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a b s t r a c t

In this work, we present a hybrid intelligent approach for parameter extraction and design optimization
of semiconductor nanoscale devices and nanostructures. Based on evolutionary algorithms, numerical
methods, neural network scheme and parallel computing technique, the optimization methodology is
developed and successfully implemented. In the hybrid approach, an evolutionary algorithm, such as
genetic algorithm or particle swarm optimization, firstly searches the entire problem space to get a set
of roughly estimated solutions. The numerical method, such as Levenberg–Marquardt method, then per-
forms a local optima search and sets the local optima as the suggested values for the genetic algorithm to
perform further optimizations. Meanwhile, the neural network is applied to investigate the influence of
parameters on the optimized functions which thus guides the evolutionary direction of genetic algo-
rithm. For solving real world problems, all functional blocks are performed under a PC-based Linux clus-
ter system with message-passing interface libraries. This hybrid intelligent approach has experimentally
been implemented and validated for different applications in semiconductor nanodevices and nanostruc-
tures. For semiconductor nanodevice parameter extraction, this approach shows its capability to auto-
matically extract a set of global parameters among sixteen 90 nm complementary metal oxide
semiconductor (CMOS) devices. Compared with the measured current–voltage (I–V) curves of fabricated
CMOS samples, the optimized I–V results are within 3% of accuracy. The computational examinations
including sensitivity, convergence property, and parallelization are discussed. For parameter extraction
of organic light emitting diode (OLED), the approach also achieves good accuracy for red, green, blue
OLEDs. For the third and fourth applications, optimal structure design of silicon photonic taper wave-
guide and photonic crystal are further advanced by integrating a simulation-based technique in the
developed system. All of these experiments demonstrate interesting results and validate the optimization
methodology. The concept of hybrid intelligent approach may benefit modeling and optimization in
diverse science and engineering problems.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Model and optimal parameters have been at the heart of
computer-aided design tools (CAD) for semiconductor technology
over the past decades. In the modern microelectronics industry,
parameters of the semiconductor nanodevices and nanostructures
are tuned by engineers for matching some specifications. To
satisfy the design targets, engineers must base on the simulation
result of CAD tools to adjust the design parameters, and again
feed the adjusted parameters to retrieve improved results.
Currently, this mechanical procedure is mostly performed by
engineers empirically. Numerical and evolutional methods have
been studied in the characteristic optimization of semiconductor
devices [1–6], but numerical methods in general require an accu-
ll rights reserved.
rate initial guess to perform a local optimization. Solution with a
pure evolutional method suffers a long time evolution process. It
may take days even weeks to find suitable parameters for the
designed devices.

In the semiconductor technology, the equivalent circuit models
[7] continuously play an active role in bridging the nanodevice
fabrication and integrated circuit (IC) design. As the mainstream
complementary metal-oxide-semiconductor (CMOS) technology
is scaled into the nanoscale regime, hundreds of parameters have
to be optimized and extracted for the corresponding model
equations. For optical devices and semiconductor nanostructures,
such as organic light emitting diode (OLED), silicon photonic taper
waveguide and photonic crystal, there are also many parameters
related to the device structure should be adjusted for better perfor-
mance. Conventional manual adjustment will be a bottleneck for
design of advanced semiconductor materials and nanodevices.
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Fig. 1. (a) An illustration of the proposed hybrid optimization system and (b) an
execution flowchart of the proposed hybrid intelligent computational methodology.
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Moreover, either the numerical or evolutionary optimization tech-
niques have limitation for such complicated engineering problems.
Therefore, an accurate and robust hybrid intelligent approach may
benefit the advanced optimization problems.

