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Abstract—In this paper, the need for the construction of asym-
metric and multiblock space–time codes is discussed. Above the
trivial puncturing method, i.e., switching off the extra layers in
the symmetric multiple-input multiple-output (MIMO) setting,
two more sophisticated asymmetric construction methods are
proposed. The first method, called the block diagonal method
(BDM), can be converted to produce multiblock space–time codes
that achieve the diversity–multiplexing tradeoff (DMT). It is also
shown that maximizing the density of the newly proposed block
diagonal asymmetric space–time (AST) codes is equivalent to
minimizing the discriminant of a certain order, a result that also
holds as such for the multiblock codes. An implicit lower bound
for the density is provided and made explicit for an important
special case that contains e.g., the systems equipped with ���

���� antennas. Further, an explicit scheme achieving the bound
is given. Another method proposed here is the Smart Puncturing
Method (SPM) that generalizes the subfield construction method
proposed in earlier work by Hollanti and Ranto and applies to any
number of transmitting and lesser receiving antennas. The use of
the general methods is demonstrated by building explicit, sphere
decodable codes using different cyclic division algebras (CDAs).
Computer simulations verify that the newly proposed methods
can compete with the trivial puncturing method, and in some cases
clearly outperform it. The conquering construction exploiting
maximal orders improves upon the punctured perfect code and
the DjABBA code as well as the Icosian code. Also extensive DMT
analysis is provided.

Index Terms—Asymmetric space–time block codes (ASTBCs),
cyclic division algebras (CDAs), dense lattices, discriminants, di-
versity–multiplexing tradeoff (DMT), maximal orders, multiblock
codes, multiple-input multiple-output (MIMO) channels, normal-
ized minimum determinant.

I. INTRODUCTION

M ULTIPLE-antenna wireless communication promises
very high data rates, in particular when we have perfect

channel state information (CSI) available at the receiver. In [1],
the design criteria for such systems were developed, and further
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on the evolution of space–time (ST) codes took two directions:
trellis codes and block codes. Our work concentrates on the
latter branch and especially on the so-called asymmetric and
multiblock space–time codes. We are interested in the coherent
multiple-input multiple-output (MIMO) case where the receiver
perfectly knows the channel coefficients. The received signal is

where is the transmitted codeword taken from the space–time
block code (STBC) is the Rayleigh-fading channel re-
sponse matrix and the elements of the noise matrix are in-
dependent and identically distributed (i.i.d.) complex Gaussian
random variables. Throughout the paper, (respectively, )
denotes the number of transmitting (respectively, receiving) an-
tennas #Tx (respectively, #Rx).

From the pairwise error probability (PEP) point of view [2],
the performance of a space–time code is dependent on two pa-
rameters: diversity gain and coding gain. Diversity gain is the
minimum of the rank of the difference matrix taken over
all distinct code matrices , also called the rank of the
code . For non-zero square matrices, being full-rank coincides
with being invertible. When is full-rank, the coding gain is
proportional to the determinant of the matrix

, where indicates the complex conjugate transpose of a
matrix. The minimum of this determinant taken over all distinct
code matrices is called the minimum determinant of the code .
If it is bounded away from zero even in the limit as the spec-
tral efficiency approaches infinity, the ST code is said to have
the nonvanishing determinant (NVD) property [3]. Note that the
minimum determinant defined here is actually the square of the
minimum determinant of a lattice defined below.

Definition 1.1: The data rate in bits per channel use (bpcu)
is given by

where is the size of the code, and is the block length.

Here, the code rate is defined as the ratio of the number
of transmitted information symbols (complex, e.g., QAM sym-
bols) to the decoding delay (equivalently, block length) of these
symbols at the receiver for any given number of transmit an-
tennas using any complex signal constellations. If this ratio is
equal to the delay, the code is said to have full rate.

The very first STBC for two transmit antennas was the Alam-
outi code [4] representing multiplication in the ring of quater-
nions. As the quaternions form a division algebra, such matrices
must be invertible, i.e., the resulting STBC meets the rank crite-
rion. Matrix representations of other division algebras have been
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proposed as STBCs in various papers, e.g., [5]–[18] to name
just a few. Major amount of the work in recent years has con-
centrated on adding multiplexing gain and/or combining it with
a good minimum determinant, so that the resulting construc-
tions can achieve the so-called diversity–multiplexing tradeoff
(DMT) in [19]. It has been shown in [15] that cyclic division
algebra (CDA) based square ST codes with the NVD prop-
erty achieve the DMT. This result also extends over multiblock
space–time codes [20]. The codes proposed in [17] all fall into
this category (as do many other codes too) and are in that sense
optimal. One of the goals of this paper is to generalize some of
the results of [17] to the asymmetric and multiblock case.

After a cyclic division algebra has been chosen, the next step
is to choose a corresponding lattice, or what amounts to the
same thing, to choose an order within the algebra. Most authors,
including [10] and [15], have gone with the so-called natural
order (see the next section for a definition). One of the points
the authors wanted to emphasize in [17] was to use maximal
orders instead. The idea is that one can sometimes use several
cosets of the natural order and hence transmit at a higher rate
without sacrificing anything in terms of the minimum deter-
minant or the coding gain. So the study of maximal orders is
clearly motivated by an analogy from the theory of error cor-
recting codes: why one would use a particular code of a given
minimum distance and length, if a larger code with the same
parameters is available. The standard matrix representation of
the natural order results in codes that have a so-called threaded
layered structure [21]. When a maximal order is used, the code
will then also extend “between layers”. Earlier, maximal orders
have been successfully used in the construction of MISO and
symmetric MIMO lattices, see [5], [22], [17]. For more infor-
mation on matrix representations of division algebras and their
use as MIMO STBCs the reader can refer to [23], [7].

Recently, different methods for constructing asymmetric
[24], [25] and multiblock [20] space–time codes have been
proposed. Asymmetric codes are targeted at the code design
for downlink transmission where the number of Rx antennas
is strictly less than the number of Tx antennas. Typical exam-
ples of such situations are mobile phones and DVB-H
(Digital Video Broadcasting-Handheld) user equipment, where
only a very small number of antennas fits at the end user site.
Multi-block codes, for their part, are called for when one wishes
to obtain vanishing error probability in addition to the DMT
optimality.

Remark 1.1: We want to note that in this paper the emphasis
is purely on the construction of sphere decodable asymmetric
schemes having a minimum delay, and hence we do not in-
tend to compete with the symmetric schemes that will natu-
rally have a higher rate. The problem of constructing minimum-
delay symmetric schemes has been efficiently solved already,
see e.g., [10], [17]. However, unless at least receiving an-
tennas is used, such codes cannot be decoded by using simple
decoding methods such as a sphere decoder, and this is the very
reason why we now consider the construction of sphere decod-
able codes for receiving antennas, being strictly less than
the number of transmitters .

