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Abstract

A well-constructed test sheet not only helps the instructor evaluate the learning status of the students,

but also facilitates the diagnosis of the problems embedded in the students� learning process. This paper

addresses the problem of selecting proper test items to compose a test sheet that conforms to such assess-

ment requirements as average difficulty degree, average discrimination degree, length of test time, number

of test items, and specified distribution of concept weights. A mixed integer programming model is pro-
posed to formulate the problem of selecting a set of test items that best fit the multiple assessment require-

ments. As the problem is a generalization of the knapsack problem, which is known to be NP-hard in the

literature, computational challenge hinders the development of efficient solution methods. Seeking approx-

imate solutions in an acceptable time is a viable alternative. In this paper, we propose two heuristic algo-

rithms, based upon iterative adjustment, for finding quality approximate solutions. Extensive experiments

are also conducted to assess the performances of different solution methods. Statistics from a series of com-

putational experiments indicate that our proposed algorithms can produce near-optimum combinations of

the test items subject to the specified requirements in a reasonable time.
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1. Introduction

As computer techniques progress rapidly in recent years, researchers have been trying to enable
computers to perform intelligent behaviors and consequently foster the advances of artificial intel-
ligence (AI) techniques. The call for the development of Intelligent Computer-Assisted Instruction
(ICAI) systems has therefore attracted considerable attention from AI as well as CAI researchers.

In 1989, Johnson et al. presented MITT (Microcomputer Intelligence for Technical Training)
Writer, an authoring environment for building intelligent tutoring systems for computer courses.
It represented a practical application of artificial intelligence (AI) in technical training (Johnson,
Neste, & Duncan, 1989). Later, Gonzalez and Ingraham (1994) designed an intelligent tutoring
system, which is capable of automatically determining exercise progression and remediation dur-
ing a training session according to past student performance. Vasandani and Govindaraj (1995)
developed an intelligent tutoring system that helps organize system knowledge and operational
information to enhance the operator�s performance. Meanwhile, Harp, Samad, and Villano
(1995) employed neural networks to model the behaviors of students in the context of intelligent
tutoring systems, using self-organizing feature maps to capture the possible states of student
knowledge from an already existing test database. Furthermore, Rowe and Galvin (1998) em-
ployed planning methods, consistency enforcement, objects and structured menu tools to con-
struct intelligent simulation-based tutors for procedural skills. Antao, Brodersen, Bourne, and
Cantwell (2000) presented their experiences of developing intelligent tutorial systems for teaching
simulation in engineering education.

While computer intelligence has inspired the development of intelligent tutoring systems, the
advent of network technologies in the mean time has helped realize distance learning systems.
For example, Sun and Chou (1996) presented the CORAL (Cooperative Remotely Accessible
Learning) system, which is aimed to institute a collaborative learning environment on computer
networks. One of the branches of CORAL is the Intelligent Tutoring and Evaluation System
(ITES) project, which focuses on applying the techniques of artificial intelligence to enhance
the tutoring process (Hwang, 1998). ITES erhployed a fuzzy expert system to support the tutoring
strategies of a distance learning environment; in addition, a set of parameters were defined to
examine the behaviors of the students on networks through their on-line operations.

It is also widely recognized that the growing popularity of computer-assisted instruction has led
computer-based testing to receiving increasing attention. Most of earlier studies focused on
whether computer-based tests were equivalent to paper-and-pencil tests, assuming identical tests
were administered in the two formats. Olsen, Maynes, Slawson, and Ho (1986) compared the rel-
ative performances of paper-administered, computer-administered, and computer-adaptive tests
in testing the mathematical abilities of the third- and sixth-grade students. They found that pa-
per-administered and computer-administered tests did not significantly differ from each other with
regard to the testing quality. That study also identified the three types of tests to be equivalent in
terms of score rank order, means, dispersions, and distribution shapes.

