
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 163–175
Hotswapping Linux kernel modules

Yueh-Feng Lee *, Ruei-Chuan Chang

Department of Computer and Information Science, National Chaio Tung University, Hsinchu 30050, Taiwan, ROC

Received 15 March 2004; received in revised form 17 May 2005; accepted 21 May 2005
Available online 12 July 2005
Abstract

Contemporary operating system kernels are able to improve their functionality by installing kernel extensions at runtime. How-
ever, when an existing kernel extension needs to be upgraded, it must be completely removed before the new kernel extension is
installed. Consequently, the new kernel extension needs to be run from the beginning, which also influences the applications using
this kernel extension.

This work describes the design and implementation of a Linux module system that supports hotswapping, in which a module can
be replaced while it is in use. Rather than completely removing the old module, the new module can inherit the state held by the old
module so the dependent applications are not affected. For example, a Linux file system module can be hotswapped without
unmounting the corresponding partitions and terminating the applications that use these partitions.

The proposed system is implemented on Linux kernel 2.6.11. Existing modules can be loaded into the hotswap system without
change and can be hotswapped by changing only a few lines. Additionally, the hotswap system does not impose any runtime over-
head on module invocations.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Dynamic software update; Hotswapping; Linux kernel; Module; Operating system
1. Introduction

Modern operating system kernels are normally exten-
sible, allowing kernel extensions to be installed into the
system after booting. Kernel extensions can be applied
in several applications, such as hardware drivers, file sys-
tem drivers, and networking protocols. By installing
various kernel extensions, an operating system can pro-
vide various services without rebuilding the kernel.

However, the traditional approach to upgrading, an
existing kernel extension involves shutting down the
applications that depend on this kernel extension,
removing the old kernel extension, installing the new
one, and restarting the applications. Since the old kernel
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.05.011

* Corresponding author. Tel.: +886 3 5712121 56656; fax: +886 3
5721490.

E-mail addresses: yflee@os.nctu.edu.tw (Y.-F. Lee), rc@cc.nctu.
edu.tw (R.-C. Chang).
extension�s state is completely lost, removing it has se-
vere side effects. For example, a web server program typ-
ically depends on the file system drivers. Consider the
case of upgrading a file system driver for a web server
running banking applications. First, the administrator
needs to shut down the web server program, since web
pages are stored in the partition managed by this file sys-
tem driver. Next, the administrator needs to unmount
this partition because the file system driver cannot be re-
moved while it is in use. Then, the administrator needs
to uninstall the old driver, install the new driver, mount
the partition, and finally restart the web server program.
Consequently, upgrading a file system driver is similar to
a reboot. Furthermore, when the web server is shut
down, all existing web connections are broken, causing
ongoing banking transactions to fail.

This problem can be solved by providing a dynamic
update facility in the operating system kernel. In such
a system, old kernel extensions can be replaced by new

mailto:yflee@os.nctu.edu.tw
mailto:rc@cc.nctu. edu.tw
mailto:rc@cc.nctu. edu.tw


a b

Old 
Component

New 
Component

Indirect 
Reference 

Component
References Old 

Component

New 
Component

Component
References

Fig. 1. (a) Indirect swap and (b) direct swap.

164 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
extensions without affecting the dependent applications.
Dynamic update not only improves system availability,
but also eliminates application shutdown and restart
times, cuts the cost of backup servers, and lowers the
system maintenance time.

Dynamic update can be implemented in two ways, by
interposition or hotswapping (Soules et al., 2003). Inter-
position alternates the component behavior by attaching
code that is executed before or after the original code,
but cannot fix software faults since it does not change
the original code. Hotswapping replaces the original
code with a new implementation and can manage the
components in two ways, by indirect swapping or direct
swapping (Fig. 1). Indirect swapping associates a com-
ponent with an indirect reference. A component can
be swapped by switching the indirect reference rather
than changing all the component references. Indirect
swapping is simple but has extra runtime overheads
due to the indirection layer. Since direct swapping has
no additional layer between the component and compo-
nent references, each component reference has to be up-
dated during hotswapping. Although more complex
than indirect swapping, direct swapping it is appropriate
for performance-sensitive systems since there is no extra
runtime overhead.

K42 is a research-oriented operating system with a
new kernel design supporting indirect swapping (Soules
et al., 2003). However, neither indirect swapping nor
direct swapping has been achieved in existing operating
systems because hotswapping generally needs special
software architectures, such as object-oriented and com-
ponent-based environments. To support hotswapping,
both the operating system kernel and existing kernel
extensions must be modified. Additionally, hotswapping
may degrade the system performance, for example by
using indirect swapping.

Linux kernel extensions are called modules. Introduc-
ing hotswapping to Linux modules is difficult because
the kernel and the modules are neither object-oriented
nor component-based. This work proposes a direct hot-
swapping system for Linux modules. The fundamental
infrastructure of the original module system is not chan-
ged. Additionally, the system imposes no runtime over-
head on module invocations. An existing module can be
installed into the system without modification, and can
be hotswapped by changing only a few lines. The hot-
swap system is based on kernel version 2.6.11 and is
currently implemented on a uniprocessor system.

The rest of this work is organized as follows. Section
2 describes the general requirements of hotswapping and
specific challenges involved in hotswapping Linux mod-
ules. Section 3 presents the design and implementation
of the hotswap module system. Section 4 describes an
example and performance evaluation of hotswapping.
Section 5 introduces related work. Finally, conclusions
are drawn in Section 6.
2. Hotswapping and Linux modules

2.1. General requirements of hotswapping

A system that supports hotswapping should meet sev-
eral requirements. Below, four proposed requirements
for hotswapping are introduced (Moazami-Goudarzi,
1999; Soules et al., 2003): component boundaries, mutu-
ally consistent states, component state transfer and
external references.

