
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2006; 6:17–34
Published online 21 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.240

A mobile service platform using proxy technology

Ming-Feng Chen,1 Yi-Bing Lin,1,*,y Herman C.-H. Rao2 and Quincy Wu1

1Department of Computer Science and Information Engineering, National Chiao Tung University,

Hsinchu 300, Taiwan
2Far EasTone Telecommunications, Taipei 114, Taiwan

Summary

This paper proposes iMobile, a proxy-based platform for developing mobile services for various mobile devices

and wireless access technologies. iMobile acts as a message gateway that allows mobile devices to relay messages

to each other through various protocols on different access networks. It allows mobile devices to access internet

services, corporate databases and to control various network devices. iMobile implements three key abstractions:

dev-let, info-let and app-let. An info-let provides abstract view of information space. An app-let implements

service or application logic by processing information from various info-lets. A dev-let receives and sends

messages through any particular protocols for mobile devices. The let engine supports user and device profiles for

personalization and transcoding, and invokes proper app-lets and info-lets to answer requests from a dev-let. The

iMobile modular architecture allows developers to write device drivers, information access methods and

application logic independently from each other. Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: mobile computing; peer-to-peer computing; proxy server; wireless network

1. Introduction

Rapid advances in mobile devices, wireless network-

ing and messaging technologies have provided mobile

users a plethora of alternatives to access internet.

Examples of these devices and protocols include

Palm PDA with web clipping [32], cellular phones

with wireless application protocol (WAP) [40], short

message service (SMS) [16], e-mail devices (Black-

Berry [9], AT&T PocketNet phone [7] etc.) that

support POP3 [25] or IMAP [27], Pocket PCs that

support AOL instant messenger (AIM) [2] etc. Un-

fortunately, these approaches do not interwork with

each other easily. A mobile user faces the dilemma of

desiring the convenience of various mobile accesses

to critical services and, in the mean time, suffering

from managing the complexity of incompatible de-

vices and user interfaces [35]. Wireless internet is

much more complicated than simply accessing the

internet wirelessly. Wireless users, being mostly mo-

bile, have different needs, motivations and capabilities

from wired users. For example, a mobile user is

*Correspondence to: Yi-Bing Lin, Department of Computer Science and Information Engineering, National Chiao Tung
University, Hsinchu 300, Taiwan.
yE-mail: liny@csie.nctu.edu.tw

Contract/grant sponsor: NSC Program for Promoting Academic Excellence of Universities; contract/grant number:
NSC 93-2752-E009-005-PAE

Copyright # 2005 John Wiley & Sons, Ltd.

usually in a multi-tasking mode (accessing the inter-

net while attending a meeting or shopping in the

mall). On the other hand, a mobile user may not

always access the internet wirelessly, and a wireless

user may not be mobile at all [39]. The mobile

accesses (e.g. checking stock quotes, weather or

finding a nearby restaurant) are usually bursty in

nature and very task-oriented. To access diverse

services, different identities are utilized; for example

cellular phone numbers and instant messaging screen

names are more meaningful to mobile users than

office phone numbers and static IP addresses. In this

paper, we propose iMobile [19], a user-friendly en-

vironment for mobile internet.

As shown in Figure 1, iMobile runs on a computer

with connections to the internet and a wireless modem

with two-way SMS. Devices can communicate with

iMobile through various protocols and access net-

works. For example, GSM/TDMA phones with two-

way SMS can communicate with iMobile through an

SMS driver hosted on iMobile. CDPD devices (such

as AT&T PocketNet phone [7] and Palm V with the

Omnisky modem [30]) can use WAP to access iM-

obile through the internet. E-mail devices such as

BlackBerry [9] can use the standard e-mail protocols

on the CDPD network or a two-way paging network to

communicate with iMobile. PC and PDA devices can

use AOL instant messenger or web browsers to inter-

act with iMobile. iMobile receives messages and

commands from these devices, accesses internet ser-

vices and information on behalf of the mobile users,

and then relays messages or internet content back to

the destination devices (which can be different from

the sending devices).

Figure 2 illustrates the relationship of iMobile,

iProxy and iMobile Micro Edition. The iMobile

architecture hides the complexity of multiple devices

and content sources from mobile users. This goal is

achieved by utilizing a programmable proxy server

called iProxy [8,20]. iProxy provides an environment

for hosting agents and personalized services, which

are implemented as reusable building blocks in Java.

Since iProxy provides a built-in web server, an iProxy

agent can be invoked as a regular common gateway

interface (CGI) program. It also allows scripts em-

bedded inside web pages, which invoke agents to

perform specific tasks. iProxy was originally designed

as a middleware between user browsers and web

servers. It maintains user profiles and enhances in-

telligence of a traditional proxy server to provide

personalized value-added services [21] such as filter-

ing, tracking and archiving services [22]. iProxy

provides customization and personalization features,

which are very important for supporting iMobile

services.

To support interactions among mobile devices in

heterogeneous networks, we propose a lightweight

mobile service platform called iMobile Micro Edition

(ME), which minimizes the requirement of system

resources and is suitable for execution on mobile

devices. iMobile ME communicates with each other

through a message center called iMobile router, which

stores and delivers messages for mobile devices. This

architecture provides a platform for iMobile-base

peer-to-peer (P2P) computing.

This paper describes the design guidelines and

implementation of iMobile. The paper is organized

as follows. Section 2 describes related works. Section

3 discusses the iProxy middleware. Section 4 elabo-

rates on the iMobile architecture. Section 5 describes

the user and device profiles used in personalization

and transcoding services. Section 6 discusses the

iMobile-based P2P computing. Section 7 summarizes

our work with future directions.Fig. 1. Personal mobile service network.

Fig. 2. The relationship of research topics.

18 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

2. Related Works

This section describes related research efforts for

personal services and P2P systems.

2.1. Personal Services

The IBM WBI project [33] uses intermediaries to

produce and manipulate web content, perform content

distillation and implement protocol extensions. WBI

includes a transcoding proxy as a web intermediary

between web servers and client devices, which adapts

varying bandwidths to different client communication

links. TranSend [5] is a scalable transformational web

proxy, which focuses on efficient data type-specific

content distillation. iMobile differs from both ap-

proaches by emphasizing how a proxy-based platform

can provide a uniform interface (character stream/

MIME type) in the dev-let abstraction to deal with a

variety of devices and their protocols, which cannot be

achieved by a web proxy. The ICEBERG project [17]

shares the iMobile goals of any-to-any communica-

tion services and personal mobility services, but has

so far concentrated mostly on voice, rather than data

services.