We define a lattice to be a discrete finitely generated free
abelian subgroup of a real or complex finite dimensional
vector space, called the ambient space. In the space–time (ST)
setting a natural ambient space is the space of complex

matrices. The Gram matrix is defined as

(1)

where tr is the matrix trace ( sum of the diagonal elements), and
, form a -basis of . The rank of

the lattice is upper bounded by . Note that we really need to
take the real part of the trace in the Gram matrix, as the matrices

are not necessary real as themselves for . The Gram
matrix has a positive determinant equal to the squared measure
of the fundamental parallelotope . A change of basis does
not affect the measure .

Any lattice with the NVD property [8] can be scaled, i.e.,
multiplied by a real constant , either to satisfy

or to satisfy . This is
because and . As
the minimum determinant determines the asymptotic pairwise
error probability, this gives rise to natural numerical measures
for the quality of a lattice.

Definition 1.2: Following [26], we shall denote by the
normalized minimum determinant of the lattice , i.e., here we
first scale to have a unit size fundamental parallelotope. Du-
ally we denote by the normalized density of the
lattice , when we first scale the lattice to have unit minimum
determinant, and only then compute the quantity . In
other words, we define

When comparing the minimum determinants of different
codes, one should always use the normalized minimum deter-
minant. To avoid confusion let us mention that from now on,
when we talk about minimum determinant we always mean

and not its square as in the traditional definition of
minimum determinant (see above). The squared normalized
minimum determinant can be righteously identified with
the coding gain. According to the above definition, maximizing
the coding gain, i.e., the normalized minimum determinant, is
equivalent to maximizing the (normalized) density of the code.
Formally, we get the following proposition.

Proposition 1.1: The coding gain of a lattice equals

Hence, increasing the density is equivalent to increasing the
coding gain.

Given that maximal orders provide the best codes in terms of
minimum determinant versus average power we are left with the
question: Which division algebra should we use? To continue
the analogy from the theory of error-correcting codes we want
to find the codes with the highest possible density. That is, with
the smallest fundamental parallelotope. In [17] we developed
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the required tools for parameterizing cyclic division algebras
with a given center and index. Also an achievable lower bound
for the measure of the fundamental parallelotope was derived.

One aim in this paper is to generalize the notions and results
from [17] to the asymmetric scheme where the number of re-
ceiving antennas is strictly less than the number of transmitting
antennas. As the main contributions, we

• propose new methods for constructing asymmetric
space–time codes, one of which is applicable for
any number of transmitting and receiving antennas

;
• prove that similarly to the symmetric scheme, maximizing

the density (i.e., finding the most efficient packing in the
available signal space) of codes arising from the so-called
block diagonal method is equivalent to minimizing the dis-
criminant of an order. With the aid of this observation we
generalize the density bound from [17] to the asymmetric
scheme;

• derive an explicit density upper bound for the
case;

• provide an explicit construction achieving our
density bound;

• give a table comparing the normalized minimum determi-
nants and densities of different block diagonal AST codes;

• show that the block diagonal method can be converted to
produce multiblock ST codes [20] that achieve the DMT,
and that the density bound is also applicable as such to
these multiblock codes;

• provide extensive DMT alalysis of the proposed codes;
• demonstrate by simulations that by using the newly pro-

posed methods we can outperform the punctured Perfect
code and the DjABBA code [25] as well as the Icosian code
[27] in BLER performance.

The paper is organized as follows. In Section II we will
shortly motivate this research and describe our solutions to
the stated problems. In Section III, various algebraic notions
related to cyclic algebras, orders, and discriminants are intro-
duced. If the reader is familiar with the standard symmetric
cyclic division algebra based space–time codes, this introduc-
tory section can safely be skipped. Furthermore, it is shown
that maximizing the density of the code, i.e., minimizing the
fundamental parallelotope is equivalent to minimizing the
discriminant. This leads us to Section IV, where we recall the
achievable lower bound from [17] for the discriminant in the
symmetric case. In Section V we describe the block diagonal
construction method for asymmetric ST lattices. We generalize
the density bound from [17] to the block diagonal AST codes
in Section V-A, and show in Section V-B that it also holds as
such to the multiblock codes [20]. Also explicit example codes
are given in Section V-C accompanied with a table comparing
their densities and normalized minimum determinants. Further,
in Section V-D we derive an explicit, achievable density bound
for the case and show that it is achieved by one
of the proposed constructions. The smart puncturing method
is described in Section VI, and finally some simulation results
and DMT analysis are provided in Sections VII and VIII,
respectively. Section IX contains the conclusions.

II. MOTIVATION AND PROBLEM STATEMENT

In some applications the number of Rx antennas is required
to be strictly less than the number of Tx antennas. Typical
examples are mobile phones and DVB-H (Digital Video
Broadcasting-Handheld) user equipment, where only a very
small number of antennas fits at the end user site. One may also
think of downlink transmissions in wireless networks, where
one can usually fit more antennas in the access point than in a
laptop. For such application, the symmetric, minimum-delay
MIMO constructions arising from the theory of cyclic division
algebras (see e.g., [10]) have to be modified. For simplicity, the
concrete examples given here concentrate on the an-
tenna case: if we could afford four Rx antennas, the task would
be easy—just to use the minimum-delay, rate-optimal
CDA-based construction transmitting 16 (complex, usually
QAM/HEX) information symbols in four time slots, i.e., four
in each time slot. Now, however, the reduced number of Rx
antennas limits the transmission down to two symbols per each
time slot (cf. Definition 1.1) if we wish to enable efficient
decoding such as sphere decoding.

We have come up with two different types of solutions to this
problem. Both solutions take advantage of cyclic division al-
gebras and yield rate codes with a non-vanishing determi-
nant. Let us denote by the number of transmitters
in the usual symmetric CDA-based MIMO system and suppose
we want to construct a code for antennas. In the
Block Diagonal Method (BDM) the idea is to first pick an index

division algebra with a center that is 2 m-dimensional over
, form isomorphic copies of it and then use them as di-

agonal blocks in an code matrix. Another possibility is to
take the symmetric MIMO code, but choose the elements
in the matrix from an intermediate field of degree over
instead of the maximal subfield. This method can be generalized
to any number of transmitters and receivers by
performing so called Smart Puncturing Method (SPM) instead
of restricting the elements to belong to some fixed subfield. In
practice, this means that we puncture at an arbitrary level, i.e.,
set a required number of QAM/HEX coeffiecients of basis ele-
ments to zero. These methods shall be explained in greater detail
in Sections V and VI accompanied with illuminating examples.