Component boundaries: Component boundaries help
the system identify the target to be hotswapped. In ob-
ject-oriented or component-based programming envi-
ronments, an object or a component itself already
defines the component boundary, because both the re-
quired data and functions are encapsulated into the ob-
ject or the component. However, a situation in which a
component is not written using such environments
makes it difficult to identify the component boundary.

Mutually consistent states: A system must ensure that
all components are in a mutually consistent state after
hotswapping. Two mechanisms are present to preserve
mutually consistent states: consistency through recovery
and consistency through avoidance (Moazami-Gou-
darzi, 1999). The recovery mechanism permits hotswap-
ping to start in an unsafe state but the resulting
inconsistent state can be recovered later. The avoidance
mechanism ensures that hotswapping starts only in a
safe state.

Component state transfer: During hotswapping, the
state held by the old component must be properly trans-
ferred to the new component. For instance, in object-



Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 165
oriented programming languages such as Java, object
states can be transparently transferred with the help of
the runtime system (Arnold et al., 2000). However,
non-object-oriented programming languages do not
have mechanisms for transferring states transparently.

External references: A component can be used by
other components through external references. An exter-
nal reference may refer to a component, a data structure
or a function defined by a component. When a compo-
nent is hotswapped, each external reference must be redi-
rected to the appropriate part of the new component.

2.2. The challenges on designing a hotswap

module system for Linux

As mentioned earlier, making the Linux module
system meet these requirements is difficult because
the Linux kernel and the module system are neither
object-oriented nor component-based. This section
describes five specific challenges and possible solutions
on hotswapping Linux modules.

For ease of discussion, this work uses kernel to refer
to the monolithic part of the Linux kernel, excluding the
modules. The term module system is used to refer to the
part of the kernel that manages the modules. This dis-
cussion is based on the kernel version 2.6 unless other-
wise indicated. The introduction and programming of
Linux modules can be found elsewhere (Bovet and
Cesati, 2002; Rubini and Corbet, 2001).

2.2.1. Mutual consistency preserving scheme

Consistency through recovery is unsuitable for operat-
ing system kernels because it requires more system sup-
port and runtime overhead during recovery. Instead,
consistency through avoidance can be used. At least three
approaches for achieving consistency through avoidance
exist: synchronization, contention, and quiescence.

The synchronization solution was first proposed by
Kramer and Magee (1990) and then improved by Moaz-
ami-Goudarzi (1999). In this method, a component must
differentiate between active and passive states. A compo-
nent enters the passive state after receiving the passive
signal. A component in the passive state cannot serve
any requests and hotswapping can start only when the
component is in this state. However, all Linux modules
must be modified, or even redesigned, to support this
synchronization protocol.

In contrast, the contention and quiescence methods
do not differentiate between the active and passive
states. The contention method uses synchronization
techniques such as semaphores to reach a safe state for
hotswapping. However, this method also requires mod-
ifying the modules because a synchronization technique
must be used before invoking a module function.

The quiescence method does not use any synchroni-
zation technique to reach the safe state. This method
continuously monitors the component behavior and dis-
covers a system state in which the target component is
not in use. Hotswapping can start in this state, called
the quiescent state. This method does not need to mod-
ify any module function, although the module system
needs to implement a mechanism to detect the quiescent
state.

2.2.2. No concrete module states

In object-oriented programming languages such as
C++, object states can be mapped directly to compo-
nent states. However, Linux modules are written in C,
which does not provide a general method to map lan-
guage constructs to the component state. Therefore,
the module state must be defined either implicitly by
the module system or explicitly by the module program-
mer. When explicitly defining the module state, the pro-
grammer should specify which elements belong to the
module state. Explicit definition is more flexible than im-
plicit definition but is also a programming burden. By
contrast, if the module system defines the module states
implicitly, programmers do not have to be concerned
with them.

2.2.3. Undefined symbols can be resolved only once

Symbol exporting is the standard mechanism for ex-
port services within the Linux kernel. The kernel can
provide services to modules by exporting its symbols.
Modules can also provide services to other modules in
the same manner. A symbol may be a function or a var-
iable defined in the source. When the kernel is loaded,
the symbols it exports are stored in the kernel symbol
table. Similarly, each module has a module symbol table
to store its exported symbols.

If a module uses a symbol defined by another module,
the symbol is left undefined after compilation. During
module loading, the undefined symbol address is linked
to the actual implementation of that symbol. First, the
kernel symbol table is searched. If the symbol is not
found, each module symbol table is searched in turn.
This process is called resolution. However, the current
Linux module system only allows module symbols to
be resolved once, during module loading. Suppose that
module A depends on the symbols defined by module
B. If module B is hotswapped by module B 0, which is
not loaded into the same address, then module A cannot
obtain the correct addresses of the new symbols.

Three solutions are available to handle this problem:
indirect swapping, dynamic linking, and dynamic reso-
lution and relocation. Indirect swapping, as described
above, can tolerate the changing of symbol addresses
because of the indirection layer between the symbol
implementation and its caller, but it suffers from a
performance penalty. Dynamic linking is widely used
in UNIX shared libraries. With the assistance of a
dynamic linker, executables compiled with dynamic



166 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
linking support can access dynamic shared libraries in
an address-independent manner. However, the Linux
kernel lacks a built-in dynamic linker. Without needing
the dynamic linker and the dynamic linking format, dy-
namic resolution and relocation can links a symbol stat-
ically many times. For example, when module B is
hotswapped by module B 0 which is loaded into another
address, then the undefined symbols of module A can be
resolved and relocated so that module A can refer to
symbols defined by module B 0.

2.2.4. Variable address passing

Variable address passing usually occurs when a mod-
ule exports its services to the kernel. For example, a file
system module should pass its variable address to the
kernel when invoking the register_filesystem function.
However, the address kept by the kernel would become
invalid when the module is replaced by a new one.