In New Zealand, three researchers propounded a ‘‘Knowledge Based Computer Assisted
Instruction System’’, which can change the numeric part of items when the test is in progress
so as to prevent students from memorizing the answers (Fan, Tina, & Shue, 1996). Another
branch of relevant research is the Computerized Adaptive Testing, which applies some prediction
methodologies to shorten the length of the tests without sacrificing the precision (Wainer, 1990).
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Besides the traditional multiple-choice, fill-in-the-blank, and short essay type questions. Rasmus-
sen, Northrup, and Lee (1997) suggested that Web-based instruction could also allow students’
progress to be evaluated by participation in group discussions and portfolio development. Fur-
thermore, Khan (1997) indicated the possibility that designers of Web-based instruction systems
could create facilities to facilitate the students to submit their comments on courseware design and
delivery. Feldman and Jones (1997) attempted to perform semiautomatic testing of student soft-
ware under Unix systems. Chou (2000) endeavored to build the GATES system, a collective and
collaborative project intended to integrate an interactive testing system with theoretical and prac-
tical research on complex technology-dependent learning environments. Hwang (2003a) employed
the conceptual map approach for diagnosing students learning problems after an on-line test was
performed. Since then, such systems that change the form of tests from paper-and-pencil to on-
line have been proliferating rapidly.

In a testing system, the aggregate quality of the test items usually significantly affects the accu-
racy of the test. Therefore, several measures, such as degree of difficulty and degree of discrimi-
nation, have been proposed to represent the quality of each test item. The measures can be
incrementally derived and adjusted in accordance with the statistics of each test. Especially in a
network-based testing system, the testing results are recorded and analyzed for updating the de-
grees of difficulty and discrimination to improve the quality of the item bank (Lira, Bronfman, &
Eyzaguirre, 1990). However, the quality of a test not only depends on the quality of the item bank,
but also relates to the way the test sheet was constructed. That is, it is important to select proper
test items to construct a test sheet that meets multiple assessment requirements, such as average
difficulty degree, average discrimination degree, length of test time, number of test items, and
specified distribution of concept weights.

This paper addresses two issues about the composition of test sheets. We propose a mixed inte-
ger programming model to formulate the problem of selecting a set of test items that best fit the
multiple assessment requirements. As the problem is NP-hard (see Section 3 for details), compu-
tational challenge hinders the development of efficient methods that can produce optimal solu-
tions in a reasonable time. As an alternative, we propose two heuristic algorithms to find
quality approximate solutions. Statistics from a series of computational experiments indicate that
our approach is able to efficiently generate near-optimum combinations of test items that satisfies
the specified requirements.
2. Background and motivations

Instructional applications of computers have increased rapidly in the most recent years, so have
the computerized testing systems. Taking the GRE (Graduate Record Examinations) as an exam-
ple, people have taken the test through computers since 1992. The GRE has been offering a com-
puterized form since 1993 and has abandoned the paper-and-pencil form since 1999. The IBM Co.
and Arthur Andersen Co. have also begun to work on the development of a computerized testing
system. Generally, the quality of a test depends on three factors:

� The accurate measure of psychometric features (such as difficulty degree and discrimination
degree) for each test item.



G.-J. Hwang et al. / Computers & Education 46 (2006) 122–139 125
� The management of the item bank to reduce the redundancy and to maintain the consistency
and integrity of the test items.

� An efficient algorithm for generating test sheets that meet multiple assessment requirements.

Since it is difficult to simultaneously satisfy multiple requirements (or constraints) in selecting
test items, most computerized testing systems generate test sheet randomly (which will be called as
‘‘random selection’’ in the following discussions).

In Hwang (2003b), a multiple criteria test sheet generating problem is formulated as a dynamic
programming problem to minimize the distance between the parameters (e.g., discrimination, dif-
ficulty, etc.) of the generated test sheet and the objective values subject to the distribution of con-
cept weights.

