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Visual Sensitivity Guided Bit Allocation
for Video Coding

Chih-Wei Tang, Ching-Ho Chen, Ya-Hui Yu, and Chun-Jen Tsai

Abstract—A video bit allocation technique adopting a visual
distortion sensitivity model for better rate-visual distortion coding
control is proposed in this paper. Instead of applying compli-
cated semantic understanding, the proposed automatic distortion
sensitivity analysis process analyzes both the motion and the
texture structures in the video sequences in order to achieve better
bit allocation for rate-constrained video coding. The proposed
technique evaluates the perceptual distortion sensitivity on a
macroblock basis, and allocates fewer bits to regions permitting
large perceptual distortions for rate reduction. The proposed
algorithm can be incorporated into existing video coding rate
control schemes to achieve same visual quality at reduced bitrate.
Experiments based on H.264 JM7.6 show that this technique
achieves bit-rate saving of up to 40.61%. However, the conducted
subjective viewing experiments show that there is no perceptual
quality degradation.

EDICS—1-CPRS, 3-QUAL.

Index Terms—Bit allocation, H.264, psychovisual model, rate-
visual distortion analysis, visual attention, visual masking.

1. INTRODUCTION

ATE CONTROL plays a key role in a high quality video

encoder. The goal is to achieve the best perceptual pic-
ture quality at a given bit rate through a proper bit allocation
process. Existing rate control algorithms analyze motion ac-
tivity predictability, for example, the magnitude of mean abso-
lute differences (MAD), for bit-allocation. However, from vi-
sual perception point of view, a hard-to-predict area does not
necessarily catches as much human attention as an easily pre-
dictable area. In order to achieve constant visual quality across
different area with optimal bit-allocation, psychophysical model
must be taken into account in the bit allocation process.

For video codec design, the most widely used performance
measure is PSNR. PSNR is usually used as the quality measure
because it is mathematically convenient to set a goal to max-
imize PSNR. However, quite often, the extra bits an encoder
spent to increase PSNR does not cause an increase in visual
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quality. It is well recognized that PSNR does not reflect percep-
tual quality of a visual sequences [1]. A recent example demon-
strating this fact is the ISO/IEC MPEG Call-for-Proposal (CfP)
for Scalable Video Coding Technology. During the CfP evalu-
ation tests, the PSNR of some MPEG-4 AVC/H.264-coded an-
chors increase over one dB when the bitrate doubles. However,
the subjective quality indexes (mean opinion scores) of these
coded sequences do not go up across the same operating points
[2]. This can be explained by the concept of contrast sensitivity
function of the human visual system (HVS) [3]. The sensitivity
function is a band-pass shaped filter. When the frequency of the
input (texture and/or motion) of the displayed pictures is too
high, the HVS will reach a saturated point that further increase
in the input frequency will no longer increase the visual sensi-
tivity. On the other hand, an MAD-guided encoder may allocate
more bits to these visually-saturated areas since there are still
computable PSNR gains. Thus, this is the basic motivation be-
hind our proposed scheme.

Several human attention-based rate control techniques have
been developed in the literature. In [4], the human visual
system was taken into account by imposing constraints on the
PSNR value of the face regions and the temporal delay time.
Other researchers propose that, instead of the pixel-wise mean
square error (MSE) measure, the perceptual distortion weighted
measures should be used [5]-[7]. In [8], more bits are allocated
to the face and active regions since they are usually more
noticeable. The work in [9] adopts an object tracking technique
and a temporal filter to reduce the bits consumption of highly
moving background without visual quality loss for scenes with
a static face region and high movement background. However,
such face-focused coding techniques cannot be applied in a
broader sense for general video sequences. In [10], a bit-allo-
cation scheme assigns more bits to the foreground satisfying
some target visual quality while allows the background quality
gracefully degrades as a function of the distance from the
foreground.