The problem of variable address passing can be
solved in three ways: adaptive kernel functions, external
variable allocation, and static address sections. Adaptive
kernel functions are kernel functions that are aware of
hotswapping. For example, an adaptive register_filesys-
tem function can be invoked by the same file system
module multiple times. When invoked again by the same
module, it drops the old variable address and keeps the
address passed by the new module. External variable
allocation is a programming technique in which the
memory space required by a variable is not allocated in-
side the module. For instance, a variable can be allo-
cated outside the module by invoking the kmalloc

function. Since the memory space is allocated indepen-
dently, hotswapping does not change the address of this
variable. A static address section is a region in which the
variables do not change their addresses during hotswap-
ping. Thus, the variables contained in the static address
section are still valid after hotswapping. Although the
effects of external variable allocation and static address
section resemble each other, static address sections need
fewer modifications to the module source.

2.2.5. Module descriptor management

A module descriptor is a unique variable defined in-
side the module, but managed by the kernel. The module
descriptor is contained in a special section called
.gnu.linkonce.this_module and the kernel maintains all
of the active module descriptor s in the modules list.
Since both the old and the new modules have their
own module descriptors, they must be properly man-
aged during hotswapping.

Two elements of the module descriptor need special
treatment during hotswapping: the reference count and
the use list. The reference count prevents a module from
being removed while still needed. Reference counts are
maintained by each module�s callers rather than by the
module system. A reference count is incremented by
the try_module_get function and decremented by the
module_put function. Note that reference counts are
not appropriate for determining whether a module can
be hotswapped because usually they are updated lazily.

A use list prevents a module from being removed
when other modules still depend on its symbols. For in-
stance, when module B needs a symbol defined by mod-
ule A, module B is appended to the use list of module A.
Simultaneously, the reference count of module B is also
incremented. Module B is not removed from the use list
of module A until module B is removed from the system.

A successful module descriptor management should
meet two requirements. First, the reference count and
use list of the old module descriptor should be correctly
transferred to the new module descriptor. Second, the
kernel or other modules that already use the old module
descriptor must be able to use the same descriptor after
hotswapping. Module descriptors can be managed in
two ways: single descriptor and multiple descriptors.
In a single-descriptor system, only one module descrip-
tor is valid at one time. In a multiple-descriptor system,
when a new module replaces an old module, both the
old and the new descriptors remain valid.
3. Design and implementation

This section, first describes the design principles, and
then introduces the selected solution in response to each
problem described earlier. Next, important steps in-
volved in hotswapping are described. Additionally,
some related issues are discussed at the end of this
section.

3.1. Design principles

Preserve backward compatibility as much as possible:

Backward compatibility is important for two aspects,
loading and hotswapping. All existing modules must
be successfully loaded into the new system, and should
be hotswapped in the new system with few or no
modifications.

Change module system source only: Only the source of
the module system is modified, that is, the architecture-
dependent and architecture-independent parts of mod-
ule.c and module.h. Other parts of the kernel remain
unmodified.

No modification to existing data structures:Modifying
existing data structures may lead to compatibility prob-
lems. Therefore, the system adds new data structures
instead of modifying existing ones.

No new system call: No new system calls are intro-
duced. Additionally, the arguments of an existing system
call are not modified. Therefore, the new module system
is compatible with existing module utilities, such as
insmod, rmmod, and lsmod.



a

b

c

Fig. 2. Dealing with an evolving variable: (a) definition and declara-
tion used in the old module; (b) definitions and declaration used in the
new module; (c) corresponding replace handler.

Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 167
No overhead during normal execution: Since the kernel
is sensitive to performance, only mechanisms that do not
impose extra runtime overhead are selected.

3.2. Detailed implementation

3.2.1. Preserve mutual consistency using stack trace

The quiescence approach is chosen here to preserve
mutual consistent states, where the quiescent state is de-
tected using stack tracing. A module is in the quiescent
state when none of its functions are in any process stack.
The stack tracing code examines each frame of each pro-
cess�s kernel stack. If any stack frame contains a return
address that falls into the address range of the target
module, then the target module is not quiescent and
therefore cannot be hotswapped immediately. Addition-
ally, a busy was implemented to reduce stack tracing
time when a module has been detected as not quiescent.
When a process�s stack frame contains a return address
belonging to the target module, the process PID is
added to the busy list. When the stack is traced again,
the processes contained in the busy list are checked first.
If the non-quiescent condition is still found, other pro-
cesses in the system do not have to be checked. In other
words, the system only needs to examine all of the pro-
cesses if the system is quiescent. The busy list is devel-
oped because not every process in the system invokes
the module being hotswapped. If a process ever invokes
the target module, it is likely to invoke the same module
in the future. Notably, the hotswap system only checks
the kernel mode stacks since module functions are
invoked only in kernel mode.

3.2.2. Replace handler and module state

Generally, programmers can treat global variables as
the module state. A replace handler function transfers
the values of global variables to the new module. Pro-
grammers can transfer global variables by prefixing their
names with _old_, allowing the new module to access
two versions of the same variable without conflict. For
example, if the old module defines a variable i, then
the new module�s replace handler can access this vari-
able using the variable name _old_i.

Since global variables are generally defined either in
the .bss section or the .data section, the module system
could automatically copy these two sections from the
old version to the new version. However, this feature
is not implemented for two reasons. First, the new mod-
ule does not need all the old variables because some
variables may need new initial values. Second, a variable
may be declared in the new module as a different type
from that in the original code, and thus may have a
different size. Such a variable cannot be correctly and
automatically transferred.

