently, many novel dielectric (optical) waveguides or
cavities were developed by using the photonic band gap
material. For example, the waveguide with 2-D periodic
structures as its walls was designed to make the waves
bounce back and forth around the channel [Mekis et al.,
1999; Hwang and Peng, 2003].

[3] In addition to the properties of strong reflection in
the stop band, the anomalous refraction, such as ultra-
refraction (or negative refraction), was found to exist in
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such a class of 2-D periodic structures, especially in the
vicinity of the band edge [Enoch et al., 2003; Boris et al.,
2000; Notomi, 2000]. Many researchers took advantage
of these properties to design lenses with a very short
focal length or to confine emission in a narrow lobe
[Gralak et al., 2000; Boris et al., 2000]. It is noted
that the previous research works were made under the
condition that the spatial periods of the photonic band
gap materials are of the order of operation wavelength.

[4] In addition to the behavior of wave reflection in
stop band associated with a photonic band gap structure,
the negative and infinite group velocities were experi-
mentally observed in bulk hexagonal two-dimensional
photonic band gap crystals within the band gap in the
microwave region [Solli et al., 2003]. On the basis of
their experimental studies, they found that the crystal
exhibits anomalous dispersion within the band gap,
passing through zero dispersion at the band edges. In
addition, the negative phase and group velocities, along
with positive group and negative phase velocities (i.c.,
backward waves), were theoretically investigated by
using a simple model to characterize the property
of negative refractive index (NRI) of a metamaterial
[Mojahedi et al., 2003]. Recently, the same group had
extended the work to design a medium which not only
possesses NRI properties but also exhibits negative
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group velocities (NGV). In their invention, a resonant
circuit is embedded within each loaded transmission line
unit cell, resulting in a region of anomalous dispersion
for which the group delay is negative [Siddiqui et al.,
2003].

[5] In a recent publication [Hwang, 2004], we have
investigated the relationship between the scattering char-
acteristic and the band structure of a two-dimensionally
electromagnetic crystal containing a metal and dielectric
medium. Therein, we have demonstrated the relationship
between the transmission spectrum and the band struc-
ture of a 2-D periodic structure. Specifically, two types of
stop band were clearly identified: one is referred to as the
vertical type and the other as the slanted type. The former
consists of the commonly known stop bands that are due
to the effect of one-dimensional periodicity; thus each
vertical stop band has a constant phase over the entire
stop band. On the other hand, the later consists of the
stop bands that are slanted at an angle on the £,-3
diagram (a part of the standard Brillouin diagram) and
that are attributed to the combined effect of the perio-
dicities in two dimensions. Notably, the 1-D periodic
structure can also support the slanted stop band. The
dispersion analysis of the shielded Sievenpiper structure
[Elek and Eleftheriades, 2004] has been proved to
support the slanted stop band, caused by the contradirec-
tional coupling between the fundamental backward-wave
harmonic and an underlying forward parallel-plate mode.

[6] In this paper, we present a thorough investigation
of a 2-D periodic structure that is composed of rectan-
gular metallic cylinders immersed in a uniform medium.
Since the shape of the metallic cylinders considered here
is rectangular and the material is assumed to be a perfect
electric conductor, the electric fields inside the metal
cylinder are zero, and those outside the metal region are
expressed in terms of the superposition of waveguide
modes (parallel-plate waveguide modes). These wave-
guide modes inherently satisfy the electromagnetic
boundary condition; therefore this could speed up the
numerical convergence for the tangential electric and
magnetic fields. Besides, in the numerical computation,
all the mathematical procedures resort to the matrix
operation; the dimensions of these matrices are propor-
tional to the number of space harmonics (waveguide
modes) truncated. Thus the speed of computation and
required memory space directly relate to the number of
space harmonics. To ensure the accuracy of numerical
results, we have carried out convergence tests for both
the scattering and dispersion analyses against the number
of space harmonics (or waveguide modes). We found
that a small number of space harmonics is needed to
achieve the power conservation criterion.