The Apache Cocoon Project [3] allows automatic

generation of HTML, PDF and WML files (for WAP

devices) from extensible markup language (XML)

files. This feature can be provided in iMobile by

integrating the XML and extensible stylesheet lan-

guage transformations (XSLT) technologies in the

transcoding mechanism inside the let engine. Before

transcoding, a device profile must be provided to

describe the characteristics (size, format etc.) of the

receiving device. To address this issue, a W3C work-

ing group called CC/PP (composite capabilities/

preferences profiles) [28] has created a universal

structured format for client device profile that can be

accessed by an original server or proxy. We are

currently investigating the progress of this protocol

and may utilize the CC/PP format for iMobile device

profile.

Since iMobile interacts with multiple networks and

protocols, it relies on different authentication mechan-

isms. For device identity, we use the cellular phone

IDs on mobile phone network, AOL buddy names on

the AIM network and generic user IDs and passwords

for WAP, HTPP and Telnet clients. The iMobile plat-

form itself does not have control over how secure

these networks are. Solutions such as Charon [4] and

the secure shell (SSH) provide end-to-end authentica-

tion services. Charon focuses on how to secure the

connection between a client and an application-level

proxy. This approach allows extremely lightweight

and amenable client module to be implemented on

PDA and mobile devices. Most of the computations

needed to exercise the Kerberos protocol [24] and

establish a secure channel are located at the proxy.

We are looking into the adoption of a Charon-like

implementation for iMobile clients.

Remote control of X10 home network devices is

not new. The Aladdin project [44] utilizes e-mail to

remotely control the X10 devices. This project con-

centrates on home automation and the reliability

issues. On the other hand, the focus of iMobile is

mobility. Home automation is one of the applications

built on top of the flexible iMobile platform.

2.2. P2P Communication

iMobile ME P2P model provides a simple infrastruc-

ture that involves a network-based application router

and a simple device-independent platform on each

mobile device. This infrastructure allows communica-

tions and resource sharing among mobile devices

through message queue synchronization. Our P2P

infrastructure resembles Napster [29] in that it relies

on a central server, the iMobile router, to reach mobile

devices. On the other hand, iMobile differs from

Napster in several aspects.

� Communication mechanisms: Napster targets on

desktop users with internet connections. Through

the dev-let abstraction, iMobile ME aims to support

multiple communication protocols including

HTTP, SMS, instant messaging protocols (AIM or

Jabber [23]) etc.

� Resource access: Napster focuses on MP3 or WMA

music file support. With info-let abstraction, iMobile

ME aims to support multiple forms of resources such

as location information, camera views and other

resources that can be accessed through specialized

interfaces in local environments.

� Queue synchronization: While most Napster users

remain connected during file transfer, the nature of

intermittent communication capabilities of mobile

devices require a request/response queue synchro-

nization mechanism between the iMobile ME

devices and the network-based iMobile router. Re-

quests and responses will not be lost even if the

receiving devices are not readily available.

� Service discovery: Unlike Napster, the iMobile

router does not store an index of info-lets available

on all mobile devices. Instead, a primitive help

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 19

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

info-let is provided on each mobile device, which

lists the info-lets available on that device. This

approach avoids the mountainous cost of collecting

all services in a single server.

Gnutella [15] is a P2P system that does not require

any central server or database. Each Gnutella peer

uses a constrained broadcast mechanism to forward

packets to all of its peers with a ‘time-to-live’ para-

meter set on each packet. We are adding a group

communication mechanism to iMobile ME so that it

also supports ad-hoc P2P networking. The group

communication module in each iMobile ME instance

can identify nearby ME devices and start communi-

cating with each other without relying on any net-

work-based router.

CompanionLink [11] or XTNDConnect Server [13]

is mainly designed for data synchronization, with very

little resource sharing support among mobile devices.

On the other hand, the queue synchronization me-

chanism provided by iMobile ME allows mobile

devices to access enterprise databases or servers

through network synchronization.

SyncML [38] is becoming a common language for

synchronizing all devices and applications over any

networks. SyncML leverages platform-independent

XML. This approach is an important step towards

standardizing data exchanges among mobile devices.

The XML-based data exchange mechanism can be

supported in iMobile ME by introducing a SyncML

dev-let.

The Pebbles Project at CMU [10] explores how

small handheld devices can serve as a useful adjunct

to the ‘fixed’ computers. The CANS Project at NYU

[42] aims to provide a user with seamless, ubiquitous

access to a service irrespective of the user’s end device

and location. These projects consider handheld

devices as extensions to desktop devices. iMobile

ME, on the other hand, provides information access

and exchange facilities among mobile devices.

The Pebbles Project focuses on how handheld

devices and the PC work together by sharing the

(multimedia) user interface. The handheld may take

turns controlling the PC’s cursor and keyboard input

or show the thumbnail of the PC’s screen. In Pebbles

environment, handheld devices are considered as the

external controllers of the desktop PC. On the other

hand, iMobile ME is a lightweight platform installed

on a handheld device, which exports local information

stored only in the device. The server application runs

on the handheld device rather than on a desktop PC. In

iMobile ME, each device will process a request issued

by another device and send back the result data. We

focus on providing an appropriate platform for build-

ing services on handheld devices.

The Berkeley Ninja Project [36] developed an

interesting approach for secure service discovery

based on a PKI infrastructure and a capability man-

ager. Ninja does not require a central server to verify a

user’s access rights during service invocations. For

iMobile ME devices with support for the Java crypto-

graphy architecture (JCA), such as Java crypto and

security implementation (JCSI) Micro Edition [41]

secure sockets layer (SSL for the J2ME connected

device configuration (CDC) and Personal Java),

security infrastructure similar to Ninja can be

implemented.

3. iProxy Middleware

iProxy [8,20] is a middleware for web applications,

which can be installed as a personal proxy server

running on an end-user’s machine. iProxy provides

standard web proxy functions for accessing, caching

and processing web data. It allows users to select the

routes to access web servers (e.g. choosing different

proxies for different hosts), archive web pages, record

and analyze web access history, and manage the

proxy’s cache. iProxy also provides hooks to plug in

new functions for processing data received from web

servers. For example, the web data can be condensed,

compressed, encrypted or patched. The iProxy filters

convert pages back to their original forms, or synthe-

size new pages from web data and personal informa-

tion stored on the local disk. With a built-in web

server, iProxy can accept HTTP calls from internet

and trigger local applications to perform tasks such as

event notifications, alerts and data pushing.

3.1. iProxy System Architecture

As shown in Figure 3, iProxy consists of four compo-

nents: proxy, web, walking/scheduling, and connec-

tion management. The proxy component receives a

uniform resource locator (URL) request from web

browser, forwards the request to the corresponding

web server, stores the returned page in the cache and

forwards it to the browser. The web component allows

user to access the iProxy configuration, invoke CGI

programs or execute a script embedded in a web page.