In this paper, the key concept of our proposed psychovisual
model is that for video rate control, visual attention (or fore-
ground/background analysis) is not the most important cue
for proper bit-allocation. Visual distortion sensitivity (VDS),
namely the capability for human vision to detect distortion in
video sequences, is what a high quality video coder should
take advantage of during the bit-allocation process. VDS is
influenced by the motion structure as well as the texture struc-
ture of the scene. For example, moving objects with random
textures in a video sequence, albeit attract human attentions in
most cases, can tolerate high perceptual distortion introduced
by the encoder. Without the complicated object segmentation
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and global motion (camera motion) estimation for visually
significant objects extraction, we propose an effective visual
distortion sensitivity model to indicate the perceptually impor-
tant regions. Bit-rate saving is achieved by allocating fewer bits
to randomly textured moving regions in the video sequence.

This paper is organized as follows. In Section II, the motion
attention model presented in [11], [12] is introduced. Such
motion attention computational models have been used in
image/video compression, indexing, browsing and skimming.
This model is adopted by the proposed algorithm due to its
low complexity and reasonable performance. A new tex-
ture-structure model is developed in Section III. The proposed
psychovisual model combining the motion attention model
and the texture-structure model is described in Section IV. In
this section, the bit-allocation mechanism is also proposed.
Section V presents some experimental results based on JM7.6
of H.264 to show the effectiveness of the proposed framework.
Finally, the conclusions are given in Section VI.

II. THE MOTION ATTENTION MODEL

Although the human visual model for still image has been
well studied, the perceptual distortion metrics involving more
sophisticated psychophysical models are not fully understood
yet. The visual model for video sequences is quite different from
that for still images. For a moving object, the degree of motion
of its image on the retinas depends on how well the eyes tracking
the object [13]; and eye-tracking is directed by human attention.

The theory behind human attention has attracted great focus
in the field of psychology, biology, neurophysiology and cogni-
tive engineering in the past decades. James [11] first came up
with the idea of human attention theory. The behavior of human
attention consists of the top-down and the bottom-up processes.
The top-down process is intentionally controlled by the human
brain to direct one’s attention in order to accomplish a task. One
computational model simulating such process can be found in
[17]. On the contrary, the bottom-up process is triggered unin-
tentionally by certain objects in the surrounding environment
and grabs our attentions. The bottom-up visual attention can
be further classified into static attention [16], [17] and dynamic
(motion) attention [11].

We employ the motion attention model developed in [11].
This model involves low computational complexity since it in-
dicates the moving object without global motion estimation and
object tracking. This model is composed of the intensity in-
ductor, spatial coherence inductor, and the temporal coherence
inductor. For a target frame with frame number n, the intensity
inductor corresponding to the motion intensity for macroblock
at location (4, 7) is

\/mva:iij + moy?;;
I; =

max I, M)
where (M, j, Mvyni;) is the motion vector and max I, is the
maximal motion vector intensity in the nth frame. Since camera
motion could also cause large intensities, the other two inductors
are developed to suppress such negative effect.

The spatial and temporal coherence inductors are based on
the concept of the motion vector entropy. The spatial coherence
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inductor is the spatial consistency of the directions of the motion
vectors, and, it is

Csnij = — Zpsn(b) log (psn (b)) )
b=1

where ps,, (b) is the probability distribution function, and n
is the number of histogram bins. For one macroblock, the his-
togram is generated from the motion vector directions within a
spatial window of w X w macroblocks. Note that the regions be-
longing to the same moving object usually lead to small C's,,;;
value. However, for moving backgrounds, the C's,,;; value is not
always large while the intensity inductor is large.

The temporal consistency inductor is used to discriminate the
camera motion from the object motion since the former is usu-
ally more stable than the latter during a longer period of time.
This inductor is

b=1

where pt,,(b) is the probability distribution function, and n; is
the number of bins for motion directions histogram (for a tem-
poral window of L frames).

Finally, the motion attention index of macroblock at location

(i,7) is

MInij = Inij X Otni]' X (1 — Inij X Csm]-) (4)

All inductor values M I,,;; are between 0 and 1.

III. TEXTURE STRUCTURE MODEL

In still images, the perceptual importance of image regions
may be affected by contrast, size, shape, location, and type (fore-
ground or background), etc. [15] of the regions. The visual atten-
tion for still images can also be determined by a saliency-based
model combining the local contrasts of color, intensity, and ori-
entation [16]. Although it is possible to use these static visual
attention model for bit-allocation decision, the performance on
bit-saving may not be too good since these models do not take
into account the design of video codecs. A new model that is
more suitable for video coding purposes is proposed in this
section to discriminate the randomly-textured regions from the
structured ones during the bit-allocation process.