In this paper, we will thoroughly analyze (in class field the-
oretic terms) the block diagonal method. The smart puncturing
method will be treated in more detail in a forthcoming paper.

III. CYCLIC ALGEBRAS, ORDERS, AND DISCRIMINANTS

We refer the interested reader to [23] and [7] for a detailed ex-
position of the theory of simple algebras, cyclic algebras, their
matrix representations and their use in ST-coding. We only re-
call the basic definitions and notations here. In the following,
we consider number field extensions , where denotes
the base field and (respectively, ) denotes the set of the
nonzero elements of (respectively, ). In the interesting cases

is an imaginary quadratic field, either or cor-
responding to the QAM and HEX alphabets, respectively. We
assume that is a cyclic field extension of degree with
the Galois group . Let be
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the corresponding cyclic algebra of degree ( is also called
the index of , and in practice ), that is

as a (right) vector space over . Here is an auxiliary
generating element subject to the relations for all

and . An element
has the following representation as a matrix

:

...
...

We refer to this as the standard matrix representation of . Ob-
serve that some variations are possible here. E.g., one may move
the coefficients from the upper triangle to the lower triangle
by conjugating this matrix with a suitable diagonal matrix. Sim-
ilarly, one may arrange to have the first row to contain the “pure”
coefficients . Such changes do not affect the min-
imum determinant nor the density of the resulting lattices.

In practice, some restrictions to the elements and
have to be made, see Definition 3.4 and the comment below.
If we denote the integral basis of by ,
then the elements in the above matrix
are restricted to take the form , where

for all . Hence information symbols
are transmitted per channel use, i.e., the design has rate . In
literature this is often referred to as having a full rate.

Definition 3.1: The determinant of the matrix above is
called the reduced norm of the element and is denoted
by .

Remark 3.1: The connection between the usual norm map
and the reduced norm of an element is

, where is the degree of .

Definition 3.2: An algebra is called simple if it has no
nontrivial ideals. An -algebra is central if its center

.

All algebras considered in this paper are central simple.
A division algebra may be represented as a cyclic algebra in

many ways as demonstrated by the following example.

Example 3.1: The division algebra used in [3] to con-
struct the Golden code is a cyclic algebra with

, when the -automorphism is de-
termined by . We also note that in addition
to this representation can be given another construction
as a cyclic algebra. As now we immediately see that

is a subfield of that is isomorphic to the eighth cyclo-
tomic field , where . The relation

read differently means that we can view as
the complex number and as the auxiliary generator, call it

. We thus see that the cyclic algebra

is isomorphic to the Golden algebra. Here is the -automor-
phism of determined by and .

The element is often called a non-norm element due to The-
orem 3.2 by A. A. Albert [28, Theorem 11.12, p. 184]. It pro-
vides us with a condition of when a cyclic algebra is a division
algebra. The original result was stated for ,
but can be simplified after the next lemma.

Lemma 3.1: Let and be as above. Consider the
set of exponents such that is a norm of an element
of . Then

for some .
Proof: The mapping is a homomorphism of

groups from to . Because is a
subgroup of , and , we immediately see that

is a subgroup of . From basic algebra it now follows
that is cyclic, i.e., for some . On the other
hand, as we get that , and hence .
Therefore .

Proposition 3.2 (Norm Condition): The cyclic algebra
of degree is a division algebra if and only if the

smallest factor of such that is the norm of some
element of is .

Proof: We are to prove the equivalence of two conditions,
the original stating that is not a norm for any in the range

, and the relaxed version stating the same for those
in the same range that are also divisors of . One implication

is clear, and the other follows from the above lemma. Namely,
if there are integers in the range such that
happens to be a norm, then the lemma tells us that the smallest
such must be a divisor of .

Remark 3.2: We can even relax the above conditions for .
The proof of the previous lemma shows that actually it suffices
to check that is not a norm for any prime divisor of .
For example, when , it suffices to check that is not a
norm.

We are now ready to present some of the basic definitions and
results from the theory of maximal orders. The general theory
of maximal orders can be found in [29].

Let denote a Noetherian integral domain with a quotient
field (e.g., and ), and let be a finite
dimensional -algebra.

Definition 3.3: An -order in the -algebra is a subring
of , having the same identity element as , and such that is
a finitely generated module over and generates as a linear
space over . An order is called maximal, if it is not properly
contained in any other -order.

In the rest of the paper, will always denote an order and
can be treated as an algebraic lattice. Let us illustrate the above
definition by concrete examples.

Example 3.2:
(a) Orders always exist: If is a full -lattice in , i.e.,

, then the left order of defined as
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is an -order in . The right order is
defined in an analogous way.
(b) If is the ring of integers of the number field ,
then the ring of integers of the extension field is the
unique maximal -order in . For example, in the case of
the cyclotomic field , where
is a primitive root of unity of order the maximal order is

.
(c) The set of integral elements does not form a ring in the
non-commutative case. As an easy counter-example one
can use the ring of Lipschitz quaternions

a subring of the Hamiltonian quaternions used for the
construction of the Alamouti code. For instance, consider
the polynomial having integral coefficients.
The element is one of the (infinitely many) roots
of the polynomial , and hence may be called integral.
However, if we try to adjoin to the ring , we end up with
a set that will also contain the element . The reduced trace

is not an integer, hence we cannot have an order
that would contain both the Lipschitz quaternions and .

For the purposes of constructing MIMO lattices the reason for
concentrating on orders is summarized in the following propo-
sition (e.g., [29, Theorem 10.1, p. 125]). We simply rephrase it
here in the language of MIMO-lattices. We identify an order (or
its subsets) with its standard matrix representation.

Proposition 3.3: Let be an order in a cyclic division algebra
. Then for any non-zero element its reduced

norm is a non-zero element of the ring of integers
of the center . In particular, if is an imaginary quadratic
number field, then the minimum determinant of the lattice is
equal to one.

Definition 3.4: In any cyclic algebra we can always choose
the element to be an algebraic integer. We immediately
see that the -module

where is the ring of integers, is an -order in the cyclic
algebra . We refer to this -order as the natural
order. An alternative appellation would be layered order, as the
corresponding MIMO-lattice of this order has the layered struc-
ture described in [21].

Remark 3.3: We want the reader to note that in any cen-
tral simple algebra a maximal -order is a maximal -order
as well. Note also that if is not an algebraic integer, then
fails to be closed under multiplication. This may adversely af-
fect the minimum determinant of the resulting matrix lattice, as
elements not belonging to an order may have non-integral (and
hence small) norms.