Although the dynamic programming approach has taken multiple requirements into consider-
ation, in practical applications, more criteria need to be considered. For example, a teacher might
like to assign a range of test time instead of giving an objective test time and usually a teacher will
assign an expected lower bound for each concept weight instead of giving a distribution of concept
weights. Moreover, the object of a group test is to discriminate the status of the students. This
implies that the discrimination degree of the entire test sheet needs to be maximized. Another
problem of the approach proposed in Hwang (2003b) is the possibly long execution time. As
the time-complexity of the dynamic programming approach is exponential in terms of input
length, the actual execution time will become unacceptably long if the number of candidate test
items is large. Therefore, the approach is suitable to generate test sheets for the tests with a short
test time and a small number of candidate test items, e.g., unit tests. For a test that contains a
large number of candidate test items and requires a longer test time (i.e., a larger number of test
items are to be selected), efficient algorithms are required.

In the following sections, we shall propose a mixed integer programming model to formu-
late the problem of finding a set of test items that fit the multiple assessment requirements. As
the problem is NP-hard, we propose two heuristic algorithms to find quality approximate
solutions.
3. Mixed integer programming model

In this section, we formulate the problem under study as a mixed integer program, in which a
set of decision variables is introduced and an objective function are defined using these decision
variables. Instantiation of decision variables dictates a solution or decision and an objective func-
tion value reflects the quality of the decision outcome. During the solution seeking session, several
sets of constraints are specified to reflect the physical or logical limitations that could occur in the
decision-making process. In a mixed integer programming problem, some of the variables in-
volved are required to be integers. We consider the following example to demonstrate a basic form
of mixed integer programs. Suppose there are two products to produce under a weekly capacity of
142 man-hours. The profits of product one and product two are 5 and 2, respectively. A unit of
product one will requires 7 man-hours, and a unit of product two requires 4 man-hours. While
product one must be integral, product two can be fractional. The weekly demand of product
one is 19. The problem seeking the most profitable combination of product can be expressed as
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Maximize z ¼ 5x1 þ 2x2
Subject to 7x1 þ 4x2 < 142,

x1 6 14,

x1,x2 P 0, x1is an integer:
In the formulation, x1 and x2 are decision variables indicating the units of two products to pro-
duce, z is the object function, and 7x1 + 4x2 < 142, x1 6 14, x1,x2 P 0 and x1 is an integer are the
specified constraints. Moreover, variable x1 is integer and variable x2 is non-negative real.

Mixed integer programs have been widely adopted to model real-word applications (Hillier &
Lieberman, 2001) since the past few decades. Some success stories were reported in Bermon and
Hood (1999), Katok and Ott (2000) and Ambs et al. (2000).

Now, we turn to the test-sheet composition problem. Suppose, in an item bank, we have n can-
didate test items Q1,Q2, . . . ,Qn, from which a subset will be selected for composing a test sheet.
The test is designed to be related to m concepts, C1,C2, . . . ,Cm. The variables used in our proposed
model are defined as follows:

� Decision variables: xi is 1 if item i is selected; 0, otherwise.
� Coefficient di: degree of discrimination of item Qi.
� Coefficient rij: degree of association between item Qi and concept Cj.
� Coefficient ti: expected time needed for answering item Qi.
� Right-hand side hj lower bound on the expected relevance of concept Cj.
� Right-hand side l: lower bound on the expected time required for answering all of the selected

items.
� Right-hand side u: upper bound on the expected time required for answering all of the selected

items.

A mixed integer programming model for selecting test items from the item bank to meet multiple
assessment requirements is therefore defined as.
Maximize Z ¼
Xn

i¼1
dixi

Xn

i¼1
xi

Subject to
Xn

i¼1
rijxi P hj, j ¼ 1,2, . . . ,m, ð1Þ

Xn

i¼1
tixi P l, ð2Þ

Xn

i¼1
tixi 6 u, ð3Þ

xi ¼ 0 or 1, i ¼ 1,2, . . . ,n:
In the above formula, n is the number of candidate test items in the item bank, and binary var-
iable xi reflects the decision about item i is included or not. Constraint set (1) indicates that the
selected items must have a total relevance no less than the expected relevance to each concept
to be addressed. Constrain sets (2) and (3), respectively, specify the lower and upper limits on
the time required to answer the selected items. In the objective function of Z,