In this work, we practically implement a flexible hybrid intelli-
gent approach for optimization problems in semiconductor nan-
odevice and nanostructures. Based on evolutionary algorithms,
advanced numerical methods, adaptive neural network scheme
and parallel computing techniques, a hybrid optimization method-
ology is proposed and successfully implemented in the unified
optimization framework (UOF) [5,8–12]. In the proposed hybrid
approach, a multiobjective distributed evolutionary algorithm,
such as genetic algorithm (GA) or particle swarm optimization
(PSO) is firstly executed for a rough estimation on the solution,
the numerical method, such as Levenberg–Marquardt (LM) method
will enable a local optimization, where the adaptive neural net-
work (NN) investigates the quality of solutions and suggests
searching directions for the GA. Our preliminary investigation
shows that this optimization methodology empirically solves di-
verse optimization and parameter extraction problems arising
from semiconductor nanodevices and nanostructures in a compu-
tationally cost-effective manner. For semiconductor nanodevice
parameter extraction (is also known the parameter optimization),
this approach shows its capability to automatically extract a set
of global parameters among sixteen 90 nm CMOS devices. Com-
pared with the measured I–V curves of fabricated samples, the
optimized results are within 3% of accuracy. The computational
examinations including sensitivity, convergence property, and par-
allelization are discussed. Efficiency comparison among the pure
evolutionary algorithms, pure numerical methods, and the hybrid
intelligent approach are also verified in this example. For parame-
ter extraction of OLED devices [13–16], the approach also achieves
good accuracy for red, green, blue OLEDs. For the third and fourth
applications, optimal structure design of silicon photonic taper
waveguide [17–21] and photonic crystal [22] are further advanced
by integrating a simulation-based technique in the developed sys-
tem. All of these experiments demonstrate interesting results and
validate the optimization technique. The concept of hybrid intelli-
gent approach may benefit modeling and optimization in diverse
science and engineering problems.

This paper is organized as follow. In Section 2, we describe the
concept of the proposed hybrid intelligent approach. In Section 3,
we show the computer experimental results for the parameter
extraction and structure optimization of four different problems
in semiconductor nanodevices and nanostructures. Finally, we
draw conclusions and suggest future work.
2. The optimization methodology

In this section, we state the details of the proposed hybrid intel-
ligent approach. Fig. 1a shows an illustration of the proposed opti-
mization system. The system is composed of preprocess, extraction
engine and postprocess. In the preprocess, available empirical rules
are employed to initiate the parameters to be optimized which are
depending on the different problems of semiconductor nanode-
vices and nanostructures. If necessary, the data reduction will be
performed in the preprocess. For example, the parameter extrac-
tion of the equivalent circuit models for the CMOS technology of-
ten involves four or six sets of I–V curves (under different bias
conditions); and each set of I–V curves consists of five I–V lines,
each of which has at least thirty I–V points. When performing
the global extraction with multiple transistors, such as 16, 32, or
more devices, the number of I–V points increases significantly.
Therefore, a statistical data reduction can significantly reduce the
computational complexity during the optimization process. After
the preprocess, the extraction engine that integrating such as GA,
NN, numerical approach and parallelization technique, then per-
forms the optimization and parameter extraction process for an
interesting semiconductor nanodevices and nanostructures. The
electrical and physical quantities verification is finally performed
in the postprocess.

The extraction engine is the core of optimization and parameter
extraction. It contains the numerical optimization method, genetic
algorithm, neural network, and the parallelization technique. We
have successfully implemented this hybrid approach in the UOF.
In the following sub-sections, the concepts of GA, NN, LM, and
the proposed hybrid intelligent methodology are stated briefly.

2.1. The evolutionary and numerical approaches

The evolutionary approaches including GA and NN are em-
ployed in the proposed system. It is known that a GA is a globally
searching optimization method which is based on the mechanism
of natural selection and natural genetics. It works with a code of
parameter strings called chromosome instead of the solutions
themselves. Each chromosome represents a solution set, and the
fitness functions are adopted to measure the survival scores of all
chromosomes in the population. Then the GA will accord its selec-
tion scheme to select several chromosomes for reproduction, dis-
card unwanted chromosomes, and select the crossover scheme to
produce the new generation. Then the GA will apply fitness func-
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tion for the new population again and loop this cycle until certain
stop criteria is achieved [3–6].

It is known that NN is an adaptive learning network which has a
remarkable ability to derive meaning from complicated or impre-
cise data. It has been widely used in various ranges, especially in
pattern reorganizations and the image processing. In this work,
we adopt Hamming net to guide GAs to search the better solutions.
The Hamming net is a supervised feedback NN which contains two
sub-networks, the matching score net and the maximum net.
When the training patterns stores into matching score net, it mea-
sures the differences between input patterns and training patterns.
After grabbing the output of each node in the matching score net,
the maximum net is functioned to determine which training pat-
tern is the most similar to the input pattern. Once there is a unique
restrained output above the threshold, the Hamming net termi-
nated, and considers the training pattern represented by the node
which provided the outstanding output is most similar to the input
pattern, thus the input pattern can be clustered into this training
pattern.

