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parallel to the plane of incidence (¢ = 45°), ¢, vanishes, a result that
is related to the polarizations of the fields.

IV. CoNCLUSION

A formulation of the Rayleigh method for calculating the elec-
tromagnetic fields scattered by a periodically corrugated interface
between an isotropic material and a gyroelectromagnetic uniaxial
medium has been presented. The present method can handle gen-
eral configurations in which the incident beam is associated to waves
coming either from the isotropic or from the gyroelectromagnetic side
and any orientations with respect to the grooves of the grating for the
plane of incidence and for the optical axis of the anisotropic medium.
Perfect agreement between the numerical results obtained with this
formalism and previous results has been observed for for perfectly
flat (h/d — 0) gyroelectromagnetic interfaces and for corrugated
gratings in classical mountings with the optic axis of the anisotropic
material in the plane of the interface. Results for sinusoidal gratings
with different values of i /d in classical and conical mountings were
presented.
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Negative Group Velocity and Anomalous Transmission in a
One-Dimensionally Periodic Waveguide

Ruey Bing Hwang

Abstract—This study presents a theoretical investigation of the negative
group velocity (NGV) and anomalous transmittance of waves in the stop
band of a corrugated parallel-plate waveguide (CPPWG). The two different
schemes, scattering analysis for a finite CPPWG and the dispersion rela-
tion of an infinite CPPWG, were used to investigate the physical insight of
the wave process. The NGV zone corresponds to the stopband slanted at
an angle on the Brillouin diagram, following the mutual verification of the
results obtained by the two different approaches. This class of stopband is
caused by the contra-flow interaction between the fundamental mode and
the space harmonics of higher-order modes. Additionally, fluctuation was
also found in the transmitted coefficient within the conventional stopband,
caused by the excitation of the first higher-order mode within the stopband
of the fundamental mode.

Index Terms—Corrugated waveguide, negative group velocity, periodic
structures.

1. INTRODUCTION

The superluminal group velocity (that is, faster than the speed of
light, ¢, in vacuum) and negative group velocities (NGVs) of the waves
in an anomalous dispersion medium have previously been theoretically
and experimentally studied [1]-[5]. Recently, Siddiqui, Mojahedi and
Eleftheriades [6] designed a new artificial medium having both the
Negative Refractive Index and the NGV properties. In their proposed
framework, a resonant circuit is embedded within each loaded trans-
mission line unit cell, generating an anomalous dispersion zone with a
negative group delay [6]. Besides, dispersion analysis of Sievenpiper’s
shielded structure using multi-conductor transmission-line theory was
carried out and the formation of a slanted stopband formed due to
contra-directional coupling between the fundamental backward-wave
harmonic and the underlying parallel-plate mode was found [7].

In this paper, the NGVs property of the waves guided in a corru-
gated parallel-plate waveguide (CPPWG) was investigated. The struc-
ture under consideration is a parallel-plate waveguide with periodic
variation (corrugation) on its bottom wall. Such a CPPWG structure
has been widely studied with its guiding characteristics in the pass- and
stopbands regions [8]-[12], and has also been employed to design a sur-
face-wave antenna [13]. Here, we took this structure as an example to
examine its NG Vs property, because that the structure is simple and the
mathematical formulation is straightforward. Significantly, dispersion
relation of the source-free fields supported by the CPPWG of infinite
extent can be exactly predicted.

A rigorous mode-matching method was applied to study such a elec-
tromagnetic boundary-values problem consisting of multiple disconti-
nuities. The input-output relation for each discontinuity was first for-
mulated and expressed in terms of the generalized scattering matrix
[14]. The scattering characteristics of the overall structure could be ob-
tained by cascading the respective scattering matrix. Besides, the dis-
persion relation of the infinite periodic structure can be obtained by im-
posing the Bloch (periodic boundary) condition at the input and output
interfaces of a unit cell. The dispersion relation was further converted
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into an eigenvalue problem, where the eigenvalue denotes its dispersion
root and the associated eigenvector stands for the mode field pattern.