Pn
i¼1dixi is the total

discrimination summing over the selected items and
Pn

i¼1xi is the total number of selected items.
Therefore, the objective of this model aims to select a subset of items such that the average dis-
crimination is maximized.
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Mixed integer programming models are useful for formulating real-world applications. There-
fore, a variety of solution methods have been proposed in the open literature to compose solutions
for such models. Theoretical as well as practical works in this aspect abound (Hillier & Lieber-
man, 2001). Therefore, our formulation not only represents a real-life issue in a formal mathemat-
ical form but also make known methods or commercial software products available for solving
the problem. See Linderoth and Savelsbergh (1999), a comprehensive computational study. The
only point that deserves our further consideration is the cost of software and the time needed
for finding an optimal solution.

The complexity of the studied problem originated from the classical knapsack problem, in
which a knapsack and a set of stones are available and the goal is to select a subset of stones
such that the total value of the selected stones is maximum subject to the capacity constraint
of the knapsack. This problem is already known to be NP-hard (Garey & Johnson, 1979).
The test sheet composition problem can be regarded as a kind of knapsack problem even if
only test time and discrimination degrees are considered. Apparently, the test-sheet composi-
tion problem is far more sophisticated than the knapsack problem. As a sequel, it is very un-
likely to develop efficient algorithms that can produce optimal solutions within an acceptable
amount of time (Garey & Johnson, 1979). In the next section we circumvent to develop heu-
ristic procedures that can compose approximate solutions of a certain degree of quality in a
reasonable time.
4. A heuristic algorithms for test-sheet construction

In this section, we shall propose two test-sheet constructing algorithms, FTF (Feasible Time
First) and CLF (Concept Lower-bound First). In FTF, we attempt to select a set of test items
to meet the upper bound and lower bound on the expected answering time first, and then substi-
tute the selected test items with the candidate test items to meet the lower bound on the expected
relevance of each concept. In CLF, the lower bound on the expected relevance of each concept is
satisfied first. The algorithms are outlined in the following. For pseudo-codes of detail steps, the
reader is referred to Appendix A.
4.1. FTF algorithm

Input: test items Q1,Q2, . . . ,Qn, concepts, C1,C2, . . . ,Cm.
d[i]: degree of discrimination of Qi;
r[i, j]: degree of association between Qi and Cj;
t[i]: expected time needed for answering Qi;
h[j]: lower bound on the expected relevance of concept Cj;
l: lower bound on the expected time needed for answering the selected items;
u: upper bound on the expected time needed for answering the selected items;
Step 1. Sort all test items in non-increasing order of d[i]�s.
Step 2. Create index IC[j][i] for Concept Cj with non-increasing order of r[i][j] · d[j].
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Step 3. For l_idx = l to (l + u)/2 do Step 3.1 to 3.5 and report the solution with the best dis-
crimination degree.

Step 3.1. Find a set of test items that has a feasible expected answering time T. While the total
time needed for answering the selected test items is less than l_idx, select the candidate
test item with the largest discrimination degree and accordingly update the total time.

Step 3.2. Substitute the selected test items with candidate test items to meet the relevance lower
bound of each concept. Check each concept Cj, in the order of j = 1 to m. If concept
Cj�s total relevance is less than the lower bound h[j], then find a candidate test item i
and a selected test item s. If replacing test item s with item i will increase concept Cj�s
total relevance and the total answering time will remain within the allowed range, and
the total relevance for C1 to Cj�1 remain within the allowed range of expected rele-
vance, then perform the substitution operation.

Step 3.3. If there exists any unsatisfied h[j] and T is smaller than u, then select h[j]�s relevant test
item ls with the highest discrimination degree under the prompt that T + t[ls] remains
no greater than upper bound.

Step 3.4. Unselected any test item ds with a degree of discrimination smaller than the average
discrimination under the prompt that l < T � t[ds] < u and Acc_C[j] P h[j] for j = 1 to
m after unselecting ds.