[7] The mode-matching method utilized in this paper
could have the advantages as described previously.
However, for the metallic cylinders with curved profile,
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such as circular ones, the present method remains to be
improved. Although the staircase approximation could
be used to partition the curved profile into a stack of
rectangular layers, this would make the mathematical
formulation complicated, and the artificial edges caused
by the piecewise approximation would result in extra
edge diffraction (especially in higher-frequency opera-
tion). The method of Green’s function based on lattice
sums is more suitable for such type of problems [Botten
et al., 2000].

[8] Concerning the mathematical procedures for this
research work, first, the scattering of a plane wave by a
structure of finite thickness was analyzed with particular
attention directed to the variation of the group velocity
(index) in terms of the phase angle of the transmittance
spectrum. Then, we calculated the dispersion character-
istics of a structure of infinite extent, including the phase
constant (real part) and attenuation constant (imaginary
part), as plotted in the form of the k,-3 diagram. By
comparison between the scattering and dispersion char-
acteristics, we have observed the negative group delay to
exist in the region of slanted stop bands but not in the
vertical ones.

[o] This paper is organized as follows. In section 2, we
first introduce the structure configuration and incident
conditions for the 2-D periodic structure under consid-
eration. In section 3, we outline the mathematical for-
mulations to resolve such a 2-D boundary value problem.
The method of mode matching and the Floquet solutions
were employed to transform the electromagnetic field
problem into a representation of transmission line net-
work. Moreover, the generalized scattering matrix repre-
sentation and the Bloch condition were utilized to obtain
a generalized eigenvalue problem for determining the
dispersion relation of waves propagating in such an
infinite 2-D periodic medium. The scattering character-
istics, including the reflectance and transmittance of each
space harmonic, were also calculated. In section 4, we
carried out numerous numerical calculations on the
group delay via the transmittance of plane wave at an
oblique incidence. Moreover, the dispersion relation of a
2-D periodic medium was calculated and was demon-
strated to verify the negative group velocity in the
slanted stop band region. In section 5, we conclude this
paper by making some remarks.

2. Description of the Problem

[10] The structure under consideration is a 2-D
periodic structure with finite thickness. As shown in
Figure la, the rectangular metal rods are immersed in a
dielectric host medium. The array of rods repeats itself
infinitely in the x direction but is finite in the y direction.
Such a structure is assumed to be uniform along the z
direction and can be regarded as a finite stack of 1-D
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Figure 1. Structure configuration of a 2-D periodic structure made up of a stack of 1-D periodic
layers: (a) 2-D periodic structure and (b) 1-D periodic layer.
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metallic periodic layers, each consisting of metallic rods
placed periodically along the x direction. The metal rods
are taken as perfect electric conductors (PECs). We
highlight the unit cell of the structure and specify its
geometrical parameters, as shown in Figure 1b. The
width and thickness of the metal rods are w and 4, while
the periods along the x and y directions are a and b,
respectively. The relative dielectric constant of the host
medium is €,. Assuming that a plane wave is obliquely
incident from the air region and has no field variation
along the z direction, we have a scalar boundary
value problem that can always be formulated in terms
of the transverse electric or transverse magnetic waves
separately.

3. Method of Analysis

[11] The mathematical analysis for such type of prob-
lems was developed by many researchers; for example,
the numerical method containing the finite difference
method [Maystre, 1994], the finite difference time domain
method [Mekis et al., 1999], and the eigenmode method
[Noponen and Turunen, 1994] were employed to carry out
the calculation for the scattering or guiding characteristics
of the photonic crystals (or 2-D periodic structures) of
finite thickness. As to the analytical formulation, the
Green’s function based on lattice sums was employed to
calculate the scattering characteristics of 2-D photonic
crystals, consisting of an array of circular metallic cylin-
ders of infinite extent [Nicorovici and McPhedran, 1994;
Botten et al., 2000]. In this paper, we utilized the rigorous
mode-matching method and the Floquet solutions to
formulate such a 2-D boundary value problem [Elliott,
1954; Hwang, 2004]. The outline for the analysis proce-
dure will be illustrated in the next paragraph.