Fig. 2 shows how to handle an evolving variable
using the _old_ prefix. In this example, the old module
and the new module use different definitions of the var-
iable a, both of which are called struct_a. The old struc-
t_a defines only two members, while the new struct_a
adds a member to the beginning of the structure. The
old struct_a is also defined in the new module but has
to be renamed as old_struct_a. The old variable a is de-
clared in the new module as an external variable named
_old_a. Before invoking the replace handler, the module
system automatically attaches the symbol _old_a to the
address of the old variable a so that the old variable a
can be correctly retrieved.

3.2.3. Dynamic resolution and internal data structures

Dynamic resolution and relocation are used since it
does not impose overhead during module invocations.
To support dynamic resolution and relocation, each
module object file is backed up in a region of memory
allocated by the module system. The module system pre-
serves old object files because dynamic resolution and
relocation requires symbol table and relocation sections,
which appear only in module object files. A new data
structure, the replace_handle structure, is added to hold
the addresses of the backup object file and its important
sections.



168 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
Dynamic resolution and relocation is performed on
modules that refer to the symbols defined by the target
module. To save resolution time, dynamic resolution
does not resolve kernel and module symbols not defined
by the target module, because these symbols do not
change addresses during hotswapping.

3.2.4. Static address sections

Static address sections are used to resolve the variable
address passing problem. The module system defines
two static address sections: static_new and static_old. If
a variable is placed in the static_new section, then its
content is overwritten by the new module. If the variable
is placed in the static_old section, then its content is not
changed. The programmer can put a module variable in
a section by adding a tag to the variable declaration. For
instance, in the GCC environment, the tag attribute(sec-

tion(static_old)) can put the declared variable to the
static_old section. Notably, the static_old section can
also be used to transfer module states. If a variable is
placed in the static_old section, then it is automatically
transferred to the new module because it will not be
overwritten by the new module. The static_old section
can also transfer the static variables declared in a mod-
ule function. When a static function variable is placed in
the static_old section, the new version can automatically
obtain the correct value without additional treatment.

3.2.5. Module descriptor management

The hotswap system only allows a single module
descriptor. However, the old module descriptor must
be preserved until the end of the hotswap procedure
since a hotswap procedure may fail at any stage, and
the old module must be still usable if hotswapping fails.
Fig. 3. Memory layout of module loading in the hotsw
The old descriptor is backed up to a safe memory region
when hotswapping begins. At the end of hotswapping,
important information of the old descriptor, such as
the reference count and the use list, are transferred to
the new descriptor. Additionally, module descriptors
are handled similar to a static address section because
the addresses of module descriptors are often passed
to the kernel. If the new descriptor does not have the
same address as the old descriptor, then the kernel
would lose track of the module descriptor after
hotswapping.

3.3. Module loading and hotswapping

The implementation described earlier is reflected in
the module loading and hotswapping procedures. In ker-
nel version 2.6, a module loading procedure is started by
the insmod utility and is processed by the sys_init_module

system call. The module loading procedure of kernel 2.4
differs significantly from that of kernel 2.6 and can be
found elsewhere (Bovet and Cesati, 2002).

3.3.1. Module loading and hotswapping in the

hotswap system

The hotswap system slightly alters the semantics of
the sys_init_module system call. If sys_init_module is in-
voked with an unloaded module, then the module sys-
tem loads the module. If sys_init_module is invoked
with a module already in the system, then the module
system performs hotswapping.

Figs. 3 and 4 show the memory layout of module
loading and module hotswapping, respectively. The
module loading and hotswapping procedures are
described together as follows:
ap system: (a) during loading, (b) after loading.



Fig. 4. Memory layout of module hotswapping in the hotswap system: (a) during hotswapping, (b) after hotswapping.

Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 169
1. The insmod utility reads the module object file into
the memory, maps the object file�s memory region,
and passes the memory region�s handle to the
sys_init_module system call.

2. The sys_init_module system call invokes the
load_module function, which performs the following
steps:
(a) Allocate a temporary memory region and copy

the content indicated by the memory handle to
the temporary region. Then, checks whether the
previous version of the module is present,
and sets the hotswap flag if the previous version
exists.

(b) If the hotswap flag is set, then track the kernel
stack of each process in the system. If any func-
tion of this module is found in the process stack,
retry until a threshold is reached.

(c) Classify the sections of the module object file as
core sections, initial sections, or static address
sections, then calculate the total size of each sec-
tion type. Notably, the module descriptor, con-
tained in the .gnu.linkonce.this_module section, is
classified as a static address section.

(d) If the hotswap flag is not set, then allocate
three memory regions, one each for the core sec-
tions, the initial sections, and the static address
sections. Otherwise, only allocate core sections
and initial sections because the memory of static
address sections is inherited from the previous
version.

(e) Copy each section into the appropriate region
of memory according to the previous classifi-
cation.

(f) Resolve each undefined module symbol. First,
look up the kernel symbol table, then the
module symbol tables. If the undefined symbol
name begins with _old_, then it is attached to
the corresponding symbol defined in the previous
version.

(g) Perform relocation after all the symbols are
successfully resolved. Relocation calculates the
addresses of the code and data.

(h) Save the information needed by hotswapping into
the replace_handle structure, and add the struc-
ture to a list named module_handle. The
replace_handle structure keeps important infor-
mation needed by the static address sections,
dynamic resolution and relocation, and module
descriptor management.

(i) Free the temporary memory region if the hotswap
flag is not set and return the module descriptor to
its caller.



170 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
3. If the hotswap flag is not set, then sys_init_module

appends the returned module descriptor to the mod-

ules list.
4. If the hotswap flag is set, then sys_init_module per-

forms dynamic resolution and relocation for each
module that depends on this module.

5. If the hotswap flag is not set, then sys_init_module

invokes the init_module function provided by the
module. Otherwise, the replace_module function is
invoked. Then, the memory used by initial sections
is freed.

6. If the hotswap flag is set, then the two module
descriptors are merged by copying important data
from the old descriptor to the new descriptor. Finally,
the sys_init_module function returns.