Humans are usually more attracted by the regions with higher
spatial contrast and weaker correlations of the intensities of
the nearby image pixels [19]. These regions contain higher en-
tropy and the human visual system tries to maximize the in-
formation transmitted to the early stages of visual processing.
Regions with large intensity change may contain either the bor-
ders of objects (structured texture) or random textures. Gener-
ally speaking, we can intuitively distinguish between a region
with structured texture and a region with random texture based
on the distribution of edge pixels in the region. A randomly-tex-
tured region is typically composed of small edges in various ori-
entations while a region with structured texture is composed of
consistent long edges. Although the randomly-textured regions
carry more entropy than the structured regions, human visions
are less sensitive to the distortions in the randomly-textured
regions since these regions contain too many random stimuli
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Fig. 1.

(b) (c)

The 26th frames in the video sequence STEFAN: (a) original frame, (b) Canny map, and (c) Sobel map.

(a)

Fig. 2.

(small edges) that cover up coding noises. On the contrary, dis-
tortions in the structured regions are more noticeable (even if
they are in the background).

In this paper, we propose a texture model for visual distortion
sensitivity analysis. The proposed algorithm is as follows. First,
an edge-detection operator is applied to each video frame. Next,
the mean edge strength and the distribution density of the edge
pixels in each macroblock are evaluated for local characteristics
extraction. The mean edge strength is computed by

BS—-1BS-1 e
Ebuii = Z Z Bsnzuzves

where BS is the macroblock size (16 in our experiments)and
enuvij 18 the intensity value of the pixel at location (u,v) on
the macroblock at location (%, j) of the nth frame. The maximal
value of e,,,;; varies with different edge detectors. The distri-
bution density of the edge pixels is computed by

&)

BS—-1BS-1
Dni': nzyuv 6
N e

L,
0,

if Cnuvij > O
otherwise

where Enuuij =

{ @)
In (7), o is a threshold for selecting edge pixels, E, i indi-
cates whether the pixel belongs to an edge or not, and D,,;; < 1.
Finally, the texture randomness index for the macroblock at lo-
cation (%, 7) is evaluated under the consideration of neighboring
s X s macroblocks, as follows:

iples e

> v

k=i (021 g (a=1)

(ESpnkt X Dpr)

TIni' =
/ (s x 8)

®)

(b) (c)

The 6th frames in the video sequence FOOTBALL: (a) original frame, (b) Canny map, and (c) Sobel map.

Empirical data show that this index value is large in ran-
domly-textured regions but small in structured regions. For
structured regions, the index values are much smaller than those
in the randomly-textured regions.

One example of the realization of the proposed texture anal-
ysis algorithm employs both the Canny and Sobel edge detec-
tors. The Canny detector [20] is designed to achieve the fol-
lowing goals: 1) It leads to low error rate for edge detection.
2) The edge points are well localized. 3) It has only one response
to a single edge. For edge detection, it first eliminates image
noise before finding the image gradient. It then applies nonmax-
imum suppression by tracking regions with high spatial deriva-
tives. Finally, the gradient image is further reduced by hysteresis
along the possible edge directions. Figs. 1(b) and 2(b) show the
examples of applying the Canny edge detector to 26th frame
and 6th in video sequences STEFAN and FOOTBALL, respectively.
We observe that the smooth and texture regions on original im-
ages can be distinguished well based on the Canny edge maps.
However, among the textured regions (e.g., the tennis player
and the audience in STEFAN), the Canny edge map cannot be
used to further distinguish between randomly-textured regions
and structured regions. Usually, the randomly-textured regions
on an original image are translated into the structured regions
due to the nonmaximum suppression and hysteresis processes.
Thus, an different edge detector is required to indicate the ran-
domly-textured regions.