[12] Since the metal cylinder arrays are taken as PECs,
the electromagnetic fields exist only in the regions
between two neighboring rods and can be expanded in
terms of the parallel-plate waveguide (PPWG) modes,
which explicitly satisfy the boundary conditions on their
surfaces. On the other hand, those in the uniform region
are expanded in terms of space harmonics, each propa-
gating as a plane wave. After imposing the continuity
condition on the tangential field components across the
interface between 1-D periodic and uniform layers, we
can obtain an input-output relation in the form of the
scattering matrix for the 1-D grating. The result so
obtained for a single layer can then be cascaded for the
analysis of both the scattering characteristics of the finite
stack of 1-D metal gratings and the band structure of the
2-D periodic medium. For instance, the scattering char-
acteristics of the finite stack of 1-D metal periodic layers
can be determined by successively using the well-known
combination rule for each scattering matrix. For the band
structure calculations, one can apply the Bloch condition
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(periodic boundary condition) along the y direction to
establish the relationship of the wave amplitudes at the
two (input and output) interfaces of the unit cell to form a
generalized eigenvalue problem. Each eigenvalue, in
general, represents a complex propagation constant of
the wave propagating in the medium, with the real and
imaginary parts standing for the phase and attenuation
constants along the y direction. Upon determining the
eigenvalues, the corresponding eigenvector can be
obtained, and thus the field profile in the structure was
totally resolved. Since the detail mathematical formula-
tion was well developed in the literature, in section 3.1,
we only list some important equations for easy reference.

3.1. Scattering Matrix for a 1-D Metal
Periodic Layer

[13] Referring to Figure 1b, a 1-D metal grating of
finite thickness is connected to a uniform medium with
the relative dielectric constant €,. The region between
two metal rods can be regarded as a PPWG. The
tangential electric and magnetic fields inside this region
can be expressed in terms of the superposition of the
PPWG modes, defined below:

E(xy) = 3 7(0)6,(x)

n

(1a)

ﬁ,(x,y) = Z in (y)d)n (x)

n

2
\/7$inm, n=1,2,3,....
- _ w w

<|>n(x) -
Y,  NTX
Jn os—=
w
. _J 1, forn=0
with vy, = {2, forn#0°
[14] In the expressions above, the functions v,(y) and

i,(») are the modal voltage and current of the nth PPWG
mode, and they satisfy the transmission line equations

(1b)

(lc)
n=0,273,....

) ) ) )

dva(y) T =3
= —jkypZ,iy, 2
) () (22
di, (y) T v
dy = —jkynYnVn (») (2b)
T = k2, — (") 2
G

4 of 15



RS1004

Z, =17, = %y”
yn TM

b
WEHE

(2d)

where Z, (Y,) is the characteristic impedance (admit-
tance) of the nth waveguide mode propagating along the
v direction in the PPWG region.

[15] On the other hand, the field in the uniform region
(between two adjacent 1-D metal periodic layers) can be
expressed as the superposition of the complete set of
space harmonics, each appearing as a plane wave, given

by

E(x,y) = > va(»)e,(x) (3a)

Ht(xvy) = Zin(y)@n(x) (3b)

@,(x) = \/Lae*jk-‘”x, n=0,£1,£2,43,....  (3¢c)
kxn = kx + nzg (3d)

Likewise, the functions v, (v) and i, (y) are the modal
voltage and current of the nth space harmonic, and they
satisfy the transmission line equations

dv, (y)

d—y = _jkynZnin (y) (43)
din(y) .
dy = _Jkyn ann(y) (4b)
2 2
b = \/ ke, — <kx + n7“> (4c)
WL,
TE
kyn ’
Zy=1/Y, =4 | (4d)
2 TM
WELE

where Z,(Y,,) is the characteristic impedance (admittance)
of the nth space harmonic propagating along the y
direction in the uniform region.