Definition 3.5: Let . The discriminant of the
-order is the ideal in generated by the set

In the interesting cases of (respectively,
) the ring (respectively,

) is a Euclidean domain, so in these cases (as
well as in the case ) it makes sense to speak of the dis-
criminant as an element of rather than as an ideal. We simply
pick a generator of the discriminant ideal, and call it the dis-
criminant. Equivalently we can compute the discriminant as

where is any -basis of .

Remark 3.4: It is readily seen that whenever are two
-orders, then is a factor of . It also turns out

(cf. [29, Theorem 25.3]) that all the maximal orders of a division
algebra share the same discriminant that we will refer to as the
discriminant of the division algebra. In this sense a maximal
order has the smallest possible discriminant among all orders
within a given division algebra, as all the orders are contained
in some maximal order.

The definition of the discriminant closely resembles that of
the Gram matrix of a lattice, so the following result proved in
[17] is unsurprising and immediately generalizes to the asym-
metric scheme as well as was shown in [24].

Lemma 3.4: Assume that is an imaginary quadratic number
field and that 1 and form a -basis of its ring of integers .
Assume further that the order is a free -module (an assump-
tion automatically satisfied, when is a principal ideal domain).
Then the measure of the fundamental parallelotope equals

In the respective cases and we have
and , respectively, so we immediately

get the following two corollaries.

Corollary 3.5: Let , and assume that
is an -order. Then the measure of the funda-

mental parallelotope equals

Example 3.3: When we scale the Golden code [3](cf. Ex-
ample 3.1) to have a unit minimum determinant, all the 8 ele-
ments of its -basis will have length and the measure of the
fundamental parallelotope is thus . In view of all of the above
this is also a consequence of the fact that the -discriminant
of the natural order of the Golden algebra is equal to . As
was observed in [30] the natural order happens to be maximal
in this case, so the Golden code cannot be improved upon by
enlarging the order within .

Corollary 3.6: Let
, and assume that is an -order. Then the

measure of the fundamental parallelotope equals

The upshot in [17] was that in both cases maximizing the den-
sity of the code, i.e., minimizing the fundamental parallelotope,
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is equivalent to minimizing the discriminant. Thus, in order to
get the densest MIMO-codes one needs to look for division al-
gebras that have a maximal order with as small a discriminant
as possible.

For an easy reference we also include the following result [17]
that is a relatively easy consequence of the definitions.

Lemma 3.7: Let be as above, assume that is an alge-
braic integer of , and let be the natural order of Definition
3.4. If is the -discriminant of (often referred to
as the relative discriminant of the extension ), then

To conclude the section, we include the following simple but
interesting result on maximal orders explaining why using a
principal one-sided (left or right) ideal instead of the entire order
will not change the density of the code. For the proof, see [17,
Lemma 7.1]

Lemma 3.8: Let be a maximal order in a cyclic division
algebra over an imaginary quadratic number field. Assume that
the minimum determinant of the lattice is equal to one. Let

be any non-zero element. Let be a real parameter
chosen so that the minimum determinant of the lattice is
also equal to one. Then the fundamental parallelotopes of these
two lattice have the same measure

IV. THE DISCRIMINANT BOUND

In this section, we recall some more material from [17] to be
used later on in Section V.

Again let be an algebraic number field that is finite dimen-
sional over and its ring of integers. In what follows by the
size of ideals of we mean that ideals are ordered by the ab-
solute values of their norms to , so e.g., in the case
we say that the prime ideal generated by is smaller than
the prime ideal generated by as they have norms and , re-
spectively.

Theorem 4.1: [17, Discriminant bound] Assume that is a
totally complex number field, and that and are the two
smallest prime ideals in . Then the smallest possible discrim-
inant of all central division algebras over of index is

We remark that the division algebra achieving this bound is
by no means unique.

Example 4.1: The smallest primes of the ring are
and . They have norms and , respectively. The smallest
primes of the ring are and with respective norms
and . Together with Corollaries 3.5 and 3.6 we have arrived at
the following bounds.

Let be an order of a central division algebra of index over
the field . Then the measure of a fundamental parallelotope
of the corresponding lattice

Let be an order of a central division algebra of index
over the field . Then the measure of
a fundamental parallelotope of the corresponding lattice

Example 4.2: Let , so . In this case
the two smallest prime ideals are generated by 2 and and as
noted above they have norms and , respectively. By Theorem
4.1 the minimal discriminant is when . As the
absolute value of is an application of the formula in
Corollary 3.6 shows that the lattice of the code achieving this
bound has . In [22] we showed that a maximal
order of the cyclic algebra , where

, achieves this bound.

For more information on finding maximal orders and their
discriminants, see [17]. In practice maximal orders can easily
be computed with the aid of the (unfortunately commercial)
MAGMA software [31], or in small cases by hand following
[32] (see also [33], [34]). The computation and decoding of
maximal order will be treated in more detail in a forthcoming
paper by Hollanti and Ranto [35].

We conclude this section by a couple of remarks1 related to
the use of outer codes and our choice to consider only codes
having a minimum delay.

Remark 4.1: While the concatenation of the maximal-order
space–time code as the inner code and the conventional error
correction code as the outer code is beyond the scope of this
work, it is expected that such concatenation will result in a
smaller multiplexing gain as the outer code has rate less than 1.
However, the error performance will be significantly improved
due to the use of additional error correction techniques. On the
other hand, we must point out that since 1) the inner maximal-
order code makes use of sphere decoding, which is a hard-deci-
sion based decoding, and 2) such inner decoder cannot provide
soft information for the input of output decoder, it is techni-
cally impossible to use either low-density parity check (LDPC)
code or turbo code as the outer code as these codes requires
a soft-input–soft-output (SISO) decoder in order to deliver the
promised near-capacity performance. Nevertheless, some con-
clusion can be easily drawn. From simulation we have already
seen that, in the symmetric case, the maximal order code outper-
forms the perfect code, meaning that the former has lower error
probability than the latter; the overall error probability of the
concatenated maximal-order code after incorporating the outer
decoder must be even lower than that of the concatenated per-
fect code, simply because the BER curve of the outer decoder
is monotonically decreasing in SNR, and such conclusion holds
for all outer codes.

Remark 4.2: In this paper the focus is on square matrices, i.e.,
on codes having a minimum delay. If longer delay is allowed,
then the optimal DMT can be achieved at least in some special

1The remarks are invoked by the comments of the anonymous reviewers of
this paper. We thank all the reviewers for the careful reading of our paper. Also
complexity issues were brought up by one of the reviewers, hence a short dis-
cussion on the decoding complexity has been added in the simulation results
section.
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cases. The authors of the present paper have submitted a sepa-
rate work related to this subject, see [41]. Increasing the delay
requires lattices with a higher dimension, so also the decoding
process will get more complex.