The memory usage of the hotswap system is different
from that of the original system in two ways. First, the
original system does not have static address sections
and thus the module descriptor is classified as a core sec-
tion. Second, the original system frees the temporary
copy after the loading procedure while the hotswap
system keeps this copy for hotswapping.

3.4. Discussion

3.4.1. Race condition prevention

A hotswap procedure must be free from any race con-
dition, which the current hotswap system can prevent in
uniprocessor systems. Two race conditions may occur
during hotswapping. The first is that the hotswap system
replaces the module while the module is still in execu-
tion, and the second is that some kernel threads access
the module while this module is under hotswapping.
The first one is avoided by stack tracing, and the second
one is avoided by disabling kernel preemption and hard-
ware interrupts. Notably, some asynchronous invoca-
tion mechanisms, such as software interrupts, bottom
halves, tasklets, and software timers, do not lead to race
conditions because they are actually implemented by
kernel threads, which are scheduled by the kernel. These
kernel threads cannot preempt the hotswap procedure
if kernel preemption is disabled before hotswapping.

3.4.2. A general procedure to make a module
hotswappable

Generally, a module can be made hotswappable by
the following steps. First, the module programmer needs
to know which variables must be transferred to the new
version. Then, the programmer should determine how
the variable is used. If used to communicate with the
kernel, the variable should be placed into a static ad-
dress section, since the kernel has already kept its ad-
dress. Otherwise, the programmer can add code to the
replace handler to transfer this variable or put it into
the static_old section. If a variable is placed into the
static_old section, then it is not changed during hot-
swapping, but its definition and size cannot change. By
contrast, a normal variable can change its definition
and size, but needs the replace handler to transfer its
value. Other problems, such as quiescence detection,
dynamic resolution and module descriptor management,
as described earlier, can be directly handled by the
hotswap system and thus need not concern the
programmer.

3.4.3. Limitations

This section describes some limitations of the hot-
swap system. The hotswap system can hotswap most
modules except in the following cases. First, the system
cannot handle a module that starts a persistent kernel
thread. In this case, the module is always in execution,
so can never be hotswapped. Second, a variable placed
into the static address section cannot grow in size, be-
cause each variable address is fixed and no extra space
is reserved between any two variables.

Finally, the hotswap system is not suitable for a mod-
ule in which the functions invoke the scheduler fre-
quently. Since the functions are usually in execution,
the system may find the quiescent state very slowly since
the quiescence detection aborts repeatedly. However,
this situation seldom appears because most module
functions return immediately, rather than invoking the
scheduler. If module functions invoke the scheduler
too often, then the overhead is small because of the busy
list mentioned earlier.

If the hotswap system uses reference counting rather
than stack tracing, then it is free from repeated aborts.
Although reference counting is much more efficient for
detecting the quiescent state, it suffers from two draw-
backs. First, in order to increment or decrement the ref-
erence counter, the module or the module caller must be
modified. Second, since hotswapping is not very fre-
quent, the reference counting overhead accumulated
during runtime is much greater than the overhead of
stack tracing, which only arises during hotswapping.
By contrast, the stack tracing technique does not modify
the module source or the module callers, and does not
introduce extra overheads during normal execution.
4. Evaluation

This section demonstrates the working of the hot-
swap system and then evaluates its performance using
the vfat and fat modules, which are real file system mod-
ules taken from the Linux kernel 2.6.11 source tree.

4.1. A vfat file system example

This example involves two modules, vfat and fat. The
vfat module supports the FAT32 file system, whereas



Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 171
the fat module implements basic functions needed by the
vfat module. The symbols defined by the fat module are
also used by the vfat module. Before hotswapping, a
FAT32 partition was created. The workload files of
WebBench 5.0 (Lionbridge Technologies, 2004) were
then installed onto this partition. Next, we execute the
following test sequence was executed:

1. Insert the fat module followed by the vfat module.
2. Mount the FAT32 partition.
3. Start the Apache server (limiting the number of

concurrent processes to 200).
4. Start the clients of WebBench on other machines, and

then start the benchmark.
5. Hotswap the fat module and the vfat module during

the benchmark.

Without either shutting down the Apache server or
unmounting the FAT32 partition, the vfat and fat mod-
ules were successfully hotswapped during the bench-
Fig. 5. Modifications to
mark. Fig. 5 shows all the modifications to the vfat
module, with the modified parts shown in italics. Fig.
6 shows the definition of the file_system_type structure
and the replace handler of the vfat module. The vfat_
fs_type variable is a global variable whose address
would be passed to the kernel, and which has to be
placed into the static_old section because the file_sys-
tem_type structure defines both data and function poin-
ter members. The data members need to be transferred
from the old version, but the function pointer members
must be overwritten by the new version. Since the stati-

c_old attribute causes the function pointer members to
be overwritten by the old version, they must be reas-
signed in the replace handler. In the example, the func-
tion pointer members vfat_get_sb and kill_block_super
were reassigned. The member name was also reassigned
because the original name string was defined in the old
module rather than in the new module. Two other vari-
ables, vfat_dentry_ops and vfat_dir_inode_operations,
are placed into the static_new section since they define
the vfat module.



a

b

Fig. 6. (a) Definition of the file_system_type struct; (b) replace handler of the vfat module.

Table 1
Loading times of the vfat module

Original system (ls) Hotswap system (ls) Ratio (%)

2119 2192 103.45

Table 2
Loading and hotswapping times of the vfat module

Hotswap system (ls)

Module loading 2192
Hotswapping 3042
Ratio 138.77%

Table 3
The most time-consuming steps on hotswapping the vfat module

Hotswap system (ls) Percentage (%)

Resolution 1476 48.52
Quiescence detection 933 30.67
Others 633 20.81

Total 3042 100

172 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
only function pointers, allowing all the members to be
overwritten by new function addresses. The fat module
is similarly modified; its code is not shown here.