[16] On the basis of the electromagnetic boundary
conditions, the tangential electric and magnetic fields
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must be continuous across the step discontinuities. After
matching the tangential field components at the interface
by using the overlap integral between the eigenfunctions
in the uniform and PPWG regions, we obtain a coupling
matrix which defines the relationship between the
eigenmodes in respective regions, and what follows is
the scattering matrix defined at that interface. As shown
in Figure 1b, we take the nth 1-D periodic layer as an
example to illustrate. Since each 1-D periodic layer
contains two step discontinuities and a finite length
uniform transmission line in the parallel-plate region,
the scattering matrix of the 1-D periodic layer is obtained
by cascading these three scattering matrices, yielding

u(n+l) :S(”) d(n+1)

d(”) u(")
where scattering matrix S“ is a full matrix whose
elements are dependent on the structure parameters as

well as the incident conditions and u® and d” denote the
upward and downward propagating waves, respectively.

(5)

3.2. Scattering Characteristics of a Finite
2-D Periodic Structure

[17] As described in section 3.1, the 2-D periodic
structure is considered as the finite stack of 1-D periodic
layers. Namely, if the input-output relation of the 1-D
periodic layer is determined, the scattering characteristic
of the 2-D periodic structure is the cascade of those 1-D
ones. This is the so-called building block approach,
which was commonly used in microwave engineering.
This approach possesses the advantage that we can
merely replace the input-output relation of the 1-D
periodic layer without reformulating the whole problem
when one of the 1-D periodic layer changes its structure
parameters. Thus we can synthesize an arbitrary com-
posite structure, containing various lattice patterns but
with the same period along the x direction, without any
difficulty.

[18] We assume that the 2-D periodic structure con-
tains N 1-D periodic layers. The scattering matrix for
each 1-D periodic layer is denoted as Sy, where the index
k is running from 7 to N. The dimension of each matrix is
M by M, where M is the number of truncated space
harmonics (or number of parallel-plate waveguide
modes). Notice that the 1-D periodic structures under
consideration here may have different configurations and
structural parameters, but they must have the same
period in the x direction. In any case, the whole scatter-
ing matrix of a structure can be obtained by using the
combination rule of scattering matrices (defined as a
circled cross), which is well known in microwave
engineering [Hall et al., 1988]:

S=85®5®S8...08...08y (6)
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The scattering matrix defined above relates the upward
and downward propagating waves at the input surface
y = y; and output surface y = y,, given below:

u(yo)\ _ (S S\ (d0w)

d(y;) Sar S )\ u(y)
Assuming that a plane wave is incident onto the input
surface and there is no plane wave incoming from the

output region, we have d(y,) = 0, and then the
transmission and reflection responses are given by

(7)

u(y,) = Sppu(y;)
d(y;) = Snu(y;)

(8)
©)

where u(y;) is the voltage vector of incident plane
wave and d(y;) and u(y,) are the reflected and
transmitted voltage vectors, respectively.

3.3. Dispersion Relation of Wave Propagating in
the 2-D Periodic Medium

[19] In addition to the scattering characteristics for a
finite thickness 2-D periodic structure, in this section, we
would like to investigate the dispersion relation of the
waves propagating in a 2-D periodic medium. According
to Bloch’s condition, a wave traveling through a period
b, as shown in Figure 1b, experiences a phase difference
(M), that is,

u ) = \u® (10a)

dth = xd™ (10b)

By substituting (10a) and (10b) into (7), we obtain the

following matrix equation:
—Si u
_521>(d<n) (11)

S, O u® N 1
Sy —1)\a"® )~ "\o

Equation (11) is a generalized eigenvalue problem with
the form Ax = \Bx, which can be solved immediately by
conventional numerical packages. Such an eigenvalue
problem may be cast into a system of linear homo-
geneous equations, and the condition for the existence of
a nontrivial solution requires the vanishing in the
determinant of the coefficient matrix. This yields the
dispersion relation

Sip— N
det
e( S»n

NS

—1+kS21) =0 (12)
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Figure 2. Comparison of the transmittance efficiency
of a 2-D periodic structure containing a metal rod array
among the experimental and numerical results [after
Botten et al., 2000] and our numerical results using the
mode-matching method.