The walking/scheduling component provides func-

tions to trace the HTML tree structure asynchronously

(e.g. through background tracing or periodic tracing).

20 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

The connection management component handles the

socket connections for web accessing, inter-iProxy

communication and TCP/IP socket forwarding.

3.1.1. Proxy component

iProxy maintains a cache to store frequently accessed

web pages. When the proxy component receives a

URL request from user browser, it returns the cached

page for a cache hit. For a cache-miss access, the

proxy component forwards the request to the corre-

sponding remote web server. When requested page is

returned, the proxy component stores the page in the

cache, and then forwards it to the user. The proxy

component consists of URL naming and cache man-

agement sub-components. To provide powerful add-

on services, the URL naming sub-component extends

the protocol exercised between the browser and web

server. Two new specifications, action and view parts,

are added to the URL format, which result in the

following new format: http://view@hostname/

filepath/filename.html?iProxy&action¼ . . .
The action specification, starting with ‘?iProxy’,

notifies iProxy to perform specific actions on the web

page. An action may archive a page with timestamp,

store the page in a specific package or invoke a CGI

program to modify the page. The view specification is

used to access web pages cached at a particular time

or in a particular package. Examples of action/view

will be given in Subsection 3.2.1 and 3.3.

The cache management sub-component maintains

the cache repositories for web pages obtained from

remote web servers. It may only keep the newest

pages, as a normal proxy server does, or keep multiple

versions according to the timestamps. Figure 4 shows

the caching processes. For a web request, the iserver

process receives the request and creates an iagent

process to acquire and cache the web page. After the

web page is cached, the iserver process forwards the

cached page to the browser. The cache management

sub-component may invoke three different filters in

the caching processes: Header, Input and Output

Filters.

1. The Header Filter modifies the URL requests

received from the web browser. This filter may

add new cookies, header fields or modify the URL

to change the accessing behavior. For example,

changing the URL of a web image to a local image

eliminates the transmission overhead due to remote

graphical accessing. This filter is useful for mobile

devices with low bandwidths.

2. The Input Filter modifies a page before storing it

into the cache. This filter provides the flexibility to

customize, compress, encrypt or translate a cached

page.

3. The Output Filter processes a cached web page

before it is returned to the browser. This filter may

attach additional HTML components into the ca-

ched pages, including system statistics or personal

information. The output filter is also used to

decompress, decrypt or translate a cached page.

3.1.2. Web component

The web component consists of two sub-components:

CGI interface and script parser. A URL request to

iProxy is forwarded to the web component. If the

request is a CGI program, the CGI interface sub-

component invokes the corresponding Java program.

On the other hand, if the request is a script file starting

with ‘#!/iProxy/script’ (see the example in Figure 17),

the script parser sub-component interprets the script

and generates the page from the output of the script.

The web component also exports web interface to a

user for accessing iProxy system resources indicated

by a URL starting with ‘http://localhost/’. This root

page (http://localhost/) is the entry point for accessing

the system parameters and configurations.

Examples of interactions between the proxy and

web components are shown in the filter programs

describe in Subsection 3.1.1. The proxy component

Fig. 3. iProxy architecture.
Fig. 4. Proxy component filters.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 21

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

defines rules for filter programs to indicate when and

which filter should be invoked on a specific URL

request. These rules reference the filters as CGI

programs defined in the web component.

3.1.3. Walking/scheduling component

The walking/scheduling component traces the HTML

tree structure and stores the pages in the cache or

archive repository. An HTML walking is invoked by

the URL action specification or through the adminis-

tration web pages (i.e. http://localhost/). Starting from a

root page, the walking component parses the HTML

structure, and tracks the hyperlinks and/or images in the

page. The walking parameters determine the depth of

tracing, the images for caching and the pages to be

traced locally (i.e. within the same web site) or globally.

A walking result may be stored in three different

repositories: cache, archive or package. The cache

repository keeps the newest cached pages, the archive

repository maintains multiple versions with time-

stamps and the package repository stores all walked

pages in a single file. Caching the walking pages

speeds up subsequent accesses. This feature also

effectively supports off-line browsing because it keeps

not only the visited pages but also the subsequent

hyperlinks in the cache. The archive repository mem-

orizes the historical web pages for tracking, searching

and comparison. The package repository maintains

the pages in different packages. A package can be

moved around various servers to support user mobi-

lity. These repositories are handled by the cache

management component and can be accessed using

the view specification described in Section 3.1.1.

3.1.4. Connection management component

The connection management component handles the

socket connections for web accessing, inter-iProxy

communication, and TCP/IP socket forwarding.

Figure 5 shows examples of routing paths for web

access. In this example, an iProxy server iProxy1 and

a corporation web server Corp. Web are located in the

same LAN. In the internet, there are another iProxy

server iProxy2, a standard proxy server Proxy B,

and several web servers A1, A2, B1, B2 and C. iProxy1

specifies routing rules to handle the requests for

different web servers. For example, the routing rules

can be:

Rule 1: Forward the requests for A1 and A2 to iProxy2.

Rule 2: Forward the requests for B1 and B2 to Proxy B.

Based on the above rules, iProxy2 handles the

forwarded requests for A1 and A2, Proxy B handles

the forwarded requests for B1 and B2, and iProxy1

handles the requests for Corp. Web and Web C.

These routing rules are specified in the administra-

tion pages, which provide the flexibility to forward

requests for particular web servers through other

proxy servers. They are especially useful when the

connections between proxy servers support the keep-

alive feature. In Figure 5, iProxy2, A1 and A2 are

located in the same network. These servers are remote

from iProxy1. The connection setup overhead will be

large if iProxy1 creates new connection to A1 and A2

for every request. To reduce the overhead, iProxy1

reuses the inter-iProxy connections between iProxy1

and iProxy2 and forwards multiple requests and re-

plied pages in one connection.

3.2. Personal Services

Novel services can be provided by a client-side iProxy

that has access to a user’s private information; for

example the web access history and personal finance

information. This section describes a few personal

services that we have implemented.

3.2.1. Personal web archive

Although existing search engines allow users to find

current pages, they may not allow locating and view-

ing the pages that were accessed in the past, except for

those that are still kept in the browser cache. Thanks

to inexpensive mass storage, a client-side iProxy can

afford to archive all web pages that have been viewed

before. These pages can be retrieved later without

even bookmarking them. Tools like AltaVista Dis-

covery [1] can be used to index and search these web

pages. Our experience showed that an active web

browser user could create a web archive of roughly

80–100 MB per month, including images and all

downloaded documents. This amounts to about 1 GB

Fig. 5. Web access routing and inter-iProxy communications.