V. CONSTRUCTING ASYMMETRIC AND MULTIBLOCK

SPACE–TIME CODES BY THE BLOCK DIAGONAL METHOD

(BDM)

A straightforward way to obtain AST lattices would be just
to “switch off the extra layers” (following [25] and [24]) in a
symmetric MIMO setting, i.e., by trivial puncturing. In the case
of antennas this would mean that in the standard
matrix representation we set e.g., in order to
transmit a limited number of symbols that can be received with
only two receivers. In this and the following section we present
two more sophisticated methods for constructing AST lattices
that still admit efficient sphere decoding.

A. Block Diagonal Asymmetric ST Lattices

In this section, we recall Method 1 from [24]. Let us rename
this method as Block Diagonal Method (BDM).

Let us consider an extension tower with the
degrees and with the Galois groups

. Let

be an index division algebra, where the center is fixed by
. We denote by .

Note that if one has a symmetric, index CDA-
based STBC, the algebra can be constructed by just picking a
suitable intermediate field of a right degree as the new
center.

An element
of the algebra has the standard representation

as an matrix as given in Section III.
However, we can afford an packing as we are using
transmitting antennas. This can be achieved by using the iso-

morphism . Let us denote by
the isomorphic copies of and the respective

matrix representations by

(2)

The next proposition shows that by using these copies as di-
agonal blocks we obtain an infinite lattice with non-vanishing
determinant.

Proposition 5.1 (BDM): Let and ,
where . Assume . The block diagonal lattice

...
. . .

...

built from (2) has a nonvanishing determinant
. Thus, the minimum determinant is

equal to one for all . The code rate equals .

Proof: According to Definition 3.1 and Proposition 3.3

and hence .

Remark 5.1: In [36] an approach similar to the BDM was
used for the MIMO amplify-and-forward cooperative channel.

Now the natural question is how to choose a suitable division
algebra. In [15] and [16] several systematic methods for con-
structing extensions are provided. All of them make use
of cyclotomic fields. Next we will show that also in the asym-
metric scheme, maximizing the code density (i.e., minimize the
volume of the fundamental parallelotope, see [17]) with a given
minimum determinant is equivalent to minimizing a certain dis-
criminant. In the next section we shall show that this also holds
for the multiblock codes from [20].

First we need the following result. For the proof, see [29, p.
223].

Lemma 5.2: Suppose is an -order
and that . The discriminants then satisfy

The same naturally holds in the commutative case when we re-
place with .

As a generalization to Lemma 3.4, we prove the following
proposition.

Proposition 5.3: Assume that is an imaginary quadratic
number field and that forms a -basis of its ring of in-
tegers . Let , and

. If the order defined as in Proposition 5.1 is
a free -module (which is always the case if is a principal
ideal domain), then the measure of the fundamental parallelo-
tope equals

(3)

(4)

(5)

Proof: In order to keep the notation simple let us assume
. The proof directly generalizes to an arbitrary . Let

be an complex matrix. We flatten it out
into a matrix by first forming a vector of length

out of the entries (e.g., row by row) and then replacing a
complex number by a diagonal four by four matrix with entries

and ( is the usual complex conjugate of ).
If and are two square matrices with rows we can easily
verify the identities as shown in (6) and (7) at the top of the
following page.

Next let be an -basis for . We
form the matrix by stacking the matrices
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(6)

and

(7)

on top of each other. Similarly we get by
using the matrices as column blocks. Then by (7) the
matrix

consists of four by four blocks of the form

Clearly

and

Thus

(8)

Next, we turn our attention to the Gram matrix. Let
be a -basis for . Then by our assump-

tions the set is a -basis for . From the
theory of algebraic numbers we know that

and (9)

where and

From the identities and

...
...

together with (6) it follows that for any two matrices
and we have

...
...

Therefore, if we denote by the matrix having
copies of along the diagonal and zeros elsewhere, we

get

Thus

As

by (9) and Lemma 5.2, (8) now gives us the claim when we still
note (again by Lemma 5.2) that

(10)

Corollary 5.4: In the case the volume equals

Corollary 5.5: In the case , we get

Now we can conclude (cf. (4)) that the extensions
and the order should be chosen in such a way that the dis-
criminants and are as small as possible.
By choosing a maximal order within a given division algebra
we can minimize the norm of (cf. Remark 3.4). As in
practice an imaginary quadratic number field is contained in

, we know that is totally complex. In that case the fact that

(11)

where and are prime ideals with the smallest
norms (to ) helps us in picking a good algebra (for the proof,
see [17, Theorem 3.2]). Note that optimization with respect to

may result in a loss in and vice versa.
Keeping the above notation, we have now arrived at the fol-

lowing theorem.
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Theorem 5.6 (Density Bound for Lattices From BDM): For
the density of the lattice it holds that

(12)

Remark 5.2: Note that as opposed to Example 4.1 (cf. [17]),
here we do not automatically achieve nice, explicit lower bounds
for . That is a consequence of the fact that the center

can now be any field containing or , and thus de-
termining the smallest ideals and or even the minimal

is not at all straightforward. An exact lower bound
is hard to derive in the general case as the calculation of min-
imal number field discriminants is known to be a tricky problem.
The reader may ponder over the fact that tables for minimal dis-
criminants do exist in literature (though only for certain degrees,
see e.g., [37]) so why not use them. We want to emphasize that
these tables cannot be adapted here, as the fields in question
do not necessarily contain the desired subfield or .
However, in the smallest (and perhaps the most practical) case
of antennas we are able to give an explicit and even
achievable upper bound for the density. We believe that the best
one can do in the other cases is to take advantage of known
bounds of more general nature such as Odlyzko’s bound [38].

B. Minimum-Delay Multiblock ST Codes

The antenna AST code from Proposition 5.1
can be transformed into an antenna multiblock
code [20] by an evident rearrangement of the blocks:

...
. . .

...

(13)
As the Gram matrices of an AST lattice and a multiblock ST
lattice coincide, Lemma 5.3 also holds for multiblock ST codes
with the same parameters. Let the notation be as in Section V-A.

Proposition 5.7: Let and , where
. Assume . As the lattice

built from (2) satisfies the generalized non-vanishing determi-
nant property (cf. [20], [12]), it is optimal with respect to the
DMT for all numbers of fading blocks . Similarly as in Propo-
sition 5.1,

The code rate equals .
Proof: For the proof, see [20].

Proposition 5.8: The Gram determinants (cf. (1)) of the lat-
tices and coincide:

Proof: This is obvious, as

An immediate consequence of Proposition 5.8 is as follows.

Corollary 5.9: The lattices and share the same
density, i.e., Proposition 5.3 can be adapted as such to the multi-
block scheme.