Here, the eigenvalue X\ represents the phase delay of a
wave traveling through a period along the y direction. It
depends on the propagation constant (k) and the period
b as well and can be written as

X = exp(—jk,b) (13)

[20] So far, we have derived the dispersion relation of
the waves propagating in such a class of 2-D periodic
medium. We have the relationship among the three
parameters k,, k,, and k,, of which any desired parameter
may be determined for a given set of the other two
parameters. For example, if the incident condition is
specified for the component of &, under a certain fre-
quency of operation k,, we can determine the value of &,
by solving the eigenvalue in (11). With k, fixed, the
relationship between k, and £, is referred to as the phase
relation; on the other hand, with £, fixed, the relationship
between k, and k, is defined as the dispersion relation. In
general, k, is a complex number; its real and imaginary
parts represent the phase and attenuation constants of the
wave, propagating along the y direction, respectively.
Similarly, we can also have the value of &, for a given
incident condition k, by exchanging the variable x with y.
Through the rigorous analysis presented so far, we have
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Figure 3. (a) Convergence test for the transmitted and reflected efficiencies versus number of
space harmonics. (b) Convergence test for the dispersion roots of the wave propagations in a 2-D
periodic medium versus number of space harmonics.

derived the phase relation as well as the dispersion and then the field distribution in each region can be
relation of the waves in such a class of 2-D periodic completely determined.

PEC rod array. Furthermore, the field distribution can be
derived from the eigenvector in (11), which defines the
mode amplitudes for the upward and downward propa-
gation waves. Moreover, from (11), we can obtain the [21] To prove the accuracy of the present method, we
field distribution inside the uniform transmission lines, compared our numerical results with those (using

4. Numerical Results and Discussion
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Figure 4. Variation of the transmittance and the group index for the finite 2-D periodic structure
with transverse magnetic polarization and 6;,. = 20°.

Green’s function and lattice sums) in the literature
[Botten et al., 2000], as shown in Figure 2. The structure
under consideration is a square array consisting of seven
metal gratings; the array constant is 6 mm, and the radius
of the circular cylinder is 0.75 mm. Since the metallic
rods are in the shape of circular cylinders in that paper
and our method is based on the rectangular shape of the
metal rods, we take a square rod with the same area as
that of the circular one, that is, w = & = r /%, where r is
the radius of the circular cylinder. We found that the
results agree well even for the ripples of the curve. Note
that in the stop band regions, the results differ a little.
This may be due to the edge effect of the rectangular rod
in the high-frequency range, and then the stop band
behavior is more significant than that of the circular one.

[22] In the following numerical examples, we calculate
the scattering of plane waves by a two-dimensionally
metallic cylinder arrays. Hereafter, we have normalized
all the dimensions to period a along the x direction. The
width of the square cylinder is assumed to be 0.25a. The
number of periods along the y direction is 10.

[23] Figure 3a depicts the convergence test for the
transmitted and reflected efficiencies against the number
of space harmonics employed in the numerical analysis.
We changed the number of space harmonics progres-
sively from 3 to 101 to inspect the variation of transmit-
ted and reflected efficiencies (powers). The incident
angle was assumed to be 0;,. = 20°. The operation
normalized frequency was a/\ = 0.9. In this calculation,
the incident power was normalized to unity for easy

checking of the power conservation criterion. The inci-
dent power must be equal to the sum of the transmitted
and reflected powers (power conservation), since the
metal cylinders were assumed to be lossless (perfect
electric conductors). From Figure 3a, we can observe
that the total power (transmitted plus reflected powers)
actually is equal to unity (the error percentage is less than
107%%). Besides, both the transmitted and reflected
power converge to certain values as the number of space
harmonics is greater 25.