Step 3.5. If T < u then select any test item ls with a degree of discrimination greater than the
average discrimination under the prompt that l < T � t[ls] < u and Acc_C[j] P h[j]
for j = 1 to m after unselecting ls.
4.2. CLF algorithm

Input: test items Q1,Q2, . . . ,Qn, concepts, C1,C2, . . . ,Cm.

d[i]: degree of discrimination of Qi;
r[i, j]; degree of association between Qi and Cj;
t[i]: expected time needed for answering Qi;
h[j]: lower bound on the expected relevance of concept Cj;
l: lower bound on the expected time needed for answering the selected items;
u: upper bound on the expected time needed for answering the selected items;
Step 1. Sort all test items in non-increasing order of d[i]�s.
Step 2. Create index IC[j][i] for Concept Cj in non-increasing order of r[i][j] · d[j].
Step 3. Create index IT by sorting test items in non-increasing order of t[i]�s.
Step 4. Find a set of test items that meet the relevance lower bound of each concept. While

there exists any concept whose total relevance is less than the lower bound, select a
relevant candidate test item with the largest discrimination degree.

Step 5. Substitute selected test items with candidate test items to meet the expected answering
time. While the total answering time for the selected test items is less than the lower
bound, find a candidate test item with the longest test time to replace a selected test
item with the shortest test time under the constraint that the total relevance of every
concept will remain greater than or equal to the corresponding lower bound. While
the total answering time for the selected test items is greater than the upper bound,
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find a candidate test item with the shortest test time to replace a selected test item with
the longest test time under the constraint that the total relevance of every concept will
remain greater than or equal to the corresponding lower bound.

Step 6. Unselected any test item ds with a degree of discrimination smaller than the average
discrimination under the prompt that l < T � t[ds] < u and Acc_C[j] P h[j] for j = 1 to
m after unselecting ds.

Step 7. If T < u then select any test item ls with a degree of discrimination greater than the
average discrimination under the prompt that l < T � t[ls] < u and Acc_C[j]P h[j]
for j = 1 to m after unselecting ls.

It is clear that the above two algorithms are not aimed to provide optimal test sheets. They
work by iteratively improving a draft until no more gains are further attainable. In the sense of
local search, the algorithms might be trapped in a local optimum. In trading with the exceedingly
long time required by methods that guarantee optimal solutions, heuristics usually provide satis-
factory, although not optimal, solutions with reasonable responsiveness. In the following section,
we shall use several test cases to examine the execution time and solution quality of the two
heuristics.
5. Experiments and evaluation

To evaluate the performance of the proposed algorithms, two experiments have been conducted
to compare the execution time and the solutions of four solution-seeking strategies, FTF, CLF,
random selection and exhaustive search. The platform of the experiments is a personal computer
with a Pentium III 1.0 GHz CPU and 256 MB RAM. The programs are coded in Java.

In total, eight item banks were used in the experiments. The test banks are stored in a Microsoft
Access database. Table 1 gives the features of the item banks used in the experiments. Columns
entitled N indicate the numbers of test items in the item banks, IT-time is the time elapsed for
creating the index file by arranging the test items in non-increasing order of t[i]�s, IC-time is
the time required for creating the index file IC[j][i] in non-increasing order of r[i][j] · d[j].

The experiment was conducted by applying FTF and CLF 20 times on each item bank with the
average execution time and discrimination degree recorded. Tables 2–4 show the experimental re-
sults for lower bounds of test time set to be 30, 60 and 120 minutes, respectively. It can be seen
Table 1

Features of the item banks

Item bank N Loading time (s) IT-time (s) IC-time (s) Average discri.