The Sobel edge detectors [21] provide a possible solution to
the above problem. This operator takes the first derivative of the
input image, and it has the advantages of enabling both a differ-
encing and a smoothing effects. As the examples of Sobel edge
maps shown in Figs. 1(c) and 2(c) for the 26th frame and 6th
frame in video sequences STEFAN and FOOTBALL, respectively,
we can successfully identify the randomly-textured regions



(e.g., the audience in STEFAN) with the aid of the edge mean in
(5) and edge density in (6) calculated from these edge maps.
For the structured regions (e.g., the tennis player in STEFAN
and the football players in FOOTBALL), the texture randomness
indices in (8) resulted from edge mean and edge density are
much lower than those in the random-textured regions.

For the purpose of texture analysis, one problem with the
Sobel edge maps is that some visually smooth regions (e.g.,
clothes with wrinkles in STEFAN and FOOTBALL, meadow in
FOOTBALL) are detected as textured regions by (8). Instead, the
Canny edge maps can recognize these regions successfully.
Therefore, in the experiments, we first classify texture and
smooth regions based on the Canny edge maps by following the
measures in (5)—(8). In this case, the macroblock size s X s is
1 x 1. For those textured regions indicated by the Canny edge
maps, we further distinguish the randomly-textured regions
from the structured regions with the aid of the Sobel edge maps
by following the same process (5)to (8) with s = 1.

IV. PROPOSED BIT ALLOCATION SCHEME

To develop a high visual quality video coder, the capability
of human vision systems to detect distortions in the video se-
quences must be taken into account. The basic idea of our pro-
posed bit allocation scheme is to allocate more bits to the video
areas where human can easily see coding distortions; and al-
locate fewer bits to the area where coding distortions are less
noticeable. Human vision systems are more sensitive to percep-
tual distortions of smoothly textured (i.e. low spatial frequency)
objects with regular motions (trackable by eye movements) in
the foreground [13], [22]. These objects typically are suscep-
tible to coding distortions due to the inefficiency of block-based
motion prediction model. On the other hand, for moving areas
with random textures (i.e., high spatial frequency), human vi-
sion systems can tolerate high coding distortions [22] even if
the motion prediction is ineffective.

The proposed bit allocation algorithm is described as follows.
First, the motion attention index with the texture randomness
index described in Section II and III, respectively, are com-
puted for each macroblock. Secondly, a visual distortion sen-
sitivity index (VDSI) for each macroblock is calculated based
on both motion attention index and texture randomness index.
Finally, the quantization parameters of the encoder are adjusted
according to VDSIL.

In order to calculate VDSI, we first map the texture random-
ness index 1'I,;; to a modified index value 11, ! .. by

Vit (0.5x V2 x 2Lhit) | if By <TTij <.
Vo+0.5x Vo x 2~ (TInis=02) = if T'T,,;:> f3y.
otherwise.

Vl7

TIrlLij =

)
where V7 and V5 are parameters that controls the index value for
smooth regions and randomly-textured regions, respectively. 31
and [, are edge detector-dependent thresholds. For smooth re-
gions T'1,,;; is less than ;. Since smooth regions do not con-
sume much bandwidth and bitrate reduction for these regions is
insignificant, we assign a constant index value V7 to T/, ;o If

n
T'I,;j is greater than (3o, then the region is a randomly-textured
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Fig. 4. VDSI maps for (a) 26th frame in STEFAN and (b) 6th frame in
FOOTBALL.

region. In this case, since coding errors is less visible, T/ ; i is
designed to drop quickly. In our implementation, the maximal
value of VDSI, VDS ., is setto 255, and Vi = V.DST.x /2
and Vo = V DSI,,ax /4. Finally, since visual sensitivity should
monotonically increase when texture randomness decreases, log
function is employed to simulate the human visual behavior
when T'I,,;; is between 31 and 2. The mapping function T'T),, ;
is shown in Fig. 3.

Now, the visual distortion sensitivity index (VDSI) is defined
as

VDS Inax,
TI!

nijo

if Mlm‘j >y

otherwise. (10)

VDSI;; = {
where +y is a threshold for indicating visual attended regions (due
to motion structure) and 0 < vy < 1. A macroblock is deemed
a motion attended region if it has motion attention index M I,,;;
greater than . With the definition of (10), a large index value
corresponds to a region permitting small perceptual distortions.