22 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

of storage per year for all pages a user has seen, which

is now affordable to many customers.

Because iProxy intercepts HTTP requests, it can

effectively extend a URL name space by adding a

timestamp in front of the regular HTTP address. For

example, the URL of the 2003 February 11th version

of AT&T’s website is http://þ20030211@ www.att.

com/. Even if the AT&T website goes through major

redesigns, the persistent URL (indexed by the time-

stamps) will always provide the same content.

3.2.2. Personal web page reminders and
hot sites

A client-side iProxy can analyze the logged web pages

to provide convenient browsing services. Figure 6

shows two services that we implemented.

� TO-READ homepages: A user specifies the list of

websites and corresponding frequencies they

should be visited. iProxy checks the last visited

dates and schedules a list of pages that will be

visited by the user today.

� HOT sites: iProxy computes the number of visits to

each website and lists the top ten websites with

their last visiting dates whenever the user accesses

the personal portal. The hot-site list allows a user to

retrieve the last visit time of a favorite site (the

timestamp is displayed along the website link),

access the latest version by clicking on the link,

and compare the new version with the old one by

using tools such as WebCiao [45] or AIDE [14].

3.2.3. My stock portfolio

Most portals allow users to specify the interesting

stocks and display the latest prices when the user

accesses the personalized page. However, these por-

tals cannot compute personal current balance or net

gain/loss unless the user provides confidential infor-

mation such as the number of owned shares and the

purchased dates. Such practice is certainly not con-

venient to many users. Figure 7 shows a typical

portfolio view on Your WorldNet [6]. In this example,

the user provides the following fake information in the

portal server (see the upper table in Figure 7): one

share for each of the AT&T, E*Trade and Netscape

stocks. No commission fees were paid and each stock

was bought at $30.00.

Suppose that the real purchase price, commission

fees and the share number of each stock are stored on

the client machine. By constructing an output filter for

the stock page, iProxy can retrieve the private infor-

mation and combine it with stock quotes provided by

the remote portal site to compute the balance and net

gain/loss. The output filter instructs iProxy to apply

the Java class portfolio on the local server whenever

the browser issues the corresponding HTTP request.

The real numbers are visible to the client only (see the

Fig. 6. TO-READ pages and HOT SITES.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 23

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

lower table in Figure 7), which are not revealed to the

external portal server.

3.3. Portal Script: Putting the Pieces Together

A proxy-based portal integrates the contents stored in

a proxy server with those provided by a regular portal

server such as Your WorldNet. Consider the following

scenario where a portal server works in concert with a

client-side iProxy. A user sends an URL with a proxy

directive, http://www.att.net/?iProxy&action¼ portal,

through the browser. iProxy first retrieves the home-

page from www.att.net. This homepage has encoded

iProxy directives that are used to process the local data

and merge them with server content. iProxy then

presents the personal portal page to the user. In order

to provide a non-intrusive environment to other users

who are not using iProxy, we embed the iProxy

directives in HTML comments to generate the portal

page. Consider the directives listed in Figure 8.

iProxy intercepts these directives and performs

necessary actions before returning the portal page.

The directive version prints out the version number of

iProxy. The directive to-read constructs the list of web

pages scheduled to be read. The directive dolog

analyzes the current web access log to produce the

statistics. Finally, the directive top10 presents the

results on the personal portal. Browsers without

iProxy support will ignore all directives embedded

in the HTML comment.

4. iMobile Service Platforms

Based on the iProxy middleware, iMobile provides a

platform to support personalized mobile services.

This platform aims to hide the complexity of multiple

devices and content sources from mobile users. As

shown in Figure 9, iMobile adds three agent abstrac-

tions to iProxy: dev-let, info-let and app-let. These

components communicate with each other through

the let engine. This section describes the detailed

interactions among these let agents in the iProxy

environment.

4.1. Dev-Let

A dev-let is a device controller, which provides

various protocol interfaces to user devices. Each dev-

let interacts with the let engine through a well-defined

interface. It receives user requests (character streams),

and returns results in a Multipurpose Internet Mail

Extensions (MIME) type acceptable by the receiving

device. Figure 9 shows four dev-let examples: AIM,

SMS, SMTP/POP3/IMAP and TCP/IP. The AIM dev-

let is an AIM client, which receives personal messages

as requests and returns the result messages to the

sender. The SMS dev-let uses SMS in GSM networks

Fig. 7. My portfolio with/without private information.

Fig. 8. A portal script example.

24 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

for message delivery. The mail dev-let is a mailer that

receives requests from mail server using the Post Office

Protocol 3 (POP3) and/or Internet Message Access

Protocol (IMAP), and sends results to the e-mail

address of the sender using the Simple Mail Transfer

Protocol (SMTP). The TCP/IP dev-let accepts socket

connections from internet, which interacts with mo-

bile users as a character console. The let engine

manages these dev-lets and communicates with var-

ious mobile devices through these dev-lets.

When iMobile is started, a dev-let for each com-

munication protocol is created, which listens to in-

coming requests delivered through that particular

protocol. For example, the AIM dev-let starts an

AIM client and listens to instant messages sent from

other AIM clients.

The device driver for a particular protocol may co-

locate with the dev-let or it may communicate with the

dev-let through a TCP-based protocol. This approach

allows a device driver to run on a remote machine

other than the iMobile server. Figure 10 shows an

example where an SMS dev-let communicates with

the GSM cellular phone attached to a remote PC

through an SMS driver [18]. The protocol for the

SMS driver is AT Command [12]. Mobile users send

short messages to this cellular phone. The cellular

phone then forwards the messages to iMobile for

processing.

Current iMobile version supports dev-lets that un-

derstand protocols including SMS, IMAP, AIM, ICQ

and Telnet. iMobile also supports WAP and HTTP

through the iProxy HTTP interface. To allow email

access to iMobile, the e-mail dev-let periodically

monitors messages arriving at a particular e-mail

account. A Telnet user can enter iMobile commands

through a typical Unix or Windows terminal.

While all iMobile devices and the supported pro-

tocols have different user interfaces, every dev-let

interacts with the let engine in a standard way.

Naming of each device or destination address follows

the URL naming format; i.e. protocol name followed

by an account name or address. Examples for destina-

tion addresses include sms:þ 19737086242 (GSM

phone), aim: sunshine4 (AIM buddy name), mail:

iProxy@research.att.com (email id) etc. Suppose

that an iMobile user queries the AT&T (T) stock

price. The user invokes the ‘quote’ app-let by issuing

the following message to iMobile:

quote T

If the request is sent using SMS on the GSM

network, then the result will be returned as plain

text to the receiving GSM phone. On the other hand,

if the mobile user wants to forward the result to the

email account herman@research.att.com, then the

GSM phone issues the following command:

forward mail:herman@research.att.com quote T

Since that e-mail account understands the MIME

type TEXT/HTML (according to the device profile to

be elaborated later), the result will be delivered as

an HTML file (which may include graphics) to

herman@research.att.com.