4.2. Other hotswapping examples

In addition to the vfat and fat modules, the BFS
(UnixWare Boot Filesystem) and e100 modules were also
made hotswappable. Unlike the FAT32 file system,
which needs two modules, the BFS file system is sup-
ported by a single module. The modifications to the
BFS module are also similar to those of the vfat and
fat modules. The e100 module is the driver for PCI-based
Ethernet cards using the Intel 8255 chipset. The e100
module can be hotswapped when the Linux protocol
stack has active TCP connections. Critically, the e100
module implements an interrupt handling function. Dur-
ing hotswapping, the replace handler needs to install a
new interrupt handling function to prevent the old han-
dling function from being invoked. Although the e100
module demonstrates that the hotswap system can han-
dle device drivers implementing interrupt handling func-
tions, it does not effectively show the benefit of
hotswapping. If the e100 module is removed and the
new version is then installed, the TCP connections can
also be preserved since TCP supports retransmission.
Although a temporary loss of the Ethernet state lead to
the loss of some TCP segments, these lost segments can
be retransmitted after restarting the e100 module.

4.3. Performance

This section shows the performance of loading and
hotswapping the vfat module. The experimental plat-
form was a PC equipped with a Celeron 1.13 GHz pro-
cessor and 384 MB main memory. The Linux kernel
version was 2.6.11.
Table 1 shows the loading times of the vfat module.
The original system needed 2119 ls, whereas the hot-
swap system needed 2192 ls. The additional overhead
of the hotswap system was only 3.45%.

Table 2 compares the vfat loading and hotswapping
times in the hotswap system. Although a hotswap proce-
dure is much longer than the loading procedure, their
difference is difficult to notice from the user perspective
because they last only a few milliseconds.

Table 3 lists the two most time-consuming steps in
hotswapping the vfat module, of which the most time-
consuming step is resolution, which resolves the unde-
fined symbols of the vfat module, and which takes



Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 173
almost half of the hotswap time. The length of this step
depends on the system�s symbol number and the mod-
ule�s undefined symbol number. Table 4 lists the module
and symbol status of the experimental system. The vfat
module contains 36 undefined symbols.

The next most time-consuming step is quiescence
detection. The length of this step depends on the number
of processes in the system, at this point 247. Of these,
200 were created by the Apache web server, as described
earlier. The other 47 processes belong to the desktop
configuration of the Fedora 3 installation.

Table 5 shows the execution times of the init_module

function and the replace_module functions. The init_
module function is much longer than the replace_module
function because init_module has to invoke the regis-

ter_filesystem function, whereas replace_module only
alters some members of the vfat_fs_type variable. How-
ever, both of the functions have little impact on module
loading and hotswapping because they are relatively
shorter than the entire module loading or hotswapping
procedures.

Table 6 compares the normal resolution time and dy-
namic resolution time of the vfat module. Since the vfat
module depends on the fat module, the dynamic resolu-
tion of vfat is triggered by hotswapping the fat module.
The length of the dynamic resolution time depends on
the symbol number defined by fat and used by vfat. In
this work, the symbol number is 12. The analytical result
shows that the dynamic resolution takes about 35% of
the normal resolution time due to the search space
reduction technique described earlier, which also dem-
Table 4
Module and symbol status of the experimental system

Module number 36
Module symbols 584
Module GPL symbols 1
Kernel symbols 2166
Kernel GPL symbols 240

Table 5
Execution times of the init_module and replace_module functions

Module loading (ls) Hotswapping (ls)

init_module or
replace_module function

6.637 0.583

Total 2192 3042
Ratio 0.30% 0.02%

Table 6
Normal resolution and dynamic resolution times of the vfat module

Time (ls)

Dynamic resolution 517
Normal resolution 1476
Ratio 35.03%
onstrates that the dynamic resolution is not an expensive
step in the hotswapping procedure.

The memory overhead of hotswapping is easy to esti-
mate. The maximum memory overhead is twice the
module binary size because a clean module binary is
kept inside the module system. For instance, the vfat
binary size is 113 KB, and the memory occupied by
the hotswappable vfat module is not larger than
226 KB.
5. Related work

5.1. Dynamic reconfiguration, dynamic software update,
and hotswapping

A system is dynamically reconfigurable if its configu-
ration can be changed while the system is running.
Dynamic reconfiguration was originally implemented
in distributed programming languages (Bloom, 1983;
Kramer and Magee, 1985; Hofmeister et al., 1992) and
has been studied throughout two decades. Dynamic
software updating (Hicks et al., 2001) is also a form of
dynamic reconfiguration, which focuses on changing
the code of the underlying system. Hotswapping is also
a form of dynamic reconfiguration, which generally
involves a dynamic software update and implies that
the component states should be preserved after reconfig-
uration. The requirements of dynamic reconfiguration
have been identified by Moazami-Goudarzi (1999) and
Soules et al. (2003). Kramer and Magee (1990) and
Moazami-Goudarzi (1999) have thoroughly discussed
mutual consistency states.

5.2. Dynamic reconfiguration and operating systems

Extensible kernels are also closely related to dynamic
reconfiguration. Kernel extensions can be added to an
extensible kernel during runtime, just as components
can be dynamically installed into an dynamically recon-
figurable system. Some well-known extensible kernels
are SPIN (Bershad et al., 1995), Exokernel (Engler
et al., 1995) and VINO (Seltzer et al., 1994). The Linux
kernel is also extensible because it employs modules, but
only for some kernel services.