We notice that NN is applied to investigate the influence of
parameters to the optimized functions, and guides GAs to focus
on some major parameters to obtain better solutions instead of
performing blind search. In contrast with the GA and NN above,
numerical optimization method, such as LM method is a quasi-
Newton method to accelerate the Gauss–Newton method. The
Gauss–Newton method is the basic algorithm for solving the non-
linear optimization problem. Due to the nonlinear property of the
problem, a gradient for each variable could be obtained. It starts
from an initial guess, and follows the direction of the normal of
the gradient to find the optimal solution. Therefore, the initial
guess must be chosen carefully, or the solution may fall into a local
optima. Unlike the Gauss–Newton method has the fixed steps to-
ward the solution, LM optimization method detect that some re-
gions with monotonic variation property which can be
accelerated by increasing the step size. On the other hand, when
the optimization process encounters a sensitive region, the step
should be shortened to avoid skipping the optimum.

2.2. The hybrid intelligent appproach

An execution flowchart of the hybrid intelligent technique for
the parameter extraction task is shown in Fig. 1b. The GA, as shown
in this figure, firstly searches the entire problem space to get a set
of roughly estimated solutions. After a roughly computed solution
is obtained, the LM method performs a local optima search and sets
the local optima as the suggested values for the GA to perform fur-
ther optimizations. Meanwhile, the NN is applied to investigate the
influence of parameters on the optimized functions, and guides the
GA to focus on those significant parameters to obtain the better
solutions instead of performing blind search.

Taking the parameter extraction of 90 nm CMOS devices as an
example, the NN compares the difference of the physical character-
istics of the measured data and the simulated I–V curves. Accord-
ing to the examined results of the original and the computed
first derivatives of I–V curves, the NN will suggests that the GA
should focus on the evolution of those corresponding parameters.
Conventional GA-based methods are plagued by problems such
as rapid decreases in the population diversity and disproportionate
exploitation and exploration of the solution space with multiple
dimensions. The results are frequent premature convergence and
inefficient search. Compared with the pure GA-based optimization
techniques, the LM method finds a solution rapidly with an accu-
rate initial guesses. We have to note that the LM method, a modi-
fied Gauss–Newton method, is still a local method and is easily
trapped into local optima. With a proper integration of the LM
method in the optimization process, the GA saves much unneces-
sary efforts to search optima. Furthermore, the most significant
parameters that influence physical quantities of CMOS devices
have also be detected and monitored. If physical quantities are
intolerant, other electrical characteristics will also lose their accu-
racy. Therefore, the parameters which affect those major quantities
should be extracted firstly and the priority of optimization se-
quence of the model parameters should be considered. Besides,
each physical quantity affects some specified I–V curves character-
istics such that we can be conscious of the intolerance of physical
quantities through investigating the characteristics of I–V curves.
The information described above is built in the NN. Under the guid-
ance of the NN, the GA emphasizes the most important parameters
and corrects physical quantities one by one. Taking GA as the evo-
lutionary algorithm, a pseudo code for the hybrid system, shown in
Fig. 1b, is listed below.

Begin Hybrid Optimization Algorithm
Begin GA Optimization

Initialize GA
While EstimatedError(BestSolution) > ToleranceError

GA Performs Optimization
GA Obtain BestSolution
LM Optimization(BestSolution)
NN ModelInspection(BestSolution)

End While
End GA Optimization

End Hybrid Optimization Algorithm

For practical implementation, we notice that the hybrid intelli-
gent approach could be carried out conveniently in the environ-
ment of UOF, which was recently developed by us and is
available on line [12]. Diverse solvers including the aforemen-
tioned GA, NN and LM methods are already developed in the plat-
form of UOF; and we only need to integrate them to construct the
hybrid approach. Before discussion on the potential application in
optimization problems of semiconductor nanodevices and nano-
structures, a benchmark problem is firstly examined with the hy-
brid intelligent approach for the accuracy and efficiency
examination. Consider the following minimization problem

Min f ðx1; x2Þ ¼ 21:5þ x1 sinð4px1Þ þ x2 sinð20px2Þ ð1Þ

where �3.5 6 x1 6 12.1 and 4.1 6 x2 6 5.8. The objective function to
be minimized oscillates periodically within the constraint region.
Fig. 2 shows the values of f(x1, x2) respect to different x1 and x2.
The minimal value of f function is 3.8532 which occurs at (x1,
x2) = (11.8759, 5.7745).