[24] Figure 3b shows the convergence test for the
dispersion relation of the 2-D periodic medium against
the number of space harmonics (modes in parallel-plate
region) employed in the numerical calculation. The
incident angle was assumed to be 0;,. = 20°. To demon-
strate the flexibility of the dispersion roots searching, the
normalized frequency was designated as a/x = 0.75,
which corresponds to the complex roots in the stop band
region. We changed the number of space harmonics
progressively from 3 to 101 to inspect the variation of
the dispersion roots (k, = 3, — joy,). From Figure 3b, it is
obvious that the dispersion roots converge to certain
values as the number of space harmonics is greater than
40.

[25] Prior to demonstrating the numerical results
concerning negative group velocity, we define some
parameters frequently used in the ensuing numerical
examples as follows. When we neglect the end effect
due to the two interfaces at the input and output ports, the
phase constant of the wave propagating in a 2-D periodic
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Figure 5. Unperturbed dispersion

structure is approximated by ¢ = —(L, where ¢ is the
phase angle in radians, 3 is the phase constant, and L is
the total length where the wave propagates through. Thus
the phase velocity could be written as v, = w/3 = —Lw/¢.
On the other hand, the group index n, is defined as the
ratio of C to group velocity v, where C is the speed of
light propagating in vacuum. Moreover, the relation
between the group index and phase angle is written as

1 do
L dk,

ng:

[26] Figure 4 shows the transmittance spectra of the
tangential electric field component of the fundamental
space harmonic n = 0. The amplitude and group index
are shown with respect to the vertical axes in the right-
hand and left-hand sides, respectively. From Figure 4, we
found that there are two strong reflections, denoted by A4
and B, which are due to the stop bands in the two-
dimensionally periodic structure. In the second stop
band, apparently, there is a stronger reflection than that
of the first one. Therefore we know that the second stop
band has a stronger attenuation constant than the former
one. It is interesting to note that the two stop bands have
similar responses in amplitude distribution; nevertheless,
they have distinct responses in the group index. For
instance, in the first stop band region, the group index is
smaller than unity, which means that the group velocity
is superluminal. Besides, in the second stop band, the

03 04 05 06 07

Bya/2m

08 09 1

curves for the 2-D periodic medium.

group index is negative, which contradicts the first one.
Therefore we may conjecture that there definitely exist
some unique physical insights behind the second stop
band. In order to explore the basic physical mechanism
for such an anomalous phenomenon, we will employ the
dispersion relation of wave propagation in a two-dimen-
sionally periodic medium to interpret the underlying
physics.

[27] On the basis of the previous studies [Hwang,
2004], the scattering characteristics of a two-dimension-
ally periodic structure with finite thickness can be
predicted by the dispersion relation of the same structure
but with infinite extent (2-D periodic medium). Before
calculating the rigorous dispersion curves of the 2-D
periodic medium, we first consider a small perturbation
problem; that is, the periodic variations along the x and y
directions tend to zero. Under this assumption, we can
have a simple equation to approximate the dispersion
relation of the space harmonics in the x and y directions,
which is given as

27\ 2
ke+m— | + [k +n
a

where k, and k, are the propagation constants along the x
and y directions, respectively. The indexes m and n,
ranging from negative to positive infinity, are the space
harmonics along the x and y directions. The parameter
g 1s the effective dielectric constant of the medium.
Figure 5 depicts the dispersion curves for the small

27

a

2
> ~ ke (14)
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Figure 6. Exact dispersion curves for the 2-D periodic medium and the strength of transmittance
for the 2-D periodic structure with finite thickness.