The dev-let abstraction allows users in different

networks to easily communicate with each other. For

example, if a GSM subscriber wants to send a mes-

sage to an AT&T PocketNet mail account chen@

mobile.att.net on the CDPD network, and also an

AT&T TDMA phone 908-500-6531 (Chen’s cellular

phone) using SMS, then the sender can use the

message relay service supported by the ‘echo’ app-let:

forward mail:chen@mobile.att.net,sms:þ1908500

6521 echo call your boss

In this example, the sender really wants to reach a

person, not a device. Since iMobile can map the user

Fig. 9. The iMobile architecture.

Fig. 10. iMobile communication path for an short message
service (SMS) device.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 25

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

to devices (see Subsection 5.1), and it keeps track of

the user’s last access from a particular communication

channel, we can use an alias to reach either all devices

or the last device being used by Chen.

4.2. Info-Let

The info-let abstraction extends the HTTP protocol

and URL name space to provide abstract views of

various information spaces. An info-let may retrieve

or modify an information space. Retrieved informa-

tion may be passed to an app-let for further proces-

sing. Examples of information spaces are given

below:

� Stock quote, weather, flight schedule etc. are com-

monly available on many websites, but it would be

better to retrieve such information from XML files

or databases directly. Figure 11 shows an AIM

client Chen that talks to an iMobile AIM agent.

Chen issues the ‘flight 001’ command to query the

flight information on the NorthWest airline. The

output includes time and gate information for each

leg of the flight. The mapping from the flight

command to the NorthWest airline is controlled

by an app-let that consults the user profile of Chen.

Also, the let engine invokes necessary transcoding

to tailor the elaborate content on the website to a

format appropriate for the receiving AIM device.

Figure 12 shows a Palm V (with a wireless modem)

that just sent an email to the iMobile email dev-let

(imobile@research.att.com) with the command ‘si-

tenews att’. This command instructs iMobile to

access the service provided by AT&T’s Website

News, which reports today’s new hyperlinks on

AT&T’s website (http://www.att.com). The result

is sent back as an email formatted for the Palm V

PDA.

� Corporate database is typically accessed through

the Java Database Connectivity (JDBC) and Open

Database Connectivity (ODBC) interfaces. iMobile

hosts a JDBC info-let that allows mobile users to

access or update enterprise database information

(employee data, marketing/sales data, system inter-

face data etc.) through SQL-like queries. For ex-

ample, Figure 13 shows how a user accesses an

enterprise database through an AIM client to find

Fig. 11. Flight schedule service.

Fig. 12. News service on Palm V.

Fig. 13. Corporate database access.

26 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

the work telephone number of a particular service.

One can also access the same information from a

PDA that supports AIM. In any case, it is critical

that only end-to-end solutions are used for mobile

access to corporate databases.

� Network/infrastructure resources are typically

accessed through the Common Object Request

Broker Architecture (CORBA) [31] interface.

CORBA is an Architecture and specification for

managing distributed program objects in a network.

It allows programs at different locations to com-

municate through an ‘interface broker’. iMobile

hosts a CORBA info-let that allows mobile users

to request services from CORBA objects. Figure 14

shows how an AIM user obtains phone diversion

information for the user Herman through the

CORBA info-let that accesses a phone server.

� X10 home network devices for home appliances

(such as lamps and the garage door opener) are

connected on the same power line. The X10 [34]

device control signals are issued by a computer, and

are delivered through the power line. iMobile hosts

an X10 info-let that determines when and how to

activate certain X10 devices for home environment

control. Figure 15 shows how an iMobile user

Fig. 14. Common object request broker architecture (CORBA) object access.

Fig. 15. X10 home network access.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 27

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

controls X10 devices remotely. The user instructs

iMobile to locate firecraker (a device that is capable

of sending a radio signal to a transceiver device on

the X10 network) through the serial port COM2 on

the iMobile server. After the connection is estab-

lished, the user sends the command ‘x10 on a1’ to

turn on the fan (which is named device a1 on that

particular X10 network) and ‘x10 on a2’ to turn on

the coffee pot. The X10 interface on iMobile allows

a mobile user to remotely control the home appli-

ances from anywhere in the world with a cellular

phone, an instant messaging client, or any mobile

device supported by iMobile. This example demon-

strates that an info-let can be used to both retrieve

and change the state of an information space.

� Mail servers are managed by an IMAP info-let

called inbox that can access a user’s e-mail account.

In this scenario, encrypted email password is re-

quired for user authentication. In Figure 16, a

mobile user checks the unread messages in his

inbox. He/she then looks at the size (e.g. message

37 has 728 bytes), subject and the sender of every

message before actually viewing it. Such interac-

tion style is typical for a mobile user using a

communication device with limited bandwidth

and screen space.

4.3. App-Let

An app-let implements service or application logic

that processes contents from different sources and

relays the results to various destination devices through

dev-lets. An app-let may have complex interactions

with info-lets. Figure 17 shows a FindMeAMovie

app-let implemented as an iProxy script. The app-let

finds local theaters showing the top ten movies by

executing the following steps:

� obtain the location (zip code) of the cellular phone

through the mobile location service,

� identify the top ten movies from a movie database

or website,

� for each of these movies, check if any local theater

shows that movie and

� list the theaters.

5. User and Device Management

When the let engine receives commands from user

devices, it translates the commands according to user

aliases and profiles. This section describes device and

user profiles in detail.

5.1. Device Profile and Device-to-User Mapping

Every abstract device must register its profile infor-

mation with the let engine. The format of a device

name is protocol:acct_id. For example, an AIM de-

vice for a user webciao is aim:webciao. A device

profile is a list of (case-insensitive) attribute-value

pairs. The most important attribute is dev.format.ac-

cept, which determines the MIME type to be accepted

by the device. iMobile uses this information to trans-

code original content to an appropriate format for this

device. iMobile maintains a default profile for each

device type. A device instance can overwrite the

default profile with device-specific information. Con-

sider the default profile for an email device. The

profile has the following content:

dev.format.accept¼text/html,*/*

dev.page.size¼0

Fig. 16. E-mail service.

Fig. 17. Find-Me-A-Movie app-let.