1 25 5.067 <0.001 <0.001 0.63267

2 30 5.308 <0.001 <0.001 0.65331

3 40 5.217 <0.001 <0.001 0.66602

4 250 8.522 0.004 0.020 0.60985

5 500 8.703 0.010 0.060 0.60920

6 1000 13.599 0.020 0.230 0.61208

7 2000 28.361 0.121 0.931 0.61339

8 4000 60.887 0.450 3.756 0.61534
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that for most cases, it is time-consuming to derive optimum solutions. For N = 30 and l = 120, it
takes more than 3 hours (i.e. 187 min) to find the optimal solution. Such a lengthy process is obvi-
ously unacceptable. When the values of N and l increase, it becomes very unlikely to find optimal
solutions in a reasonable time. This fact stimulates the need for the design of heuristic algorithms
for deriving approximate solutions of a certain quality level. In Tables 2 and 3, the solutions given
by FTF and CLF are pretty close to the optimum ones. In terms of run times and discrimination
deviations, our proposed methods demonstrate not only convincing effectiveness but also impres-
sive efficiency.
Table 2

Experimental results for l = 30

N Random selection FTF CLF Optimum solution

Time (s) Discri. Time (s) Discri. Time (s) Discri. Time (min) Discri.

25 0.03 0.63704 0.06 0.75466 0.03 0.75466 5 0.75466

30 0.03 0.69388 0.07 0.81812 0.03 0.81812 187 0.81812

40 0.03 0.64978 0.09 0.88001 0.03 0.86188 163,840 0.88144

250 0.03 0.54248 0.07 0.93936 0.05 0.91161 >106 N/A

500 0.03 0.60500 0.08 0.95161 0.10 0.93046 N/A N/A

1000 0.03 0.69753 0.09 0.95253 0.29 0.94831 N/A N/A

2000 0.03 0.54342 0.21 0.95322 1.08 0.95156 N/A N/A

4000 0.03 0.48540 0.56 0.95649 4.23 0.95256 N/A N/A

Table 3

Experimental results for l = 60

N Random selection FTF CLF Optimum solution

Time (s) Discri. Time (s) Discri. Time (s) Discri. Time (min) Discri.

30 0.03 0.64321 0.08 0.70726 0.03 0.70726 187 0.70726

40 0.03 0.63240 0.08 0.80639 0.04 0.79604 163,840 0.80639

250 0.03 0.62150 0.16 0.90191 0.05 0.89935 >106 N/A

500 0.03 0.55859 0.12 0.94052 0.10 0.91458 N/A N/A

1000 0.03 0.63284 0.16 0.95037 0.28 0.93440 N/A N/A

2000 0.03 0.60746 0.24 0.95166 1.08 0.94513 N/A N/A

4000 0.03 0.62240 0.63 0.95219 4.23 0.94712 N/A N/A

Table 4

Experimental results for l = 120

N Random selection FTP CLF Optimal solution

Time (s) Discri. Time (s) Discri. Time (s) Discri. Time (min) Discri.

250 0.03 0.59964 0.22 0.88729 0.05 0.87227 >106 N/A

500 0.03 0.66515 0.16 0.92266 0.10 0.89674 N/A N/A

1000 0.03 0.62918 0.11 0.93825 0.28 0.91799 N/A N/A

2000 0.03 0.59838 0.23 0.94162 1.08 0.93358 N/A N/A

4000 0.03 0.61402 0.60 0.94654 4.23 0.94171 N/A N/A
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To better understand the trends of the solution quality and run time of various solution ap-
proaches, we further visualize the numerical results in line charts as shown in Figs. 1–3. It can
be recognized that FTF and CLF have achieved much better results than random selection, which
is commonly adopted in real-world situations. In fact, the results of FTF and CLF are very close
to those known optimum solutions. For the cases with more than 250 candidate test items, the
execution time required by any application of exact methods for composing an optimal test sheet
is over 1,000,000 min, which are of course unacceptable. However, FTF and CLF can still gener-
ate test sheets with degrees of discrimination greater than 0.9. Such test sheets would be very use-
ful for evaluating the learning status of students. An important observation to address is related to
the guaranteed performance. When a larger test bank is deployed, the two heuristics can construct
test sheets with higher discrimination degrees. To discriminate the relative effectiveness between
FTF and CLF, we have the observation that FTF outperforms CLF for all test cases.