Table 1 shows the optimized solutions by four different optimi-
zation methods. According to the achieved results, we find that the
numerical method cannot find the global minimum. Without a
good initial guess, it is impossible to solve this problem using LM
method. The hybrid intelligent approach provides a most computa-
tionally effective way to obtain the optimal solution. Nevertheless,
the GA or GA + NN approach can also find a good solution with
much more longer time for evolutionary iterations. The hybrid
intelligent approach empirically demonstrates excellent computa-
tional efficiency in solving this minimization problem. More details
related to computational cost, such as gradient calculation and
population size effect could be addressed somewhere else.
3. Results and discussion

Applications of the hybrid intelligent approach in semiconduc-
tor nanodevies and nanostructures are presented in this section. In
the first, an examination of the optimization methodology on the
parameter extraction for sixteen 90 nm CMOS devices is



Fig. 2. Plot of the function to be optimized f(x1, x2) respect to x1 and x2.

Table 1
The optimized solutions using different methods in solving the minimization
problem1

# of
iterations

Levenberg–Marquardt
method

GA GA + NN The hybrid
approach

1 11.54 11.54 11.54 11.54
10 9.48 10.99 10.61 9.850
20 8.72 9.946 9.483 8.103
40 8.72 8.054 7.481 6.944
60 8.72 5.984 5.324 3.853
100 8.72 4.015 3.923 –
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Fig. 4. The dimension distribution (width versus length) of investigated 16 devices.
The dimension of the smallest device is L = 90 nm and W = 0.6 lm.
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performed. The extracted results confirm that the methodology is
superior to other approaches. In the second application, an equiv-
alent circuit model is for the first time proposed for the OLED and
then the corresponding parameters are optimized. The first two
applications are the so-called equation-based optimization prob-
lems. By integrating numerical simulation kernels with the hybrid
intelligent approach, a simulation-based optimization technique is
also implemented for the structure optimizations of the silicon
photonic taper waveguide and the photonic crystal. The involved
simulators in these two problems are including MPB [23] and
CAMFR [24] for solving the Maxwell equations.

3.1. Parameter extraction for sixteen 90 nm CMOS devices

Mathematically, model parameter extraction is a multidimen-
sional nonlinear optimization problem, where the number of
parameters could be larger than 100. The main goal of device mod-
el parameter extraction is to minimize the error between the ex-
tracted result and the measurement, where the extracted result
is obtained through the equation below:

Iex
DS ¼ IDðp

*
v
*

d
*

Þ; ð2Þ

where the Iex
DS is the I–V functions (e.g., I–V points) to be optimized;

the ID is a selected compact model, which contains more than 40
subequations in the BSIM model [5–6], for example. Vectors p

*
, v
*
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Fig. 5. The extracted (lines) and measured (dots) IDS–VDS curves of the 90 nm nMOSFETs. The errors of all devices are within 3%.
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Fig. 6. The extracted (lines) and measured (dots) IDS–VGS curves of the 90 nm nMOSFETs. The errors of all devices are within 3%.
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Fig. 7. The extracted (lines) and measured (dots) first derivative curves with respect to VDS of the 90 nm nMOSFETs corresponding to IDS–VDS curves in Fig. 5. The errors of all
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and d
*

are the parameter sets to be extracted, the bias condition for
simulation, and the device geometry, respectively. There are at least
50 I–V points forming an I–V curve, 5 I–V curves forming a set of I–V
curves, and 4 sets of I–V curves to characterizing a single device
behavior. When perform a model parameter extraction with 16 de-
vices as target, there are 16,000 I–V points need to be minimized,
and the number of parameters is more than 100. Therefore, this
parameter extraction problem is a large scale optimization problem
with massive computation.