28 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

This profile indicates that the default MIME type is

TEXT/HTML, but all MIME types (*/*) are accep-

table. Also, the page size ‘0’ means that there is no

size limit for each message transmission. These values

are inherited by all mail devices unless they are

overwritten. For example, the above default values

are not appropriate for e-mails used in cellular phones

(say, AT&T’s PocketNet phone). The device profile

for that cellular phone uses the following rules:

dev.format.accept¼text/plain

dev.page.size¼230

which indicate that only the MIME type text/plain is

appropriate and the phone does not accept messages

longer than 230 characters. The device profile may

also specify how and when to access this device. For

example, a profile may include the following entries:

mail.store.checktime¼10000

mail.store.url¼imap://imobile:password@bigmail

mail.transport.url¼smtp://bigmail

which specifies the frequency (every 10 s) for check-

ing the e-mail account (store.checktime), the account

password (store.url), the transport protocol for send-

ing email (transport.url) etc.

Each device is mapped to a registered iMobile user.

There are two reasons for this mapping:

� to ensure access for legitimate iMobile users and

� to personalize a service based on the user profile.

Examples of device-to-user mappings are shown

below:

sms:þ886936731826¼herman

sms:þ19087376842¼chen

mail:dchang@research.att.com¼difa

aim:webciao¼chen

5.2. User Profile

iMobile authenticates a mobile user depending on the

device or protocol used by that user. An example of

the iMobile user profile is given in Figure 18.

In this example, the user profile stores the user

name, password and a list of the devices that the user

registers with iMobile. It also stores command and

address aliases. When a user accesses iMobile through

AIM using the ID webciao, iMobile determines from

the user-device mapping that the user is Chen. There-

fore, iMobile will use the user profile of Chen to

handle all later service requests from this device. For

example, a user may send the following short message

using a GSM phone:

forward $mail.1 Q T

In this short message, the special character ‘$’ re-

quests iMobile to map the named device (mail.1) to

the corresponding entry in the profile. According to

the user profile in Figure 18, iMobile interprets the

short message as

forward mail:chen@research.att.com quote T

This user profile also stores the user’s last access

device in the default parameter. Other mobile users

may send the following message to reach the user:

forward $chen echo call your boss

The alias (‘$’þ username) requests iMobile to lookup

the last access device (mail.1) of Chen and interpret

the message as

forward mail:chen@research.att.com echo call your

boss

As a final remark, iMobile assumes that wireless

networks (such as Voicestream GSM or AT&T

TDMA networks in North America) are reliable,

which provide legal cellular phone IDs through short

messages. This assumption is generally acceptable

unless a cellular phone is stolen and the user did not

lock the phone with a secured password. iMobile also

trusts the AOL authentication for non-critical ser-

vices. Extra user authentication through iMobile is

required if the user accesses iMobile through Telnet,

Fig. 18. A user profile example.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 29

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

WAP or HTTP. The authentication information should

be stored in the user profiles.

6. iMobile-Based P2P Mobile Computing

Many resources available to a mobile device may not

be readily available on any networked servers. Ex-

amples of the resources include location information,

locally captured media files and its exposure to

surrounding resources, such as thermometers or X10

cameras that are wirelessly connected. With these

resources, the P2P computing paradigm [26] will

also enable mobile devices to directly exchange in-

formation with each other.

Figure 19 shows an example of P2P mobile com-

puting environment among four mobile users located

in different locations with various access networks

and devices. The mobile user Chen is in Paris with an

iPAQ connected to the internet through wireless LAN,

possibly provided by a coffee shop. He may want to

access a specific image captured by his friend Wei in

New York with a Palm device connected to CDPD/

TDMA network. Chen is also interested in the loca-

tion information of another user in San Antonio, and

the address information of a Paris friend, stored in the

mobile device owned by his friend in San Diego. All

these contents, stored in individual mobile devices,

are not available on any network-based servers.

To access the contents, Chen must send the requests

to other mobile devices. Because these mobile

devices may not always connect to the internet, we

introduce iMobile router, a network based server that

locates the mobile devices and routes the messages

among them.

The iMobile-based P2P computing proposes a

lightweight service platform called iMobile ME,

which provides personalized services on the mobile

devices. iMobile ME is a simplified version of the

iMobile platform described in the previous sections

(which is referred as the standard iMobile in this

section). iMobile ME minimizes the requirement of

system resources and is suitable for execution on

mobile devices.

As shown in Figure 20, iMobile ME consists of two

agent abstractions: dev-let and info-let. These compo-

nents communicate with each other through the let

engine. The let engine, dev-let and info-let perform

the same functions as those in the standard iMobile

platform. The major differences between the iMobile

ME and standard iMobile platform are described

below.

1. Data encoding: To support flexible output format

in standard iMobile, the info-lets need to generate

the results in MIME format and provide a trans-

coding mechanism if the result type is not accep-

table to the destination device. In iMobile ME, the

dev-lets and info-lets only support plain text. This

simplification reduces the communication band-

width and the effort of data processing on mobile

devices.

2. Removal of app-let: In standard iMobile, an app-let

implements application logic by processing infor-

mation obtained from one or more info-lets. This

powerful abstraction allows creation of compli-

cated services by using the iProxy scripts that

invoke functions defined in info-lets. Therefore,

the info-lets must provide many functions to sup-

port the app-lets. On the other hand, to reduce the

overhead of processing the requests, iMobile ME

removes the app-let component and the script

parser. This simplification allows more straightfor-

ward execution.

3. Remote access: iMobile ME introduces a remote

agent (RA) dev-let and a remote procedure call

(RPC) info-let to support remote access among

Fig. 19. iMobile-based peer-to-peer (P2P) mobile computing. Fig. 20. iMobile micro edition (ME) system architecture.

30 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

mobile devices. The RA dev-let accepts the re-

quests from other mobile devices and returns the

results to the senders. The RPC info-let forwards

the local requests to the remote mobile devices and

returns the results obtained from these remote

devices. RA and RPC are not found in standard

iMobile.

4. Message queuing: A mobile device may be dis-

connected or connected with limited bandwidth,

and it may be difficult to retain a long commu-

nication session between two interacting mobile

devices. Therefore, each remotely accessible dev-

let/info-let is extended with an inbox queue which

accumulates incoming messages and an outbox

queue which buffers outgoing messages.

5. Message routing: iMobile ME communicates with

the iMobile router to exchange queued messages.

The iMobile router is a network-based server,

which routes requests and responses among mobile

devices. It stores the messages in the queues for

every iMobile ME and synchronizes with the

queues of all iMobile MEs.

Based on iMobile ME, examples of P2P services and

the details of queue synchronization are elaborated in

this section.

6.1. iMobile ME Services

Figure 20 shows examples for iMobile ME dev-lets

and info-lets implemented in Java 2 Micro Edition

(J2ME) [37]. An iMobile ME provides two basic dev-

lets: console and RA. The console dev-let provides a

pure-text console to send requests and display re-

sponses. The RA dev-let receives requests from other

mobile devices and returns the results to these devices.