From the previous literature [15]-[17], we know that scattering char-
acteristics of plane waves by a finite periodic structure, however, with
sufficiently large number of unit cells, can be well predicted from the
dispersion relation of waves supported by the corresponding structure
of infinite extent. Therefore, we employed two schemes to examine
the NGV properties of this waveguide, the scattering analysis of a fi-
nite length CPPWG, and the dispersion relation of waves guided in
the infinitt CPPWG. The former allows us to know the transmitted
and reflected responses, especially on its pass- and stop- bands be-
havior. Specifically, the phase and group velocities were obtained by
processing the transmitted phase angle. The latter one can tell us the
dispersion relation of the source-free (or resonance) fields supported by
the infinite corrugated waveguide. In general, the dispersion roots are
complex number, with their real- and imaginary- parts representing the
phase- and attenuation- constants. To clearly observe the band struc-
ture, we drew the dispersion relation in terms of the format of the Bril-
louin diagram (the relationship between kod /27 and 3d/2). The stop
band caused by the contra-flow coupling between two space harmonics
was also carefully identified by comparing exact dispersion relation
with that of unperturbed one. By mutually verifying the property of
NGYV through the transmitted response and the dispersion characteris-
tics of the corrugated waveguide, we found that it occurs in the stop-
band region slanted at an angle on the Brillouin diagram, resulted from
a contra-flow interaction between the fundamental mode and the space
harmonics of higher-order waveguide modes.

This investigation is structured as follows. Section II introduces the
structure of the corrugated parallel-plate waveguide. Section III out-
lines the mathematical procedure for the two problems, the scattering
analysis of the finite length corrugated waveguide and the dispersion
relation of the corresponding waveguide of infinite extent. Section IV
presents the numerical results of negative group velocity obtained from
scattering analysis. The NGV property was explained by the dispersion
relation of an infinite corrugated waveguide. The conclusion highlights
key features of the numerical experiment in this study.

II. DESCRIPTION OF THIS PROBLEM

Fig. 1(a) displays the structure of a metallic CPPWG. The struc-
ture typically is a parallel-plate waveguide with corrugated wall on
its bottom surface. It contains two uniform sections of parallel-plate
waveguides at its input and output ends, and corrugations otherwise.
The structure infinitely extends along the y direction. The period is d
along the z-axis. Fig. 1(b) shows a magnified unit cell of the periodic
structure. Each unit cell includes two back-to-back step junctions. The
channel width and the corrugation thickness are denoted by s and #,
respectively. The slot width between two adjacent corrugations is des-
ignated as w. The medium filled inside the waveguide is set to be air.
This work assumed that the structure and field did not vary along the y
direction (8/dy = 0). Therefore, the problem can be considered as a
scalar boundary-value problem in respective TE and TM polarization.
Additionally, the incident wave is the fundamental mode of the uniform
parallel-plate waveguide.

III. METHOD OF ANALYSIS

Previous literature [7], [9], [12] has derived the detailed mathemat-
ical formulation concerning the wave propagation in a CPPWG. There-
fore, the procedures are outlined for reference. As depicted in Fig. 1(a),
the CPPWG can be considered as the cascades of unit cells, each con-
taining two step junctions. Firstly, we expand the tangential electric-
and magnetic-fields in terms of the superposition of the PPWG modes
in respective uniform PPWG region. Secondly, due to the electromag-
netic boundary condition, the tangential components of the electric-
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Fig. 1. (a) Structure configuration of a parallel-plate waveguide having
periodic variation on its wall and (b) unit cell of the periodic waveguide.

and magnetic- fields have to be continuous across the step junction,
resulting in the input-output relation of the step junction. Thirdly, by
cascading the two input-output relations of the step junctions, the input-
output relation of the unit cell could be obtained. Finally, the scattering
characteristics could be further determined by successively cascading
each unit cell. On the other hand, the dispersion characteristics of the
source-free fields were obtained by imposing the Bloch (Floquet) con-
dition on the unit cell.

A. Scattering Analysis for Finite Number of Periods

We assume that the CPPWG comprises N unit cells. After deter-
mining the input-output relation of the overall structure, the transmit-
tance and reflectance for each mode can then be fully specified if the
incident waves is given. As a consequence, the transmittance of the
PPWG fundamental mode is written as: V,"=") = V,, /¢, where ¢ rep-
resents the phase angle in radians and V; is its amplitude. If the edge
effect at the input and output ends are negligible (with sufficiently large
number of unit cells), then the phase velocity could be approximated
as ¢ = — (. L, where L denotes total length of the CPPWG and [.¢t
represents the approximate phase constant of the periodic wave in the
structure. Furthermore, the group index, defined as the ratio of ¢ (speed
of light in vacuum) to the group velocity, can be approximated as

Ldo
Ldk,’

ng =Clvy = —

6]

B. Dispersion Relation of the CPPWG of Infinite Extent

The voltage and current waves propagating through a unit cell expe-
rience a phase shift (Bloch condition), if the periodic structure is infinite
in extent. The phase shift equals to exp(—jk.d), where k. is the propa-
gation constant of the periodic wave along the z direction. This leads to
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Fig. 2. Variation of the propagation constant against the normalized
frequency; the lines marked with circles are normalized phase constant, while
the line marked with triangles is normalized attenuation constant.

the dispersion relation of the CPPWG. The next procedure is to search
the dispersion root k. for a given frequency and structure parameters.
The eigenvalues to the dispersion equation, in general, are complex
numbers, with their real and imaginary parts denoting the phase and
attenuation constants, respectively.