To validate the computational efficiency and accuracy of the
developed hybrid approach, sixteen 90 nm n-type metal-oxide-
semiconductor field effect transistors (nMOSFETs) have been fabri-
cated, measured, and extracted. According to the nature of I–V
curves of devices, a physical-based weight function is developed
for the calculation of fitness. Fig. 3 shows the proposed weight
function. Fig. 4 shows the dimension distribution (the device width
W versus its length L) of the investigated sixteen nMOSFETs of
90 nm fabrication technology. The equivalent circuit model used
in this examination is the BSIM4 model [6], Figs. 5 and 6 show
the extracted drain current–drain voltage (IDS–VDS) and IDS–VGS

curves of the 90 nm nMOSFET, and the error of all cases are less
than 3%. Figs. 7 and 8 are the first derivatives of the original I–V
curves with respect to VDS and VGS where all computed errors are
within 5%. We notice that the computed accuracy is good enough
according to the device modeling point of view in semiconductor
industry. Comparison between the measurement data (dots) and
the simulation (lines) demonstrates good accuracy of the optimiza-
tion method. The first derivatives of all sets of curves of IDS–VDS

and IDS–VGS with respect to the different applied voltages are
calculated by
gD ¼
@IDS

@VDS
ð3Þ

and

gm ¼
@IDS

@VGS
: ð4Þ

We notice that the partial derivative of drain currents with re-
spect to VDS and VGS is physical meaningful which represents
important electrical quantities in semiconductor device physics
[25]; gD is the channel conductance (also called the drain conduc-
tance) and gm is the transconductance. These results confirm the
accuracy of the hybrid intelligent approach in the multiple nano-
scale CMOS device parameter extraction.

Table 2 shows the extraction time of various number of CMOS
devices with respect to different extraction approaches. As shown
in Table 2, if the devices number is less than eight, the hybrid intel-
ligent approach has similar extraction time, compared with other
methods. However, when the number of devices greater than 8
or 16, the hybrid intelligent approach demonstrates better extrac-
tion efficiency, compared with other methods. In our hybrid sys-
tem, the time acquired by the numerical LM method and neural
network algorithm can be regarded as instant, compared with
the time cost of GA. Therefore, only the GA is required a paralleliza-
tion technique. Application of parallelization to GA provides an
efficient way to reduce the computing time [9,10]. Fig. 9b shows
the archived speedup for different number of devices when per-
form parallelization of GA. We found that when the devices num-
ber is less than 8, then the parallelization on an 8 node cluster is
enough. However, if the devices number is equal to 16, then the
16 node cluster is more suitable and can provide better speedup.



Table 2
Comparison of computational efficiency among different approaches

# of devices GA GA + LM GA + NN The hybrid approach

1 122.7 102.3 172.5 178
2 478.4 419.7 437.1 452.5
4 5843 5621.9 5019.3 5123.6
8 23808.4 20018.6 19873.1 17230.2
16 150479.5 120975.1 109844.3 98201.3

We notice that the population size is equal to 100 and the mutation rate is 0.05 in
GA among different approaches.
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Fig. 8. The extracted (lines) and measured (dots) (IDS–VGS)’ first derivative curves with respect to VGS of the 90 nm nMOSFETs corresponding to IDS–VGS curves in Fig. 6. The
errors of all devices are within 5%. The notation gm means the transconductance of device which is the partial derivative of drain current IDS with respect to the drain voltage
VGS [25].
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3.2. Modeling and parameter extraction of OLED devices

In this subsection, we present a new equivalent circuit model for
OLED and then apply the hybrid system for the parameter extrac-
tion. The physical-based OLED model is considering the effect of
high built-in voltage existing between the organic materials and
the effect of nonideal ohmic occurring at the contact between metal
and organic [13–16]. Compared with the measured I–V data of red,
green, and blue (RGB) OLED samples, the new OLED model and the
correspondingly optimized parameters show the good accuracy.
Plot of the structure of OLED used in our model parameter extrac-
tion, sample fabrication and measurement is shown in Fig. 10a.
The structure of OLED has multilayer of materials. To model the I–
V characteristics of OLEDs, we should consider the effect of high
built-in voltage existing among the layers of organic materials and
the effect of the nonideal ohmic that occurs on the contact between
metal and organic. The equivalent circuit of the OLED model is
shown in Fig. 10b, where the effect of high built-in voltage and
the nonideal ohmic effect are modeled with the variable resistance
and the supplied battery. A nonlinear resistance is adopted to reflect
the phenomenon of the Schottky barrier. With adding those two
items into the ideal diode model, the OLED model can be directly
incorporated into SPICE circuit simulator without any convergence
problems, where a copy of SPICE net list is shown in Fig. 10c. The
parameters of the OLED model are listed in Table 3. Fig. 11 shows
the comparison results between the extracted results and the mea-
sured RGB OLED data, respectively. The modeling and parameter
extraction presents good accuracy when describes the OLED physi-
cal characteristics in both the cut-in and the on-state regions.