perturbation approximation obtained by (14). In this
example, the propagation constant along the x direction
is set to be k, = k,sin20°. The horizontal axis represents
the phase (right-hand side) and attenuation (left-hand
side) constants along the y direction, while the vertical
axis denotes the normalized frequency a/\. The index
pair attached to each curve shows the order of space
harmonic; the first one is for the x direction, and the
second one is for the y direction. For example, the two
straight lines denoted by (m =0, n=0)and (m =0, n =
—1) represent the curves contributed by the 1-D periodic
structure along the y direction only, while the two
hyperbolic curves denoted by (m = —1, n = 0) and (m =
—1, n = —1) attribute to the periods in both the x and y
directions. On the basis of coupled-mode theory, the
intersection of two dispersion curves stands for the phase
matching between two waves. The contraflow or coflow
coupling occurs in the vicinity of intersection points. In
this example, the intersection points marked by circles
and arranged in alphabetical order are mainly due to the
contraflow coupling between two space harmonics. Such
a small perturbation analysis could provide us a basic
understanding of the possible physical consequence
involved in a 2-D periodic structure.

[28] Through the numerical computation, we obtained
the exact dispersion relation of wave propagation in a 2-D

periodic medium. The distribution for the propagation
constant, including the phase (3) and attenuation (o)
constants, against frequency is plotted in Figure 6. The
transmittance spectra for the tangential electric field com-
ponent of the fundamental space harmonic (n = 0) are also
plotted for easy identification of the locations of stop
bands. Recalling the dispersion curves and intersection
points in Figure 5, one can clearly recognize the stop bands
due to the contraflow coupling between space harmonics.
The stop bands denoted by “A” and “C”” are caused by the
contraflow interaction between the space harmonics in the
y direction, which are similar to those in a 1-D periodic
structure. On the contrary, the stop bands denoted by “B”’
and “B’” are due to the combined effect of the periodicities
in both the x and y directions. In addition, by tracing the
transmission spectra, we know that the corresponding
dispersion curve, highlighted by the heavy line, follows
the fundamental space harmonic (m =0, n =0). Along this
dispersion curve, it is interesting to note that the stop band
denoted by “B” is slanted at an angle on the k-3 diagram.
In Figure 6 we compare the transmission spectrum to the
dispersion curve and observe that the regions of strong
reflection in the scattering of the plane do coincide
with the stop bands of the wave propagation in an
infinite medium, and the negative group index occurs
in the slanted stop band region in which the phase
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Figure 7. Distribution of the normalized phase constant versus normalized frequency. The solid
black line is obtained from the exact dispersion relation, and the line with circles is obtained from
the phase of transmittance spectra.
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Figure 9. Distribution of group index against normalized frequency for various thicknesses for

the 2-D periodic structure.

curve has a negative slope. Consequently, it is evident
that in the slanted stop band region, the wave possesses
a negative group velocity. In short, through the calcu-
lation on the dispersion relation of the waves propagat-
ing in a 2-D periodic medium, we prove that the
negative group index is contributed by the slanted stop
band, which is due to the contraflow interaction between
the fundamental space harmonic and the higher-order
space harmonic contributed by the combined effect in
both periodicities.

[29] On the other hand, we calculated the normalized
phase constant by using the phase delay angle of the
transmittance spectra, which is presented in Figure 7.
The real part of the dispersion roots was attached for
easy reference. The normalized phase-constant curve
obtained by the scattering analysis follows that obtained
by the dispersion analysis of the 2-D periodic medium.
In addition, the group index of the transmittance, shown
by the dashed line, has also been calculated and plotted
in Figure 7. One can clearly observe that the NGV indeed
occurs in the slanted stop band region. At band edges,
the group velocity is zero, so the group index must be
infinite. Since the group index is positive outside the
slanted stop band, it must undergo a zero or a pole to
become negative inside. Because the negative group
index does not change sign in the vicinity of the vertical
stop band, it is therefore expected to be positive infinite
at the band edges. On the other hand, observe that the
zero group velocity occurs exactly at the band edges.

Thus we have provided a verification of the negative
group velocity by analysis of both the scattering and
dispersion characteristics of a wave propagating in the
2-D periodic medium. This demonstrates what could
occur in the case of 2-D periodic structures but not in
the 1-D cases.