Fig. 4 further depicts the line charts concerning the execution times required by FTF and CLF
and the time needed for finding optimum solutions. When the number of candidate test items ex-
ceeds 40, it is almost impossible to find an optimal solution, while FTF and CLF can find near-
optimal solution in a very short time (less than 0.1 s). Moreover, when more candidate items are
Fig. 1. Solution qualities for l = 30.

Fig. 2. Solution qualities for l = 60.



Fig. 3. Solution qualities of FTF, CLF and Random for l = 120.

Fig. 4. Run times of FTP, CLF and Optimum for l = 30.
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considered, the performance of FTF is slightly better than CLF, regardless of the expected length
of testing time.

Although the two heuristics are both based upon an iterative improvement policy, they improve
the solutions from different angles. Therefore, it is interesting to know the relationship between
execution times and improvement approaches. Fig. 5 shows the execution times of FTF and
CLF for l = 120. In fact, a longer test time usually implies a larger number of test items will be
selected to construct a test sheet. It can be seen that FTF achieves much better performances than
CLF for the cases involving more candidate items and more selected test items. Algorithm CLF
takes a longer time mainly due to its Step 5 that incurs a great number of substution operations.
In summary, we can conclude that FTF outperforms CLF in the aspects regarding execution time
and degree of discrimination.



Fig. 5. Run times of FTF and CLF for l = 120.
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6. Conclusions and future work

In this paper, we have considered the composition issue of test sheets from test banks. The
problem seeks to select items to form a test sheet such that the discrimination degree can be at-
tained to a certain level. We have proposed a mixed integer programming model to formulate this
real-world problem that incorporates multiple assessment requirements. As the studied problem is
NP-hard, it is unlikely to solve it by any known algorithm in a reasonable time for practical
applications. To cope with the situations, two heuristic algorithms, FTF and CLF, have been
developed for producing approximate solutions. The two algorithms deploy different approaches
to adjusting, subject to the specified requirement, a preliminary test sheet in an iterative fashion.
From the experimental results, it can be clearly evinced that our approach is able to meet the spec-
ified requirements by efficiently finding near-optimal combinations of the test items. While any
exact algorithm takes an exceptionally long time to come up with an optimal test sheet, the
two heuristics can produce test sheets of high discrimination degrees in a few seconds. In practice,
instructors may select test items manually or use computers to perform a random draw. Both ap-
proaches cannot perfectly take time and quality into account simultaneously. Our algorithm have
provided a systematic way to fulfilling the multiple criteria. Moreover, algorithm FTF can achieve
a much better performance while the problem scale is large. Therefore, algorithm FTF is recom-
mended to be a good solution method for coping with the test-sheet generation problem.

The performances of our proposed algorithms convincingly suggest the possible realization of
workable testing systems. The FTF algorithm has been applied to several practical applications.
An ASP (Active Service Page) Design course, a K-6 Natural Science course and a K-9 Mathemat-
ics course have been developed. For further extensive applications, we are working out collabo-
rative plans with some local test bank providers, who maintain large-scale test banks to which
students as well as instructors can have access through the world-wide-web under a micro-pay-
ment mechanism. No matter which specific application domain our algorithm will be deployed
to provide the decision aids, we expect to establish a system, rather than an algorithm or program,
that is more informative, flexible, and capable for the instructors.
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Appendix A. Pseudo-codes of algorithms FTF and CLF

A.1. FTF algorithm

Input: test items Q1,Q2, . . . ,Qn, concepts C1,C2, . . . ,Cm.
d[i]: degree of discrimination of Qi;
r[i, j]: degree of association between Qi and Cj;
t[i]: expected time needed for answering Qi;
h[j]: lower bound on the expected relevance of concept Cj;
l: lower bound on the expected time needed for answering the selected items;
u: upper bound on the expected time needed for answering the selected items;
Step 1. Use DB input test items and sorting test items in non-increasing order of d[i]�s
Step 2. Create index IC[j][i] for Concept Cj in non-increasing order of r[i][j] · d[j]

Step 3. For l_idx = l to (l + u)/2 do Step 3.1 to 3.5 and report the solution with the best discrim-
ination degree