IV. NUMERICAL RESULT AND DISCUSSION

Based on the previously defined equations, two computer programs
were developed in this study, one for the dispersion relation of an infi-
nite CPPWG and the other for the scattering analysis of a finite length
CPPWG. Hereafter, we normalize all the structure parameters to the
period d. The structure and incident parameters for the following ex-
amples are: PPWG channel width s = 1.0d, and slot width (w) and
thickness (¢) of corrugation were set to 0.1d and 0.28d, respectively.
The number of unit cells was set to N = 20. The incident waveguide
mode was designated as the fundamental mode with TM polarization.

Before performing extensive numerical computations on the scat-
tering and guiding characteristics, we first carry out the convergence
test for the solution against the number of modes employed. Fig. 2 il-
lustrates the variation of the z direction propagation constant (k. =
08— ja), including phase and attenuation constants, against the number
of employed modes. In this case, to examine the capability for complex
root searching, the normalized frequency was chosen as d/\ = 0.6, to
obtain a complex root located inside a stopband. The line marked with
circle denotes the real part of the dispersion root, while the one with
triangle was that of the imaginary part. Here, the two complex roots
share the same absolute value of the imaginary part, such that only one
value was shown in this figure. The number of modes was progressively
increased from 3 to 100 to examine the variation of roots for both the
real- and the imaginary- parts. The dispersion roots appear to converge
very well when the number of modes exceeds 20.

To investigate the NGV property associated with the CPPWG, a scat-
tering analysis was performed, with the incident power of the PPWG
mode (TM,) set to unity. Fig. 3 display the variation of transmit-
tance (fundamental mode voltage), including the magnitude and phase
angle in radians, against the normalized frequencies (d/)). The solid
line represents the strength of the transmittance corresponding to the
left-hand side axis, while the dashed line with triangles is the phase
angle corresponding to right-hand side axis. The zones drawn in a
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Fig. 3. Variation of V;(n = 0) against normalized frequency; the solid line

represents the amplitude of transmittance, while the dash line marked with
triangles is the phase angle in radians.
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Fig. 4. Variation of group index against normalized frequency.

shadow pattern demonstrate strong reflections for the incident wave.
These two areas are stop bands owing to the in-phase reflection (Bragg
reflection) from each discontinuity. However, it is interesting to note
that some narrow pass bands appeared in the first stop band. Besides,
the phase angle also exhibits rapid variations in this region. To facili-
tate observation, the phase angle distribution in the first stop band was
enlarged and again plotted in the inset. This anomalous band structure
has not been reported previously. This interesting phenomenon will be
interpreted using the waveguide dispersion relation later.

Fig. 4 depicted the variation of group index, computed by (1), against
the normalized frequency (d/\). The two stopband zones are high-
lighted in a shadow pattern. The right-hand side stopband, unlike the
left-hand stopband, exhibits negative group index (or NGV). Recalling
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Fig. 5. Band structure of the periodic waveguide of infinite extent plotted in
the format of Brillouin diagram: (a) Unperturbed dispersion curves and (b) exact
dispersion curves obtained by generalized eigenvalue equation.

the phase angle distribution shown in Fig. 3, the slope of the phase angle
is typically negative with respect to the frequency, excluding some fluc-
tuations, but is positive in the second stopband region. Equation (1) re-
veals that the group index is proportional to the negative sign of the
slope, which explains mathematically why the second stopband has a
negative group index (NGV). However, what is the physical insight of
wave propagation with NGV in the second stopband? To answer this
question, the dispersion characteristics of the source-free fields sup-
ported by this CPPWG must be further investigated to understand the
wave processes involved in such a stopband region.