The VDSI maps corresponding to different frames in STEFAN,
FOOTBALL, FUNFAIR and MOBILE are shown in Fig. 4(a)-(d).
The white regions represent the motion attended ones. From
Fig. 4(a) and 4(b), it is observed that the players in the video
belong to perceptual distortion sensitive regions. On the other
hand, the audiences in STEFAN are assigned small VDSI value
since these areas can tolerate large perceptual distortions.
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Fig. 5.

Comparison of the 280th frames of STEFAN with difference bit allocation techniques when QP = 22: left: bit allocation with fixed QP (PSNR =

39.79 dB). Right: bit allocation with visual distortion sensitivity analysis (PSNR = 34.30 dB).

In a video encoder, bit budget can be allocated to different
regions based on VDSI. Although the term “visual distortion
sensitivity” is used throughout this paper, the proposed scheme
is not designed to operate on a near-threshold basis but to op-
erate for suprathreshold distortions. Nevertheless, it is noted
that the suprathreshold problem currently has not been fully un-
derstood yet and it is questionable to generalize near-threshold
models to suprathrehsold ones [22]. Thus, to exhibit how the
VDSI may be employed to assist the adjustment of the quanti-
zation step size, a simple example is given without employing
suprathreshold models. For example, the quantization step size
computed by any rate control algorithm can be adaptively ad-
justed by adopting the VDSI as follows:

VDSI,;

QP,'”J-:QPMJ-—F (1—m> X AQ (11)
where Q) F,;; is the initial quantization parameter assigned by
the rate control algorithm, and A(Q is a parameter for limiting
the modification of QP,;; with AQ > 0. In (11), QPT’“]- is
always smaller than or equal to () P,,; ;. Naturally, there are other
ways to define the mapping between VDSI and QP. However,
since bitrate-saving without loss of visual quality is the goal of

this paper, (11) is used throughout the experiments.

V. EXPERIMENTAL RESULTS

We use IM 7.6 of H.264 to conduct the experiments in
this section. The configuration of the encoder is as follows.
Hadamard transform, CABAC, and in-loop filter are enabled.
No B frame is inserted. RDO mode is turned on. The encoded
sequences are the CIF versions of STEFAN and FOOTBALL at
30 fps. The parameter settings of the proposed scheme are
stated as follows. The spatial window size for computing C's is
5 x 5 (w = 5). The temporal window size L for Ct computation
is9.ngs 18 16 in (2), ns is also 16 in (3). a is 50 in (7). v is 0.4 in
(10). By and (35 are 16 and 64 in (9), respectively. The motion
vectors used in the attention model are generated using the full
search motion estimation algorithm with RDO. Constant QP,
i.e. no rate control, is used to demonstrate the coding efficiency
gain from the proposed psychovisual model.

Tables I and II show the comparisons of coding performance
between two different bit allocation techniques (H.264 with
constant QP versus H.264 with VDSI) for different video
sequences. As shown in Table I, when initial QP = 22, bit rate

TABLE 1
COMPARISONS OF CODING PERFORMANCE BETWEEN TWO BIT
ALLOCATION TECHNIQUES (H.264 WITH CONSTANT QP
VERSUS H.264 WITH VDSI) FOR STEFAN

H.264 with . :
i | G2h | H26wRVDSL | Coding
QP | Rate | PSNR | Rate | PSNR | iy
(Ebps) (dB)  (Kbps)  (dB) Gain
22 320 | 4094 90 | 3618 | 408I% |
28 | 14B | 3580 910 | 32% | 35T
0 1@7 | 3393 78 | 3140 | 3L06%
7] 74l | BB g 02 0%
3 39 WL 30 277B | 170%
TABLE 11

COMPARISONS OF PERFORMANCE WITH TWO BIT ALLOCATION TECHNIQUES
(H.264 WITH CONSTANT QP VERSUS H.264 WITH VDSI) FOR FOOTBALL