C. Explicit Codes Using BDM

In this section we provide explicit asymmetric constructions
for the important case of antennas. These codes can
be modified for multiblock use (cf. (13). The primitive

th root of unity will be denoted by . The first three examples
are given in terms of an asymmetric construction, whereas the
last one is described as a multiblock code. However, with the
aid of (13), an asymmetric code can always be transformed into
a multiblock code and vice versa.

1) Perfect Algebra : Let us consider an algebra with the
same maximal subfield that was used for the Perfect code
in [10]. We have the nested sequence of fields ,
where , and with

. We denote this algebra by
, where and

. As , the field is indeed fixed by .
By embedding the algebra as in Proposition 5.1 we obtain
the AST code

where . As the center is with and
, the elements in the matrix are

of the form where
. Thus, the code transmits, on the average, independent

QAM symbols per channel use.
We can further improve the performance by taking the ele-

ments from the ideal , where .
Moreover, a change of basis given by

guarantees an orthogonal lattice.
2) Cyclotomic Algebra : The algebra

(cf. [12], [22], [24]),
for its part, has the nested sequence of fields with

, and . As we have
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, the field is fixed by . Again by
embedding the algebra as in Proposition 5.1, the AST code

with is obtained. The center is with
and . The elements in the matrix are of the

form , where , hence the above
code transmits on the average, 2 independent QAM symbols per
channel use.

Note that we have chosen here a suitable non-norm element
from instead of (cf. Section V.A). We get some energy
savings as .

The code can be made perfect (see [11]) by forcing to
be unit, i.e., we can choose . The loss in the minimum
determinant is compensated by an improvement in performance.
We denote the perfect version of the code by .

By doing this, we need not sacrifice the NVD property: Let
. If we denote by the

matrix where we have multiplied the matrix rows containing
by , that is

then we have

and hence

Note also that this is only possible because of the addi-
tive structure of the code. Taking powers of the elements

into the code would result in a vanishing
determinant (cf. Remark 3.3).

3) Algebra —an Improved Maximal Order: Similarly as
in the two previous subsections, we obtain a rate- AST code

by introducing yet another algebra
, where

and . Among
our example algebras, has the densest maximal order. In
Section V-D we will show that its maximal order is also the
densest in general, when and .

Let us now describe the code explicitly. If we order the
-basis of the natural order of as

then (according to the MAGMA software [31]) the maximal
order has a -basis

Now the codebook of an arbitrary size can be pro-
duced as

where denotes the Frobenius norm (corresponds to the
squared Euclidean norm of the vectorized matrix, i.e., the sum
of the squares of all the matrix elements), and is some desired
energy limit.

4) Algebra —An Improved Natural Order: Let us use
the multiblock notation for a change. Here we consider another
tower of number fields , where

, and where with . Clearly,
we have , and .
Thus we obtain the CDA ,
and is a non-norm element. Embedding the algebra

as in Proposition 5.1 yields the following multiblock ST
code with coding over 2 consecutive fading blocks:

where

and

The elements in the above are of the form
, where , hence the above code trans-

mits on the average, two independent QAM symbols per
channel use.

Among our example algebras, has the densest natural
order.

Example 5.1: Let us calculate the normalized minimum de-
terminant of the algebra as an example (cf. Section I, Def-
initions 3.4, 3.5, and Propositions 5.1,5.3). The other algebras
can be treated likewise. In Table I we have listed the normal-
ized minimum determinants and densities of the natural and
maximal orders of the algebras and . Note
that for these two actually coincide. We can conclude that
among the natural orders, that of the algebra has the largest
normalized minimum determinant, i.e., the highest density. The
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TABLE I
NORMALIZED MINIMUM DETERMINANT � AND NORMALIZED DENSITY

� � ������ OF NATURAL AND MAXIMAL ORDERS OF DIFFERENT ALGEBRAS

algebra , for its part, has the densest maximal order. The cor-
responding numbers are shown bold in Table I.

For the natural order of we have
and hence

. Now and the normalized minimum
determinant is

. The maximal order of has
and thus and

.

D. An Explicit Density Upper Bound for the Lattices
With and

As shown in Example 5.1, for the maximal order of we
have

where and are the norm wise smallest ideals of . In
what follows, we will show that when and

we cannot go below this, i.e., the maximal order of
has optimal density.

Let us now assume that we would have such an exten-
sion that the corresponding lattice would have

. If the prime splits, this would mean that
. If does not split, then the

discriminant should be even smaller so this is a sufficient upper
bound for .

Let such that is an integral basis for .
Now this degree two extension has a minimal polynomial of
the form , where , and the
discriminant

Note that a minimal polynomial of the form is out of
the question, as then .
Furthermore, cannot be a square, as then it would
trivially follow that and . Now we are left
with the choices

or
the obvious translates with the same absolute value.

Let us treat in detail the cases
to set an example. As the prime ramifies in this extension,
we know that the smallest ideal is above and

. The second ideal would depend on the
behavior of the primes and 3. However, as

it immediately follows that neither of
fit into the equation.

The other cases are equally straightforward. In the case
we note that we end up into an isomorphic

extension that we al-
ready have. For it would require that
splits which is not the case.

We have now proved the following proposition. For the nota-
tion, cf. Proposition 5.1.

Proposition 5.10 (Density Bound for : Let
, i.e., . For the density of the lattice it

holds that

(14)

The lower bound is achieved, e.g., by the maximal order of
the algebra , see Table I.

VI. CONSTRUCTING AST LATTICES BY THE SMART

PUNCTURING METHOD (SPM)

Another way to construct AST lattices would be as follows
(cf. [24]). Let be an index division algebra
and . If in the standard matrix rep-
resentation the elements are restricted to belong to (rather
than to ), we obtain another division algebra . Obviously
also the algebra is a division algebra as it is contained in .
This construction also yields rate codes for
antennas with a nonvanishing determinant. As is fixed by

we have

for all . Thus, the center of is extended by the element
.

Proposition 6.1: Let be the ring of algebraic integers of
and . The lattice

...
...

has a non-vanishing determinant .
Thus, the minimum determinant is equal to one.

Proof: This immediately follows from the way of construc-
tion.

As we consider the construction of Proposition 6.1 only for
natural orders, we denote it by as opposed to the notation

where we needed to specify the order in use. The above
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Fig. 1. Block error rates at 4 bpcu.

subfield construction method [24] can be generalized so that it
applies to any number of receiving antennas . The
idea is that instead of restricting the elements to belong to a
subfield, we can puncture at any level. By this we mean that we
can set an arbitrary number of the QAM/HEX coefficients equal
to zero. More formally, let us denote

where and is an integral basis of
. If we wish to use receiving antennas, we set any

of the coefficients to zero for each . Nevertheless,
to enable efficient decoding one should choose the same set of
indices at where to puncture for each . We call this the Smart
Puncturing Method (SPM).