[30] Figure 8 depicts the variation of unwrapped phase
angle versus normalized frequency for various numbers
of periods along the y direction. From Figure 8, it is clear
that when the thickness of the 2-D periodic structure
increases, the phase delay angle (absolute value)
increases accordingly. On the basis of the approximation
in phase constant (& = —B3L) as already mentioned, it is
easy to recognize that the phase constant (and velocity)
must be positive (3 ~ —Ad/AL). Returning to Figure 7,
we may conclude that the wave, transmitting through the
2-D periodic structure, has positive phase and negative
group velocities (anomalous dispersion) within the
slanted stop band region, while it has positive phase
and group velocities outside the slanted stop band region
(forward wave).

[31] Figure 9 shows the distribution of the group index
against the normalized frequency for three different
thicknesses of the 2-D periodic structure; the numbers
of 1-D periodic layers along the y direction are N = 10,
15, and 20. We could observe from Figure 9 that the
group delay (in absolute value) increases in accordance
with the increase in the thickness of the 2-D periodic
structure. Furthermore, the increase in the number of 1-D
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Figure 10. Unperturbed dispersion curves for a 2-D periodic structure for incident angle (a) 10°,

(b) 15°, (c) 17.5°, (d) 20°, (3) 22.5°, and (f) 25°.

periodic layers only strengthens the attenuation of the
wave in the stop band region. It has an insignificant
effect on the bandwidth of the stop band. It is the reason
why the region with negative group delay retains its
bandwidth for these three cases.

[32] Since the negative group velocity occurs in the
vicinity of the slanted stop band, we could expect it from
the intersection of a straight line and a hyperbolic curve,

as shown in the unperturbed dispersion curves in Figure 5.
In Figures 10a—10f, the unperturbed dispersion curves
with various incident angles were calculated to see their
variations. We chose six cases (incident angle 10°, 15°,
17.5°, 20°, 22.5°, and 25°) to plot their unperturbed
dispersion curves, as shown in Figures 10a—10f. From
Figure 10, we may conjecture that the slanted stop band
(the frequency range with negative group velocity) region
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Table 1. Frequency Range of Negative Group Velocity for Various Incident Angles

Incident Angle,

Normalized Frequency (a/\)

Normalized Frequency (a/\)

deg Start Stop
0.0 1.1930 1.3340
10.0 0.8537 0.8612
15.0 0.7943 0.8270
17.5 0.7685 0.8124
20.0 0.7473 0.7989
22.5 0.7255 0.7877
25.0 0.7043 0.7756
35.0 0.6613 0.7348
45.0 0.6411 0.6786
55.0 0.6480 0.7545
65.0 0.6509 0.7950
75.0 0.6752 0.8410
85.0 0.6996 0.8671

moves toward low normalized frequency as the incident
angle increases.

[33] In addition to the case shown in Figure 4, we have
also calculated some examples with different incident
angles to see the variation on the frequency range of
negative group velocity. For easy comparison, the fre-
quency range of negative group velocity corresponding
to each incident angle is listed in Table 1. From Table 1,
we can observe that the frequency range with negative
group velocity moves toward the low-frequency range as
the incident angle of the plane wave increases.

5. Conclusions

[34] In this paper, we employed the mode-matching
method to carry out the scattering analysis for a finite 2-D
periodic structure containing a metallic cylinder array. We
have found that the negative group delay occurs in the
slanted stop band rather than the vertical stop band.
Furthermore, the dispersion relation of waves propagating
in a 2-D periodic medium was calculated by using the
generalized eigenvalue method. By using the coupled-
mode theory, we have established a close correlation
between the NGV and the slanted stop band resulting from
the combined effect of the periodicities in both the x and
v directions. Since the NGV occurs in the slanted stop
band region, the incident plane wave should experience a
strong reflection. In order to have a practical application
for the NGV property, a 2-D periodic structure may be
built within a gain medium to compensate the reflection
losses.
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