H264with | H 264 with VDSI ;
Intial | Comstant QP h Coding
QP | Rate | PSNR | Rate | PSNR | Coocieny
(Kbps) | (dB) | (Kbps) | (dB) Gain
22 2600 | 4045 | 236 | 3890 | 129% |
T2 | I3% | 36m | 120 | 3506 | 100%
|30 1065 3462 973 3384 8B4%
32 8m | B! | | RE | 1N%
36 | 491 | G085 | 466 | 3043 | S9% |

reduction is up to 40.61% for STEFAN. Furthermore, there is
no visible difference observed even though the overall PSNR
decreased by 4.16 dB. To exemplify this result, Fig. 5 compares
the visual qualities of two reconstructed frames between the
constant QP approach and the proposed bit allocation scheme
for STEFAN. As shown in Fig. 5, the PSNR loss is around
5.48 dB, but there are hardly any visual differences between the
two images. This is because fewer bits are allocated to visually
less sensitivity regions (e.g., the audience) while more bits
are assigned to the distortion-sensitive regions (e.g., the tennis
player and the text on the fence). It turns out that there is no per-
ceptual quality degradation even though the PSNR of the whole
video sequence decreases a lot. The inadequacy of PSNR as a
distortion measure is shown clearly through these experiments.
For those video sequences with few randomly-textured regions,
the coding efficiency improvement is limited. For example, for
FOOTBALL, the coding efficiency gain is 13% at QP = 22 and
it is 4.89% at QP = 36. The drops in the overall PSNR value
corresponding to different rates are all smaller than 1.6 dB.
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Fig. 6. Comparisons between the PSNR distortion and rate per frame using uniform bit allocation (constant QP), the VDSI analysis based scheme and JM7.6

with rate control for STEFAN (Initial QP = 28).

We also conducted some experiments to show the quality of
the bitstreams encoded by H.264 with VDSI compared with
the bitstreams with matching bitrates generated using a H.264

JM7.6 rate-controlled encoder. Due to the limited space, the de-

tailed results are not shown. Again, it is observed that the PSNR
values resulted from the H.264 with VDSI scheme are smaller
than those from the H.264 with rate control; however, visually,
the quality of VDSI coded bitstreams are slightly better.

Fig. 6 gives the comparisons between the distortion and rate
per frame using uniform bit allocation (constant QP), the VDSI-
based scheme, and JM7.6 with rate control for STEFAN. The rate
curve resulted from our proposed scheme is not as smooth as
that from the JM7.6 with rate control. However, it is smoother
than the one generated by the H.264 JM7.6 without any rate
control module. It is well known that there is the tradeoff be-
tween the constant rate and constant quality requirements. The
VDSI scheme obviously achieves a good balance between rate-
smoothness and quality. In addition, it must be emphasized here
that the VDSI bit allocation scheme is not a rate-control scheme.
There are no constraints on buffer usage and bitrate smoothness
imposed in the VDSI scheme. For practical applications, VDSI
should be combined with rate control algorithms.

There has been several objective visual quality assessment
matrices designed in the past years. However, the conclusions
come from Video Quality Experts Group (VQEG) show that
there is no objective measurement (including PSNR) which can
replace subjective testing [6]. Furthermore, there is no single
objective model outperforms the others in all cases. Therefore,
subjective experiments are conducted in this paper to show the
performance of our proposal. The test procedures and parame-
ters in [2] and [24] are employed while some simplifications are
made within a reasonable range due to the available resources.
The specification of the LCD monitors used in the subjective
viewing tests is listed in Table III. The experiment was exe-
cuted with ten testers. The viewing distance was set at three

TABLE 1III
LCD MONITOR SPECIFICATION USED IN THE SUBJECTIVE VIEWING TESTS
Display Area | Hormortal 340non x Vertical 272rem
Resohatn 1280x1024
Pixel Pich Horeartal 10 264 ronx Vertral 0264 nen
Brightress 400 ed/m”
_Contrast Rato | 50011

picture heights (3H). Illumination was minimized yet still al-
lowed the testers to fill out the voting form. The test materials
were in CIF resolution and viewed in a quasirandom order. That
is, the presentation order was modified to avoid the following
conditions. 1) Same video sequences presented twice consecu-
tively. 2) Same coding algorithm presented twice consecutively.
3) Same coding condition (e.g., bit rate) presented twice consec-
utively. A sequences was presented for 10 s followed by a video
sequences with black frames lasting for 5 s. After a testing pe-
riod of 4 min, the tester took a rest for another 4 min. The coding
methods include H.264 JM 7.6 without any rate control, H.264
JM 7.6 with rate control, and H.264 with VDSI.