If the mobile device is powerful enough to run a

simple web server (e.g. iPAQ), iMobile ME may

also provide a HTTP dev-let to receive requests

directly from web browsers.

An info-let exports the local resource of a mobile

device to other devices. Some examples are listed

below.

� The Echo info-let simply echoes the received

string. This info-let is useful for checking the

system and connections among mobile devices.

The Echo info-let also provides round-trip delay

statistics from one mobile device to another.

� The Address info-let provides a lookup interface for

the address book database, which can be found in

most mobile devices. Figure 21 illustrates the

response shown on a Palm device for address

lookup of a user Huang.

� The RPC info-let parses a request to obtain the

destination and command parameters. Based on

the parameters, the RPC forwards the command

to the corresponding destination.

� The Sensor info-let exposes the location or envir-

onment information of a mobile device that has a

built-in location determination system or a sensor

to obtain its surrounding environment information

(such as temperature and moisture).

6.2. Queue Synchronization

iMobile ME stores the incoming and outgoing mes-

sages in queues and synchronizes with the queues of

other iMobile MEs defined in the iMobile router.

Queue synchronization is issued by an iMobile ME

when it connects to the internet. Every iMobile ME

registers a unique ID to the iMobile Router and uses

this ID to communicate with each other. Figure 22

shows an example of remote procedure call from

iMobile ME1 to ME2, which includes four synchro-

nization actions

Fig. 21. An address info-let example.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 31

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

1. A RPC request is issued from the console dev-let in

ME1. The RPC info-let receives the request and

stores it in the outbox queue. Then ME1 issues the

first synchronization that forwards the request to

the iMobile router. The iMobile router buffers the

request in the outbox queue for ME2 and waits for

ME2 to retrieve the request.

2. When ME2 issues the second synchronization, it

obtains the request from the iMobile router. ME2

executes the request by invoking the corresponding

info-let, and stores the response in its outbox queue.

3. ME2 issues the third synchronization that sends the

response to the iMobile router. The iMobile router

stores the response in the outbox queue for ME1.

4. ME1 issues the fourth synchronization to receive

the response. Finally, the console dev-let shows the

response on the screen of ME1.

Figure 23 shows a RPC request example issued by

Chen to look up address book for Huang in Wei’s

device. This figure shows two screen shots that cap-

ture the interactions between two ME devices Chen

and Wei.

7. Summary

This paper proposed iMobile, a proxy-based platform

for developing mobile services for various mobile

devices and wireless access technologies. iMobile

introduces three abstractions on top of an agent-based

proxy: dev-let that interacts with various access de-

vices and protocols; info-let that accesses multiple

information spaces; and app-let that implements ap-

plication and service logic. The let engine arbitrates

the communications among dev-lets, app-lets and

info-lets, which also maintains user and device pro-

files for personalized services. The iMobile vision

allows a mobile user to access vast amounts of

information available on various wired and wireless

networks regardless of where the user is and what

device or communication protocol is available. This

modular architecture allows developers to write de-

vice drivers, information access methods and applica-

tion logic independently from each other.

We also developed a simplified iMobile platform

called iMobile ME. The iMobile ME architecture

provides a uniform architecture on mobile devices,

which allows these devices to both communicate with

and access resources from each other. As mobile

devices become more powerful, iMobile ME

provides an ideal infrastructure to facilitate P2P mo-

bile computing.

As a final remark, we have started to integrate

iMobile with location services to further eliminate

the parameters (zip code, longitude, latitude etc.) that

Fig. 22. Queue synchronization example.

Fig. 23. A remote procedure call example.

32 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

a mobile user should provide to access useful infor-

mation (nearby restaurants and hospitals etc.). We are

also experimenting with Voice XML technologies

to support a voice-based dev-let for information

retrievals.

Acknowledgement

The iProxy and iMobile platforms are research pro-

jects funded by AT&T Labs Research. We thank

Robin Chen, Josie Cheng, Di-Fa Chang and all the

persons who participated in the projects. This work

was partially funded by NSC Program for Promoting

Academic Excellence of Universities.

References

1. AltaVista Company. AltaVista discovery. http://discovery.
altavista.digital.com/, 1998.

2. American Online, Inc. AOL instant messenger. http://
www.aol.com/aim, January 1999.

3. The Apache Group. The Apache Cocoon Project. http://xml.
apache.org/cocoon/index.html, 2000.

4. Fox A, Gribble SD. Security on the move: indirect authentica-
tion using Kerberos. In Proceedings of Second ACM Confer-
ence on Mobile Computing, White Plains, New York,
November 1996.

5. Fox A, Gribble SD, Chawathe Y, Brewer EA. Adapting to net-
work and client variation using active proxies: lessons and pers-
pectives. IEEE Personal Communications, 1998; 5(4): 10–19.

6. AT&T. Your WorldNet. http://yourworldnet.planetdirect.com/,
January 1999.

7. AT&T. Wireless data services. http://www.att.com/pocketnet/,
2000.

8. AT&T Labs. iProxy. http://www.research.att.com/sw/tools/
iproxy/, January 1999.

9. BlackBerry. Wireless solution. http://www.blackberry.net/
product/blackberry/.

10. Myers BA. The Pittsburgh Pebbles PDA Project. http://
www.cs.cmu.edu/�pebbles/.

11. CompanionLink. http://www.companionlink.com/.
12. European Telecommunications Standards Institute. Use of

DTE-DCE interface for short message service (SMS) and cell
broadcast service (CBS) (GSM 07.05 version 5.5.0). http://
www.esti.org/, January 1998.

13. Extended Systems. http://www.extendedsystems.com/.
14. Douglis F, Ball T, Chen YF, Koutsofios E. The AT&T internet

differencing engine: tracking and viewing changes on the web.
World Wide Web Journal 1998; 1(1): 27–44. (Baltzer Science
Publishers).

15. Gnutella. http://www.gnutella.com/.
16. GSM Association. An overview of SMS. http://www.

gsmworld.com/technology/sms.html.
17. Wang H, Raman B, Biswas R, Chuah CN, Gummadi R, Hohlt

B, Hong X, Kiciman E, Mao Z, Shih J, Subramanian L, Zhao
BY, Joseph A, Katz R. ICEBERG: an internet-core network
architecture for integrated communications. IEEE Personal
Communications: Special Issue on IP-based Mobile Telecom-
munication Networks, 2000.

18. Rao H, Chang DF, Lin YB. iSMS: an integration platform for
short message service and IP network. IEEE Network 2001;
15(2): 48–55.