For instance, one option is to define for
, that is

for .

A. Explicit Codes Using SPM

Let us now use the SPM for constructing AST codes. To sim-
plify the notation, we use the subfield construction as a special
case of SPM. To set an example, we write down the construc-
tions for the algebras and , the other algebras can be
treated similarly.

1) Algebra : By using the algebra (cf. Section V-C1)
and the subfield Construction 6.1, we get

Each of the elements is of the form ,
where . Thus, the code rate is again equal to two.

2) Algebra : Let us then construct a code using (cf.
Section V-C2) and 6.1. This time we have

with .
Each of the elements is of the form , where

. Thus, the code rate equals two.
Again we could also use a unit non-norm element .

VII. SIMULATION RESULTS

In Fig. 1, the different construction methods are denoted by
subscripts: Trivial Puncturing Method, Block Diag-
onal Method (cf. Section V\-C), and Subfield Construction
Method (cf. Section VI-A).

The use of a maximal order instead of the natural order will
be indicated by ‘MAX’, e.g., we write for the code
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Fig. 2. DMT for � � �, � � �, and � � �.

designed using the BDM and a maximal order of the algebra
.

First of all, we have to admit that we have not carried out op-
timization as much as would have been possible. For example,
the use of ideals has not been taken advantage of, except in the
case of the punctured Perfect code and the code , for
which we used the ideal given in Section V-C1. Still, the simu-
lation results are indeed very satisfactory.

The codes , and perform more or less
equally. The code is beaten by these by 0.2–0.7 dB, de-
pending on the SNR. Next comes , losing
still by 0.7–1 dB to . Despite of its lower density, the code

performs equally well as the code , possibly because
of the careful optimization of carried out in [10] such
that it falls into the category of information lossless (IL) codes
(see [40] for the definition) and has a good (orthogonal) lattice
shaping. Probably for the same reason, it appears to be irrele-
vant to which construction method is used for , whereas the
same is not true at all for the other algebras. Thus, the simula-
tion results of the codes suggest that having a good shaping
is also important at low SNR regime and it is better that the code
has this property.

Do note that information losslessness is a property defined for
linear dispersion (LD) codes and as such does not concern the
maximal order codes (they are not linear dispersion codes when
optimally used). Orthogonal shaping, for its part, has many other
justifications than that of yielding information lossless codes. As
mentioned earlier, orthogonal (or hexagonal) shaping enables
simple bit labeling and usually makes the decoding less com-
plex. Hence, in addition to density (maximization of the nor-
malized minimum determinant), it is preferable to have orthog-
onal or nearly orthogonal shaping. In our simulations we did
not do lattice reduction or use any other methods to simplify the
decoding, as we feel that these concepts should be treated in a
paper of their own.

To summarize the above, by orthogonal shaping one can com-
pensate somewhat the lower density. That is, if we have two

equally dense codes, then one might prefer the one that is closer
to being orthogonal. But do note that by using orthogonal codes
only, one cannot achieve the excellent performance provided by
the maximal order codes as is clearly shown by the simulations.
Also the data rate used in Fig. 1 is very much in favor of as
its shape fits perfectly with the constellation. At a different data
rate (e.g., at 5 bpcu), however, the performance of can be
expected to get worse as compared to the maximal order codes
as then the orthogonal shape does not help that much and the
density has more impact. Similar phenomenon was experienced
when comparing the Golden code with the Golden+ code [17]:
At the rate 4 bpcu that is ideal for the Golden code it could not be
beaten, but immediately when taking a bigger data rate the dif-
ference became clear and the denser Golden+ code was shown
to outperform the Golden code.

The code obtained by combining BDM with the
use of a maximal order (cf. Section V-C3 and [22]) triumphs
over all the other codes. It outperforms the next best code
by approximately 0.3 dB and by 0.5 dB. In [25] the
authors show that the DjABBA code wins the punctured Perfect
code by 0.5 dB or less in the BER performance at the rate 4 bpcu.
The same holds for the BLER performance and thus our code
improves even upon the DjABBA code. Also the Icosian code
for antennas exploiting the Icosian ring (which also
happens to be a maximal order) loses to by 0.7–1 dB.
The curves depicting the DjABBA code, the Icosian code and
the perfect version of are not shown in the picture in order
to keep it readable. The perfect version of the code
performs almost equally to being just slightly better.

Remark 7.1: There are some practical problems related to
maximal order codes in general. Using maximal orders or more
generally highly skewed lattices can make the bit labeling less
obvious and the decoding process more complex even when the
same decoding procedure is used. E.g., comparing the number
of points in the search tree visited by a sphere decoder shows
that usually a skewed lattice causes more visits than an orthog-
onal one. So these are purely properties the system designer can
choose to use or not to use, depending on the situation. Never-
theless, the decoding complexity can be significantly reduced by
using sphere encoding together with some suboptimal decoding
techniques getting very close to the maximal-likelihood (ML)
performance, see [42] for the promising results.

Here, a suitably modified (more details will follow in a forth-
coming paper, see [35]) sphere decoder was used for decoding
the lattices. Briefly, the sphere decoder performs an additional
energy check, checking that the decoded codeword is valid and
within the desired energy sphere. This step is required because
of the spherical shape used for the constellation. The codebook
can be formed beforehand, so it has to be carried out only
once. Alternatively, maintaining a codebook can be overcome
by using sphere encoding as mentioned above. The maximal
order codes can be also used as linear dispersion codes, but
then the full advantage of the density of maximal orders is not
achieved. If used as LD codes, no additional steps are needed
for decoding.

The DMT analysis (Section III) tells us that asymptotically
BDM should outperform the other constructions methods, but
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we want to emphasize that, as suggested by Fig. 1, at the low
SNR this is not necessarily the case. Indeed it seems that at the
low SNRs, the best construction method depends on the very
algebra (and especially on its density) that is in use. Fig. 1 also
shows that the trivial puncturing method used by other authors
[25] is not always the first choice (as again implied by the DMT
analysis too, see Section III), hence proving the point of new
construction methods. Actually, for the algebra puncturing
actually yields the worst performance.