To obtain a basic understanding of the wave-guiding phenomena in
such a periodic waveguide, the unperturbed dispersion relation in the
limiting case, when the thickness of the corrugation tends to zero, was
plotted in Fig. 5(a). This plot helps us to know the possible physical ef-
fects, such as the phenomenon of mode coupling among the space har-

monics, in the periodic waveguide. Fig. 5(a) illustrates the unperturbed
dispersion curves, where the vertical axis represents the normalized
frequency d/\, while the horizontal axis is the propagation constant
along the z direction. Each curve corresponds to the space harmonic
with the index pair (p,n), where p denotes the pth mode supported
by the waveguide, and n represents its corresponding space harmonic.
Moreover, the set of straight lines, given by (0, 0) and (0, —1), be-
longs to the fundamental mode of the waveguide, while the other set
of hyperbolic curves corresponds to the first higher-order mode of the
waveguide. From the coupled-mode theory, the phase matching condi-
tion takes place at the intersection point among the dispersion curves,
possibly leading to a contra-flow or co-flow interaction. A contra-flow
interaction causes a stop band where the wave experiences strong at-
tenuation. The intersection points are labeled in alphabetical order, and
help explain the phenomena of NGV, as explained later.

Fig. 5(b) depicted the exact dispersion relation displayed in terms of
the Brillouin diagram. The vertical axis represents the normalized fre-
quency d/\, while the horizontal one denotes the propagation constant,
including the phase 3d /27 (right-hand side) and attenuation ad /27
(left-hand side) constants. Additionally, the distribution of transmit-
tance versus normalized frequency is also plotted (line with circles)
in this figure for easy reference.

Comparing Fig. 5(b) with (a), the actual dispersion curves appear to
follow the unperturbed curves. The strong contra-flow interactions (or
coupling) arise around the interaction points labeled by A, B, B’ and
C'. The stopband given by B and B’ is slanted at an angle on the Bril-
louin diagram, which distinguishes it from the conventional stop bands
A and C. Recalling the unperturbed dispersion curves in Fig. 5(a), it
is recognized that the slanted stop band was results from the inter-
action between the fundamental and the space harmonic of the first
higher-order modes. Since the dispersion curve corresponding to the
transmitted wave follows the path through region A and B, the slope
of the dispersion curve within the stop band B is negative with respect
to the attached axes. It means that the d3/dk, is negative, causing a
negative group index. Additionally, the first-higher order mode appar-
ently exhibits pure imaginary dispersion roots (below cutofft), when the
normalized frequency is below d/\ = 0.478.

The first stopband between d/A = 0.46 and d/\ = 0.5 consists of
some fluctuations, as previously mentioned. The first spike (pass band)
shown in Fig. 5(b) occurs at d /A = 0.478, corresponding to the cutoff
normalized-frequency of the first higher-order PPWG mode, as illus-
trated in this figure. The stopband inhibited the propagation of funda-
mental mode and its space harmonic, as demonstrated from the disper-
sion curves. However, the first higher-order mode began to propagate
at the frequency within the stop band. The coexistence of the stop band
and the above-cutoff first higher-order mode caused the transmittance
response to fluctuate.

Fig. 6 illustrates the variation of group index versus normalized fre-
quency for various lengths of CPPWG (or number of unit cells). The
amount of the group index is closely related to the length of the periodic
waveguide, indicating that the increase in the length of the CPPWG
generally increases the group delay, as confirmed by intuition.

The anomalous transmittance occurs when the excitation of
first higher-order mode falls within the stopband region, as was
demonstrated in the previous numerical example. To prove that the co-
existence of the stop band and the propagating higher-order mode may
cause transmittance fluctuations, the separation distance (s = 0.8d)
and the thickness of corrugation (t = 0.25d) were changed to shift
the cutoff frequency out of the stopband region. Fig. 7 illustrates the
distribution of phase constant and group index against the normalized
frequency of the finite length CPPWG. The dispersion relation of
the corresponding infinite CPPWG is also computed and plotted in
the same figure for easy comparison. Significantly, the fluctuation in
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the transmittance disappears, since the cutoff frequency of the first
higher-order mode was not in the first stopband region. That is, no
higher-order propagation modes were excited within the frequency
range of the stopband. Therefore, the transmittance response has a
pure attenuation in the stopband region. Additionally, the distributions
of phase constants obtained by scattering analysis (in dash line with
gray color) and dispersion relation analysis have a similar variation,
which again validates the correlation between the NGV and the slanted
stopband.
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Fig. 8. Distribution of unwrapped phase versus normalized frequency for

various lengths of corrugated waveguide.