An extensible kernel is said to be dynamically recon-
figurable if a running kernel extension can be replaced
by another kernel extension. Senert et al. (2002) utilized
the THINK component framework (Fassino et al.,
2002) to build a dynamically reconfigurable kernel,
although did not provide the detailed implementation.
K42 (Soules et al., 2003) is an object-oriented operating
system kernel that can be reconfigured dynamically
using interposition and indirect swapping.

Transaction processing systems (Gray and Reuter,
1993), which are generally built on top of the operating



174 Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175
systems, can also facilitate hotswapping. Software mod-
ules can be hotswapped in transaction processing sys-
tems in two ways. In the first method, the system
blocks incoming transactions, tracks ongoing transac-
tions, rolls them back, hotswaps the software modules,
redoes the transactions and finally processes incoming
transactions. In the second method, the system blocks
incoming transactions, waits until all the ongoing trans-
actions finish, hotswaps the software modules and final-
ly processes new transactions. However, since most
operating system kernels do not support transaction
processing, the transaction-based kernel hotswapping
is not easy to achieve.

5.3. Other application areas of dynamic reconfiguration

Dynamic reconfiguration is also applicable to object-
oriented programming languages. Dynamic reconfigura-
tion enables a new class to replace an instantiated class
during runtime. Several dynamically reconfigurable lan-
guage systems have been developed, including CLOS
(Keene, 1989), C++ (Hjalmtysson and Gray, 1998),
Java (Malabarba et al., 2000; Dmitriev, 2001), and a
Java-based language (Costanza, 2001). Dynamic recon-
figuration is also supported in CORBA (Almeida, 2001),
which is a distributed object-oriented environment.

Hicks et al. (2001) adopted the Typed Assembly Lan-
guage (TAL) (Morrisett et al., 1999) and dynamic link-
ing feature of the ELF format (Lu, 1995) to implement
general-purpose dynamically reconfigurable applica-
tions. However, operating system kernels cannot utilize
this approach because most kernels do not have a built-
in dynamic linker. Furthermore, Levine (2000) indicated
that dynamic linking suffers from a performance
penalty.
6. Conclusions

This work proposes a Linux-based hotswap module
system which solves several problems involved in hot-
swapping, relating to mutually consistent states, module
states, module symbol exporting, variable address pass-
ing and module descriptor management.

Each problem was solved by a design that best fits the
system�s design goals. For mutually consistent states, the
quiescent detection with stack tracing is used. A module
can be hotswapped only when it is detected as quiescent,
that is, when each process stack contains no functions of
the module being hotswapped. The system also imple-
ments a busy list to lower the stack tracing penalty.
For module states, a programmer can write a replace
handler using the variable prefix _old_ to transfer mod-
ule variables. Module symbols can be dynamically re-
solved and relocated. All the modules that depend on
the hotswapped module can be efficiently resolved and
relocated again. Module variables whose addresses are
passed to the kernel can be placed into static address
sections. Since variables in these two sections are not
moved, the kernel can continue to access them after hot-
swapping. For module descriptor management, only a
single module descriptor is valid, and the old descriptor
and the new descriptor are merged at the last stage of
the hotswap procedure.

The work most closely related to the proposed system
is the K42 operating system (Soules et al., 2003), in
which the kernel components are written in C++. This
proposed system differs from K42 in several aspects.
First, K42 supports hotswapping by using a new kernel
design, while the proposed system extends the Linux
module system. Since the proposed system is designed
to be compatible with existing modules, the fundamental
structure of the Linux module system is not changed.
Thus, the system has more design constraints than a sys-
tem designed from scratch. Second, K42 components
are written in C++ while Linux modules are written in
C. The component states are easy to identify for C++
objects because a C++ object has more runtime infor-
mation than a C program does. Third, K42 supports
indirect swapping while the proposed system supports
direct swapping. An indirect swapping system simplifies
the design, but a direct swapping system performs better
in normal execution. Finally, K42 uses lock-free data
structures (McKenney and Slingwine, 1998) combined
with thread generation mechanism (Soules et al., 2003)
to identify the quiescent state, whereas the proposed sys-
tem detects the quiescent state through stack tracing.

Although the current hotswap system is implemented
only for uniprocessor systems, future work will be to
support symmetric multiprocessor (SMP) systems.
When extending the hotswap system to SMP systems,
preserving the quiescent state is the most difficult task
because when one processor is replacing a module, other
processors may also access it. Moreover, interrupts are
more difficult to manage in SMP systems since the glo-
bal interrupt disabling function has been removed in
kernel version 2.6. To preserve the quiescent state, the
hotswap system should utilize the scheduler and inter-
processor interrupts. When the hotswap procedure
starts on one processor, it sets a hotswap flag and sends
interprocessor interrupts to all other processors. The Li-
nux kernel always invokes the scheduler after running
the interprocessor interrupt handler. Therefore, when
the scheduler on each processor notices the hotswap
flag, it executes a piece of code that implements a barrier
(Mellor-Crummey and Scott, 1991). When all the pro-
cessors reach the barrier, each processor disables its
interrupts locally, then the hotswapping processor de-
tects quiescence. If the number of processes is large, then
the process stacks can be checked more effectively by
distributing them to all the processors. If the system is
quiescent, then the hotswapping processor replaces the



Y.-F. Lee, R.-C. Chang / The Journal of Systems and Software 79 (2006) 163–175 175
module and then clears the hotswap flag so that the
schedulers on other processors can return to normal
execution.
References

Almeida, J.P.A., 2001. Online reconfiguration of object-middleware-
based distributed systems. Master�s thesis, University of Twente,
The Netherlands, June 2001.

Arnold, B. et al., 2000. The Java Programming Language. Addison-
Wesley, Boston, MA.

Bershad, B.N. et al., 1995. Extensibility, safety and performance in the
SPIN operating system. In: Proceedings of 15th ACM Symposium
on Operating System Principles, pp. 267–284..

Bloom, T., 1983. Dynamic module replacement in a distributed
system. PhD thesis, MIT Laboratory for Computer Science, March
1983.