The subjective experimental results are shown in Fig. 7. Our
major goal is to compare the viewing experience between the
H.264 with rate control and H.264 with VDSI since these two
coded sequences having the same bit rates. It is obvious from the
experiments that our proposed method produces better visual
quality when the sequence contains randomly textured regions
as shown in Fig. 7 (STEFAN). Furthermore, the proposed algo-
rithm works better than H.264 JM7.6 with constant QP while
the bit rate reduction can be up to 41% as shown in Table I.
For FOOTBALL shown in Fig. 7(d), the proposed algorithm also
outperforms H.264 JM7.6 with rate control for quantization pa-
rameter (QP) greater than 28.

Finally, the complexity of the proposed algorithm is analyzed
as follows. For a video sequence at CIF resolution, the compu-
tational complexity per frame is shown in Table IV. The analysis
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Fig. 7. Comparisons between the subjective experiments using uniform bit allocation for STEFAN and FOOTBALL, respectively (confidence level = 95%):
(a) and (c): VDSI analysis based scheme versus H.264 JM7.6 with constant QP. (b) and (d): VDSI analysis based scheme versus H.264 JM7.6 with rate control.

TABLE IV
COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHM
[ Functions Subfunchons Artlmetic op./Frame
3x3 Sobel x gradient fitermg | ADD:352:288x8 MUL: 352x288x9
Sobel Edge | 3x3Sobel y gradiert fitering = ADD: 352x288%8, MUL: 352x283x9
Detector " Gradient magnitude | ADD:352<288
MB edge stiength ADD: 352x288x% (255x2), MUL: 22x18x2, DIV: 22x18>3
5x5 Ganssian filtening ADD:352x288%24, MUL: 352x288>25
Canny 3x3 Sobel x gadiert filering | ADD: 352>288x8, MUL: 352x288x9
Edge 33 Sobel y padiert filerng | ADD:352:288%8, MUL: 352¢288x9
Detectoy Gradiert magnitude ADD:352:288
Find edge direction SUB: 352x288, DIV: 352x288, ATAN: 352>288
MB edge stiength ADD: 352x288x (255x2), MUL: 22x18x2, DIV: 22x18)3
TI N/A
I Inductor ADD: 5!5, DIV. zxmz, ATAN. 2X18
Cs Inductor MV angle histogram ADD: 2x18:25, DIV: 22x18x16
Spatial coherence inductor ADD: 2x18x15, LOG: 22x18x16, MUL: 20x18x16
Ct Inductoy MV angle hisbgram' ADD: 22x18x9, DIV: 22x18x16
Temporal coherence inductor | ADD: 22x18x8, LOG: 22x18x9, MUL: 20x18x9
MI MUL:2x18
VDSI N/A ADD: 22x18, MUL: 22x18, DIV: 22x18
New QP ADD: 2x18, SUB: 22x18, MUL: 22x18, DIV: 22x18

shows that the processing stage of Canny edge detector is the

VI. CONCLUSIONS

most time consuming. In the experiment, the VDSI analysis and

the proposed bit allocation scheme together take about 30 s for
the STEFAN sequence (300 frames) and 26 s for the FOOTBALL
(260 frames) sequence on a Pentium 4 2.8 G Hz processor. The
rest of the encoding time is the same as a regular H.264 encoder

with constant QP.

In this paper, we propose a novel video coder bit allocation
technique based on visual distortion sensitivity analysis. This
analysis directs the video coder to assign fewer bits to regions
that tolerates larger distortions, and accordingly, the bit-rate

saving is achieved. The key idea of this approach is to make use



of the concept of visual masking effects in the human visual
system. The coding performance of the proposed algorithm
is compared to both the H.264 JM 7.6 with constant QP and
H.264 JM 7.6 with rate control. The subjective viewing tests
show the performance of the proposed scheme. Bitrates are
saved with practically no perceptual quality degradation.
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