Fig. 8 shows the variation of the phase angle, normalized to 2w,
against the normalized frequency for various lengths (numbers of unit
cells) of the CPPWG. The delay phase angle (absolute value) was found
to increase with length. Therefore, the phase constant should be posi-
tive (3 = —A¢/AL). Hence, the wave in the slanted stopband region
exhibits a positive phase velocity and a negative group velocity.

V. CONCLUSION

This investigation presented the NGV property and anomalous trans-
mission of a wave propagating in a corrugated parallel-plate wave-
guide (CPPWG). Two schemes, scattering analysis of a finite length
CPPWG and dispersion relation of an infinite CPPWG, were utilized
to verify these anomalous phenomena. The NGV was found to occur
in the slanted stop band, owing to the interaction between the space
harmonic of the higher-order and the fundamental parallel-plate wave-
guide modes. Additionally, the anomalous transmittance resulting from
the excitation of the higher-order mode in the stopband region was also
observed and interpreted.
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A Note on Mass Lumping in the Finite Element Time
Domain Method

Robert Lee

Abstract—Mass lumping has been used to produce explicit time integra-
tion schemes for the finite element time domain method. In this paper, we
show that a specific choice in the lumping procedure can produce a scheme
that is equivalent to the finite difference time domain method. If lumping is
done in the time integration process, one can show that it can be equivalent
to the Newmark-beta method.

Index Terms—Finite element methods, finite-difference time-domain
(FDTD) methods.

I. INTRODUCTION

The concept of mass lumping has been around for a long time [1]. In
electromagnetic applications it has been used as far back as 1990 [2].
Mass lumping is used in finite element time domain (FETD) methods
to make the time integration scheme explicit through the diagonaliza-
tion of the mass matrix. However, for tetrahedral edge elements, itis well
known thata singular matrix may result [3]. Approaches to overcome this
problem have been proposed [4], but in general, the use of mass lumping
has been restricted to hexahedral (quadrilaterals in 2-D) elements.
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Recently, mass lumping concepts have been used to hybridize the
FETD method with the finite-difference time-domain (FDTD) method.
[5]. More importantly, the FDTD method can be shown to be equiva-
lent to the FETD method on block elements with the proper choice of
lumping. Thus, many advances that are made possible by the mathe-
matical rigor inherent in finite element formulations can be adapted di-
rectly to the FDTD method. One such demonstration of this approach
is shown in [6] where a stable sub-gridding scheme for FDTD is devel-
oped with the aid of FETD concepts.

In this paper, mass lumping is presented to show how the FETD and
FDTD methods are related for the cases where the lowest order vector
finite element basis functions (or edge elements) are used for the block
element in 3-D and the rectangular element in 2-D. Finally, we consider
the use of finite elements to discretize the time variable. This approach
to handling time integration is seldom considered. Instead, one usually
uses finite difference concepts such as the Newmark-beta method [7] to
generate the time recurrence. One can show that these two approaches
can be equivalent if lumping is applied to the time integral.

II. LUMPING IN SPACE

Let us consider the semi-discrete finite element approximation for
the wave equation

*{E}
T +S{E} =0. (1)
The vector {E} = [E1, Fa.....E;,..., E5]T represents the time

dependent unknowns associated with the vector finite element basis
functions @; for the block or rectangular elements [8]. The terms in
the mass matrix T and the stiffness matrix S are given by

T, = / By o, du @
1
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To obtain a fully discrete equation, a common approach is to use the
Newmark-beta method for time integration. The following recurrence
equation is obtained:

[T + (At)* ©S|{E}"
=[2T + (AH)*(20 — 1)S|{E}"
— [T+ (A)*OS|{E}" . )

To obtain an explicit scheme, the matrix on the left hand side of (4) must
be diagonalized. The typical approach is to choose © = 0 and then to
apply lumping to the mass matrix. The concept of mass lumping can be
viewed as finding an approximate integration scheme for (2) that diag-
onalizes the mass matrix without compromising the overall accuracy of
the numerical solution. For hyperbolic problems, the required accuracy
is well known [9]. For basis functions of order £, the integration must
be accurate to order 2k — 2. Thus for linear basis functions (k = 1),
the trapezoidal rule is a valid choice for integration. Let us consider the
1-D case where the integral in (2) is just a single integral and the basis
functions are the typical rooftop functions. Then the evaluation of T';;
over a single element of length £ is

e [(R)3 i=
T”‘?{h/@' i .

If the trapezoidal integration is used, then the integral over a single
element is given by
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