19. Rao H, Chen YF, Chang DF, Chen MF. iMobile: a proxy-
based platform for mobile services. The First ACM
Workshop on Wireless Mobile Internet (WMI 2001), Rome,
July 2001.

20. Rao H, Chen YF, Chen MF, Chang J. iProxy: a programmable
proxy server. In Poster Proceedings of the WebNet99 Confer-
ence, October 1999.

21. Rao H, Chen YF, Chen MF, Chang J. A proxy-based personal
portal. In Proceedings of the WebNet99 Conference, Hawaii,
October 1999.

22. Rao H, Chen YF, Chen MF. A proxy-based web archiving
service. In Proceedings of the Middleware Symposium, Port-
land, Oregon, July 2000.

23. Jabber. http://www.jabber.org/.
24. Steiner J, Neuman C, Schiller J. Kerberos: an authentication

service for open network systems. In Proceedings of the Winter
1988 Usenix Conference, February 1988; pp. 191–201.

25. Myers J, Rose M. Post office protocol—version 3. RFC1939,
May 1996.

26. Aberer K, Hauswirth M. Peer-to-peer information systems:
concepts and models, state of the art, and future systems.
18th International Conference on Data Engineering, San
Jose, February 2002.

27. Crispin M. Internet message access protocol. RFC2060,
December 1996.

28. Nilsson M, Hjelm J, Ohto H. Composite capabilities/preference
profiles: requirements and architecture. http://www.w3.org/
Mobile/CCPP/, W3C working group, 2000.

29. Napster, Inc. http://computer.howstuffworks.com/napster1.htm.
30. OmniSky. CDPD modem for PalmV. April 2000.
31. OMG, Inc. CORBA: common object request broker architec-

ture. http://www.corba.org/.
32. Palm, Inc. Web clipping. http://www.palmos.com/dev/tech/

webclipping/.
33. Barret R, Maglio PP. Intermediaries: new places for producing

and manipulating web content. In Proceedings of the Seventh
International World Wide Web Conference, Brisbane,
Australia, 1998.

34. SmartHome, Inc. X-10/PLC products. http://www.x10.org/.
35. Wildstrom SH. Should coffeepots talk? Business Week 1999:

22.
36. Czerwinski SE, Zhao BY, Hodes TD, Joseph AD, Katz RH. An

architecture for a secure service discovery service. In Proceed-
ings of The Fifth ACM/IEEE International Conference on
Mobile Computing (MobiCom’99), Seattle, WA, August
1999; pp. 24–35.

37. Sun Microsystems. Java 2 micro edition. http://java.sun.com/
j2me/.

38. SyncML Initiative Ltd. SyncML. http://www.openmobilealliance.
org/syncml/.

39. Varshney U. Recent advances in wireless networking. IEEE
Computer 2000; 33(6): 100–103.

40. The WAP Forum. Wireless application protocol. http://
www.wapforum.org/.

41. Wedgetail Communications. JCSI (Java crypto and security
implementation) micro edition. http://www.wedgetail.com/
jcsi/microedition/.

42. Fu XD, Shi WS, Akkerman A, Karamcheti V. CANS: compo-
sable, adaptive network services infrastructure. USENIX Sym-
posium on Internet Technologies and Systems (USITS), March
2001.

43. Yahoo, Inc. My Yahoo. http://my.yahoo.com/, January 1999.
44. Wang YM, Russell W, Arora A. A toolkit for building depend-

able and extensible home networking applications. In Proceed-
ings of 4th USENIX Windows Systems Symposium, August
2000.

45. Chen YF, Koutsofios E. WebCiao: a website visualization and
tracking system. In Proceedings of WebNet97, Toronto,
Canada, October 1997.

A MOBILE SERVICE PLATFORM USING PROXY TECHNOLOGY 33

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

Authors’ Biographies

Ming-Feng Chen received the Ph.D. in
computer science from the National
Chiao Tung University, Taiwan, in
2004. He was the research consultant in
AT&T Labs Research (1995–2001). His
primary research interests are mobile
computing, wireless and data communi-
cation, proxy architecture and internet
services.

Yi-Bing Lin received his B.S.E.E. degree
from National Cheng Kung University,
Taiwan, in 1983, and his Ph.D. in com-
puter science from the University of
Washington in 1990. From 1990 to
1995, he was with the Applied Research
Area at Bell Communications Research
(Bellcore), Morristown, NJ. In 1995, he
was appointed as a professor in the of

Department of Computer Science and Information Engi-
neering (CSIE), National Chiao Tung University (NCTU).
In 1996, he was appointed as deputy director of Microelec-
tronics and Information Systems Research Center, NCTU.
During 1997–1999, he was elected as chairman of CSIE,
NCTU and is now chair professor of NCTU. His current
research interests include design and analysis of personal
communications services network, mobile computing, dis-
tributed simulation and performance modeling. Dr. Lin has
published over 150 journal articles and more than 200
conference papers.

Herman C.-H. Rao is the vice president
in Far EasTone Telecommunication Co.
Ltd. in Taiwan, responsible for develop-
ing mobile technologies, telephony and
data platforms, and products. He led a
team that successfully developed Service
Platform in 2001, the first mobile service
platform enabling Mobile Internet Busi-
ness, and launched multi-media portal

and products in 2003. In addition, Herman established Far
Eastone Labs in 1998 and since leads the Labs, that research
advanced telecommunication technologies to support Far
EasTone as a multiple-function wireless communication
operator in Taiwan. Dr. Rao has a doctorate in computer
science from the University of Arizona, and a B.S. in
mechanical engineering from National Taiwan University.
Prior joining Far EasTone, he worked in Bell Labs and
AT&T Research as a senior researcher for 10 years. He
holds four U.S. patents and published more than 50 articles
in conferences and journals. In additional to extensive
industry experiences in telecommunication and data
communication, Dr. Rao was an associate professor in
National Tsing-Hua University and National Chung-Cheng
University.

Quincy Wu received his B.S. degree
in mathematics from National Tsing
Hua University, Taiwan, in 1992, and
his Ph.D. in computer science and
information engineering from
National Tsing Hua University in
2000. He joined National Center for
High-Performance Computing with
the NBEN (National Broadband
Experimental Network) project,

where he successfully designed and established the first
island-wide IPv6 network among universities. In 2002, he
began serving as a research assistant professor with National
Chiao Tung University, and helped National Telecommuni-
cations Project Office to deploy a SIP-based VoIP Platform
across several universities. His current research interests
include session initiation protocol, open service architec-
ture, internet protocol version 6, design and analysis of
approximation algorithms and service creation on the third
generation mobile network.

34 M.-F. CHEN ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:17–34