VIII. DIVERSITY–MULTIPLEXING TRADEOFF ANALYSES

Diversity–multiplexing tradeoff (DMT) analyses of several
constructions of asymmetric space–time codes will be given in
this section. We try to make this section self contained. In a
MIMO communication system with transmit and receive
antennas, under the quasi-static MIMO Rayleigh block fading
channel model, it is known that the ergodic MIMO channel ca-
pacity equals [39]

bits/channel use (15)

at high SNR regime.
Let R denote that data rate of a space–time code defined in

Definition 1.1, and let denote the normalized rate of , also
known as the multiplexing gain [19], given by

(16)

From (15) it can be seen that the maximum achievable multi-
plexing gain equals . Given the code with multi-
plexing gain , we say achieves diversity gain if at high

regime, the codeword error probability of is on the order
of

(17)

By we mean the exponential equality [19], i.e., we say the
function if and only if

(18)

The notations of and are defined similarly.
Zheng and Tse [19] showed that there exists a fundamental

tradeoff between the multiplexing and the diversity gains,
referred to as the diversity–multiplexing tradeoff (DMT). For
the cases when and when the code
spans over independent block fading channels, the DMT
asserts that the maximum possible diversity gain for
any space–time coding scheme with multiplexing gain is
a piecewise linear function connecting the points

, and

(19)

Furthermore, it has been shown in [20] using explicit construc-
tions that the tradeoff (19) holds whenever . On the other
hand, if , only upper and lower bounds on are
available in [19].

A. DMT for the Trivial Puncturing Construction

Let denote the cyclic division algebra where
and is cyclic Galois. Let and let

be the corresponding cyclic algebra

...
...

. . .
...

where . The puncturing construction is thus obtained
by setting in and by restricting the
elements to be of form

where is the underlying base-alphabet and where
is an integral basis for .

Remark 8.1: If , it does not matter which ones of the
coefficients we set equal to zero. However, if , then
we should choose the indices for which in such a way
that the overall energy is minimized. It can be easily verified that
the above puncturing method, i.e., , is
the most efficient in energy.

To achieve multiplexing gain at value , we require

(20)

hence

(21)

Given the transmitted code matrix , the received
signal matrix at the receiver end is

(22)

where we set

(23)

to ensure the power constraint . Let
be the ordered eigenvalues of , and for any

, let be the ordered eigenvalues of
, where . Then given , the squared

Euclidean distance between and is

for . In particular
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Combining the two results above and setting
we have and

Now we see the DMT for the puncturing construction is lower
bounded by

(24)

and the right-hand side is given by the lines connecting the
points for integral values of .

B. DMT for the Block Diagonal Construction

Let be cyclic Galois with
and . Let be such that and

with where . It should
be noted that we have assumed . Let be the cyclic
division algebra and let be the corresponding

algebra

...
...

. . .
...

. The block diagonal construction is

(25)

where with .
denotes the underlying base-alphabet and is an
integral basis for .

To achieve multiplexing gain at value , we require

(26)

hence

(27)

Given the transmitted code matrix

the received signal matrix at the receiver end is

(28)

where we set

(29)

to ensure the power constraint. On the other hand, we may par-
tition the matrices , and into

and rewrite (28) as

for . Let

be the ordered eigenvalues of , and for any

let

be the ordered eigenvalues of , where
. We will reorder and reindex the set of eigenvalues

and such that and
. Thus the squared Euclidean distance between the two noise-

free received signal matrices can be lower bounded by

Moreover

Combining the two results above and setting
we have and

Now we see the DMT for the block-diagonal construction is
given by

(30)

and is obtained by the lines connecting the points
for integral values of .

C. DMT for the Subfield Construction

The DMT derived here for the subfield construction also
holds for the more general codes designed using the smart
puncturing method.
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Let be a cyclic Galois extension with
and , and . Let be the cyclic division
algebra and let

...
...

. . .
...

where and . The subfield
construction is thus obtained by restricting the elements

to be of form

where is the underlying base-alphabet and where
is an integral basis for .

To achieve multiplexing gain at value , we require

(31)

hence

(32)

Given the transmitted code matrix , the received
signal matrix at the receiver end is

(33)

where we set

(34)

to ensure the power constraint. Now we see the DMT for this
construction has the same lower bound as that for the puncturing
construction, hence

(35)

and the right-hand-side is obtained by the lines connecting the
points for integral values of .

D. DMT for the Original CDA Construction

Let be a cyclic Galois extension with
and , and . Let be the cyclic division
algebra and let

...
...

. . .
...

. The original construction (cf. e.g., [15]) is obtained
by restricting the elements to be of form

where is the underlying base-alphabet and where
is an integral basis for .

To achieve multiplexing gain at value , we require

(36)

hence

(37)

Given the transmitted code matrix , the received
signal matrix at the receiver end is

(38)

where we set

(39)

to ensure the power constraint. Let be the or-
dered eigenvalues of , and for any , let

be the ordered eigenvalues of , where
. Then given , the squared Euclidean dis-

tance between and is

for . In particular,

Combining the two results above and setting
we have and

Now we see the DMT for the CDA construction is given by

(40)

and the right-hand side is obtained by the lines connecting the
points for integral values of .
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Remark 8.2: One might ponder why not use the original sym-
metric construction with a smaller constellation as it is DMT
optimal. In principle, AST codes can indeed be designed just by
using the standard CDA-based MIMO code with a smaller con-
stellation. Nevertheless, this destroys the lattice structure and
causes exponential complexity at the receiver.

IX. CONCLUDING REMARKS AND SUGGESTIONS FOR

FURTHER WORK

We have introduced new construction methods for asym-
metric space–time codes based on cyclic division algebras
and their orders. Part of the results were reviewed from [24]
and [17]. One of the methods, the so-called smart puncturing
method, is suitable for an arbitrary number of transmitting
antennas and lesser receiving antennas.

The density bound from [17] was generalized to the block di-
agonal asymmetric case and made explicit for the
antenna case when building upon . Also a construction
achieving this bound was provided. It was noted that in the more
general case, the most reasonable way to derive density bounds
is with the aid of Odlyzko bound as the computation of minimal
discriminants is in general a hard problem.

We proved the connection between the block diagonal asym-
metric and multiblock codes, hence showing that the density re-
sults hold as such in the multiblock case.

We have not yet exhausted the box of optimization tools on
our code. For example, the codes can be pre- and postmultiplied
by any complex matrix of determinant one without affecting nei-
ther its density nor its good minimum product distance. In par-
ticular, if we use nonunitary matrix multipliers, the geometry
of the lattice will change. While we cannot always turn the lat-
tice into a rectangular one in this manner, some energy savings
and perhaps also shaping gains are available. The simulations
were carried out by using a suitably modified sphere decoder (on
which more details in a forthcoming paper [35]). It was shown
that the newly proposed codes outperform in block error perfor-
mance the punctured Perfect code, the DjABBA code as well as
the Icosian code, all aimed at transmission with four transmit-
ting and two receiving antennas.

Also extensive DMT analysis was provided, showing that
amongst the previously and newly proposed methods, the BDM
is the best way to construct asymmetric codes in this respect.
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