Fig. 9a shows an sensitivity examination of the extracted
parameters. According the physical point of view, the parameters
could be divided into several categories. It is important to know
the sensitivity of each parameter category on the optimized solu-
tions. This investigation can assist the extraction process. To per-
form the sensitivity analysis, the proposed system extracts single
category of parameters meanwhile locks other sets of parameters.
The expected result should show that varying certain parameters
category would make notable progress while some others would
not. Fig. 9a reveals that the parameters related to the threshold
voltage would make the most improvement. With the similar
methodology, the silicon photonic taper waveguide optimization
and the photonic crystal design optimization are conducted. We
notice that for these two examinations, we only empirically enable
GA or PSO methods in the hybrid system due to the less parameter
is needed for these two optimization problems.

3.3. Silicon photonic taper waveguide optimization

A taper structure to couple photonic devices with different
scales of guiding region is an important role in an integrated optic
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circuit [17–19]. Low-loss couplings which provide a large misalign-
ment tolerance between single-mode fibers and photonic semicon-
ductor devices are indispensable for photonic integrated circuits.
Tapered waveguides can also be used for input/output coupling
to single mode fibers and for semiconductor laser amplifier appli-
cations. For a linear tapered waveguide, we usually need a long
length to decrease the optical loss. In this subsection, high trans-
mittance silicon (Si) photonic taper waveguide is for the first time
obtained by using PSO [20] and GA methods in the hybrid system.
With the evolutionary algorithms, optimization of the photonic ta-
per waveguide structure is achieved. More than 99.5% transmit-
tance is obtained with the electromagnetic simulation and
evolutionary algorithms.

The Fig. 12 shows the typical lateral taper waveguide structure
for optimization. The width of the guiding layer is 3 lm initially
and is reduced to 0.5 lm at the end of the taper. We firstly fix
the taper length to be 10 lm and partition it into ten discrete
width profiles for the structure optimization. By assuming the
monochromatic fields that vary harmonically in time according
to ejwt, a set of Maxwell’s equations is numerically solved in the
loop of optimization

r � E ¼ �jwB
Table 3
The parameter list of the OLED model

Name Description Name Description

IS Saturation Current N Emission coefficient
ISW Sidewall saturation current RS0 Ohmic resistance
IK Forward knee current Vbi Built-in potential
IKR Reverse knee current VBH Barrier height

V (volt) 
0.0 1.5 3.0 4.5 6.0

V (volt) 
0.0 1.5 3.0 4.5 6.0

V (volt) 
0.0 1.5 3.0 4.5 6.0

V (volt) 
0.0 1.5 3.0 4.5 6.0

V (volt) 
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curves in log scale.
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r � H ¼ J þ jwD; ð5Þ

and

r � D ¼ q and r � B ¼ 0;

where E is the imposed electric field, B is the magnetic field, H is the
effective magnetic field inside the dielectric, D is the effective elec-
tric field inside the dielectric, J is the free current density, and q is
the charge density. An eigenmode expansion simulation approach is
adopted [21]. Its computational speed is faster than the traditional
finite difference time domain method. In order to obtain the opti-
mized structure with minimum propagation loss, the evolutionary
algorithms GA (or PSO) will optimize the 10 parameters to obtain
the best performance of the taper waveguide. Our target in this case
is to maximum the transmittance. In the GA kernel we set 10 pop-
ulation sizes for each generation. The fitness function is well chosen
for maximized the transmission efficiency. The PSO kernel of all the
optimizations in this study is constructed based on the iterative for-
mulas that control the swarm behaviors:

Vt ¼ wVt�1 þ k1g1ðPt�1 � Xt�1Þ þ k2g2ðGt�1 � Xt�1Þ ð6Þ

and

Xt ¼ Xt�1 þ Vt Dt; ð7Þ
Fig. 13. (a) Field distribution of the optimized results by GA, where the transmit-
tance is about 94.5% (b) and field distribution of the optimized results by PSO,
where the transmittance is about 99.5%.
where w is the inertia factor, k1 is the competition factor, k2 is the
cooperation factor, G is the global best and P is the local best. Also
the X is the position at the time step and V is the velocity of the par-
ticle. In each optimization step, the GA (or PSO) gives the initial con-
dition for the computation kernel. The fitness function will be
calculated by the return transmission efficiency. Iteratively the GA
(or PSO) gives the new parameter set until reach the goal. The trans-
mittance is given by

transmittance ¼ PowerOuput

PowerInput
� 100%: ð8Þ
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Fig. 14. The convergence property of the (a) GA (b) and PSO methods. We notice
that PSO takes 10 times iterations compared with the iterations of GA.
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The transmittance will be 100% for a perfect structure; however,
the critical point is the dimension of the cross section at the inter-
face. There is a tradeoff between the small area and the maximum
transmittance. We implement the GA and PSO algorithms in the
hybrid system to optimize the 10 parameters for maximizing the
transmission efficiency. The Fig. 13a shows the optimized results
by GA, the optimized parameters are 2.576, 5.815, 2.131, 1.923,
1.458, 4.273, 2.468, 0.871, 1.954, and 0.719. The calculated trans-
mittance is about 94.5%. Also we show the PSO results in
Fig. 13b. The optimized parameters are 4.850, 5.697, 5.298,
3.432, 3.065, 1.744, 1.482, 2.251, 2.485, and 0.797. The transmit-
tance is about 99.5%. As shown in Fig. 14, we show the convergence
property of the GA and PSO methods. The proposed GA and PSO
show very good efficiency to do the optimization problems. The
CPU time versus the number of iteration is reported in Fig. 15a,
and the transmission increases when the number of iteration in-
creases for the PSO optimization, as shown in Fig. 15b.

3.4. Photonic crystal design optimization

A 90� splitter in square lattice of GaAs rod in the air is optimized
[22]. Fig. 16a shows the original profile of the explored photonic
crystal, where the total length is about 6.6 lm and the width is
about 3 lm; and the corresponding field distribution of the struc-
ture is shown in Fig. 16b. The period of the structure is 0.6 lm and
the rod radius is about 75 nm. The transmittance of the original
profile is equal to 44.7%. To increase the transmittance of the
explored structure of photonic crystal, we optimize the profile
of the photonic crystal using the hybrid system. As shown in
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Fig. 15. (a) Plot of the CPU time versus iterations and (b) is the transmittance
versus iterations.

Fig. 16. (a) The original profile, (b) the transmittance of original profile which is
about 44.7%, (c) the optimized profile, and (d) the transmittance of optimized
profile which is about 95.2%.
Fig. 16c and d, the optimized profile and the corresponding field
distribution are obtained. A better transmittance, about 95.2%, is
achieved.

4. Conclusions

In this paper, based upon the evolutionary algorithms, the
numerical methods, the neural network scheme, and the parallel
computing technique, we have developed and practically imple-
mented a hybrid intelligent approach for optimization problems
of semiconductor nanodevices and nanostructures. This optimiza-
tion methodology has been successfully implemented in our uni-
fied optimization framework. The developed open-source project
is available in the public domain. For the studied sixteen 90 nm
CMOS technology, this approach demonstrates its capability to ex-
tract a set of optimal parameters from several sets of measured I–V
curves of fabricated MOSFETs globally. We notice that there are no
similar publications about the 90 nm CMOS device parameter
extraction problem with completely experimental data. It is thus
difficult to make a comparison with other works; therefore, we
have directly compared the optimized results with the experimen-
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tally measured data of our fabricated samples. Compared with the
fabricated and measured data, the errors of optimized results are
less than 5%. This accuracy is good enough for the device model
point of view in semiconductor industry. Application of the hybrid
system to RGB OLED devices has also been discussed. Besides, opti-
mal structure designs of silicon photonic taper waveguide and
photonic crystal have further been advanced using a simulation-
based optimization methodology. This hybrid intelligent approach
not only benefits the modeling and optimization of semiconductor
nanostructures and devices but also can be extended for other real
world applications. The similar methodology can be used for 65 nm
CMOS device parameter extraction. We are currently extended this
work for sub-45 nm CMOS device parameter extraction including
using the surface potential based models.
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