Bovet, D.P., Cesati, M., 2002. Understanding the Linux Kernel.
O�Reilly & Associates, Cambridge, MA.

Costanza, P., 2001. The programming language Gilgul. In: Proceedings
of Workshop on Engineering Complex Object-Oriented Systems for
Evolution (ECOOSE) at OOPSLA 2001. Available from: <http://
www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml/>.

Dmitriev, M., 2001. Towards flexible and safe technology for runtime
evolution of Java language applications. In: Proceedings of
Workshop on Engineering Complex Object-Oriented Systems for
Evolution (ECOOSE) at OOPSLA 2001. Available from: <http://
www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml/>.

Engler, D.R. et al., 1995. Exokernel: an operating system architecture
for application-level resource management. In: Proceedings of the
15th ACM Symposium on Operating Systems Principles, pp. 251–
266.

Fassino, J.P. et al., 2002. THINK: a software framework for
component-based operating system kernels. In: Proceedings of
2002 USENIX Annual Technical Conference, pp. 73–86.

Gray, J., Reuter, A., 1993. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann.

Hicks, M. et al., 2001. Dynamic software updating. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 13–23.

Hjalmtysson, G., Gray, R., 1998. Dynamic C++ classes: a lightweight
mechanism to update code in a running program. In: Proceedings
of 1998 USENIX Annual Technical Conference, pp. 65–76.

Hofmeister, C. et al., 1992. Surgeon: a package for dynamically
reconfigurable distributed applications. In: Proceedings of the
IEEE International Conference on Configurable Distributed
Systems. IEEE Computer Society Press.

Keene, S.E., 1989. Object-oriented Programming in Common LISP: a
Programmer�s Guide to CLOS. Addition-Wesley, Reading, MA.

Kramer, J., Magee, J., 1985. Dynamic configuration for distributed
systems. IEEE Transactions on Software Engineering 11 (4), 424–
436.
Kramer, J., Magee, J., 1990. The evolving philosophers problem:
dynamic change management. IEEE Transactions on Software
Engineering 16 (11), 1293–1306.

Levine, J.R., 2000. Linkers and Loaders. Morgan Kaufmann, San
Francisco, CA.

Lionbridge Technologies, 2004. WebBench 5.0 Overview. Available
from: <http://www.veritest.com/benchmarks/webbench/home.asp>.

Lu, H., 1995. ELF: from the Programmer�s Perspective. NYNEX
Science & Technology Inc.

Malabarba, S. et al., 2000. Runtime support for type-safe dynamic
Java classes. In: Proceedings of the Fourteenth European Confer-
ence on Object-Oriented Programming.

McKenney, P.E., Slingwine, J.D., 1998. Read-copy update: using
execution history to solve concurrency problems. In: Proceedings
of 10th International Conference on Parallel and Distributed
Computing and Systems.

Mellor-Crummey, J.M., Scott, M.L., 1991. Algorithms for scalable
syncrhonization on shared-memory multiprocessors. ACM Trans-
actions on Computer Systems 9 (1), 21–65.

Moazami-Goudarzi, K., 1999. Consistency preserving online reconfig-
uration of distributed systems. PhD thesis, Imperial College,
London, March 1999.

Morrisett, G. et al., 1999. From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems 21
(3), 527–568.

Rubini, A., Corbet, J., 2001. Linux Device Drivers. O�Reilly &
Associates, Cambridge, MA.

Seltzer, M. et al., 1994. An introduction to the architecture of the
VINO kernel. Technical Report 34–94. Harvard University Center
for Research in Computing Technology.

Senert, A. et al., 2002. Developing dynamically reconfigurable oper-
ating system kernels with the think component architecture. In:
Proceedings of 2002 OOPSLA Workshop on Engineering Context-
Aware Object-Oriented Systems and Environments (ECOOSE
2002).

Soules, C. et al., 2003. System support for online reconfiguration. In:
Proceedings of 2003 USENIX Annual Technical Conference, pp.
141–154.

Yueh-Feng Lee received the B.S. and M.S. degrees in computer science
from National Tsing Hwa University in 1997 and 1999, respectively.
He is now pursuing a Ph.D. degree at the Department of Computer
and Information Science, National Chiao Tung University. His
research interests include operating systems, mobile communications,
and Java.

Ruei-Chuan Chang received the B.S. degree in 1979, the M.S. degree in
1981, and his Ph.D. degree in 1984, all in computer science from
National Chiao Tung University. In August 1983, he joined the
Department of Computer and Information Science at National Chiao
Tung University as a Lecturer. Now he is a Professor of the Depart-
ment of Computer and Information Science. He is also an Associate
Research Fellow at the Institute of Information Science, Academia
Sinica, Taipei.

http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml
http://www.veritest.com/benchmarks/webbench/home.asp

	Hotswapping Linux kernel modules
	Introduction
	Hotswapping and Linux modules
	General requirements of hotswapping
	The challenges on designing a hotswap�module system for Linux
	Mutual consistency preserving scheme
	No concrete module states
	Undefined symbols can be resolved only once
	Variable address passing
	Module descriptor management


	Design and implementation
	Design principles
	Detailed implementation
	Preserve mutual consistency using stack trace
	Replace handler and module state
	Dynamic resolution and internal data structures
	Static address sections
	Module descriptor management

	Module loading and hotswapping
	Module loading and hotswapping in the�hotswap system

	Discussion
	Race condition prevention
	A general procedure to make a module hotswappable
	Limitations


	Evaluation
	A vfat file system example
	Other hotswapping examples
	Performance

	Related work
	Dynamic reconfiguration, dynamic software update, and hotswapping
	Dynamic reconfiguration and operating systems
	Other application areas of dynamic reconfiguration

	Conclusions
	References