Step 3.1. Find a set of test items with feasible expected answering time

For i = 1 to n do

x[i] = 0; initially no test item is selected
End if
D = 0; accumulated degree of discrimination of the selected test items
T = 0; total time needed for answering the selected test items
N = 0; number of selected test items
For j = 1 to m do
Acc_C[j] = 0; total relevance for selected test items to Concept Cj

End if
k = 1; select the test items that have maximum degree of discrimination first
While (T < l_idx) do
If (x[k] = 0) Then
If ((T + t[k]) 6 u) Then

T = T + t[k]
x[k] = 1
For j = 1 to m do
Acc_C[j] = Acc_C[j] + r[k][j]

End For
N = N + 1
D = D + d[k]
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End If
k = k + 1
End If
End While
Step 3.2. Substitute selected test items with candidate test items to meet the relevance lower
bound of each concept
For j = 1 to m do; for each Concept Cj

s = 1; index for selected test items
i = n; index for candidate test items
While (Acc_C[j] < h[j]) do
While (x[IC[j][s]] = 0) do; find next selected test item

s = (s + 1) mod n; check s + 1 = n then s need not mod n
End While
While (x[i] = 1) do; find next candidate test item

i = (i � 1); check i � 1 = 0 then i = n
End While
If (((l 6 T � t[IC[j][s]] + t[i]) 6 u) and (r[IC[j][s]][j] < r[i][j])) Then

exchange_flag = 1; 1: substitution is acceptable
; 0: substitution is not acceptable
For k = 1 to j � 1 do

If (Acc_C[k] > h[k]) Then
If ((Acc_C[k] � r[IC[j][s]][k] + r[i][k]) < h[k]) Then

exchange_flag = 0
End if

End if
If exchange_flag = 1 Then; Perform test item exchange

For k = 1 to m do
; Accumulate weights of relevant concepts
Acc_C[k] = Acc_C[k] � r[IC[j][s]][k] + r[ID[i]][k]
End For
x[IC[j][s]] = 0; Update flags
x[ID[i]] = 1
End if
D = D � d[IC[j][s]] + d[ID[i]]; Update discrimination degree
End If

End While
End For
Step 3.3. If there exists any unsatisfied h[j] and T is smaller than u, then select h[j]�s relevant test
item ls with highest discrimination degree under the prompt that T + t[ls] remains smal-
ler than upper bound.
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Step 3.4. Unselected any test item ds with degree of discrimination smaller than the average dis-
crimination under the prompt that l < T � t[ds] < u and Acc_C[j] P h[j] for j = 1 to m
after unselecting ds.

Step 3.5. If T < u then select any test item ls with degree of discrimination greater than the aver-
age discrimination under the prompt that l < T � t[ls] < u and Acc_C[j] P h[j] for j = 1
to m after unselecting ls.

A.2. CLF algorithm

Input: test items Q1,Q2 . . . ,Qn, concepts C1,C2, . . . ,Cm.
d[i]: degree of discrimination of Qi;
r[i, j]; degree of association between Qi and Cj;
t[i]: expected time needed for answering Qi;
h[j]: lower bound on the expected relevance of concept Cj;
l: lower bound on the expected time needed for answering the selected items;
u: upper bound on the expected time needed for answering the selected items;
Step 1. Use DB input test items and sorting test items in non-increasing order of d[i]�s.

Step 2. Create index IC[j][i] for Concept Cj in non-increasing order of r[i][j] · d[j]

Step 3. Create index IT by sorting test items in non-increasing order of t[i]�s

Step 4. Find a set of test items to meet the relevance lower bound of each concept

int I[j]; index for IC[j]
For i = 1 to n do
x[i] = 0; initially no test item is selected

End if
D = 0; accumulated degree of discrimination of the selected test items
T = 0; total time needed for answering the selected test items
N = 0; number of selected test items
For j = 1 to m do
Acc_C[j] = 0; total relevance for selected test items to Concept Cj

I[j] = 1; initially each index for IC[j] pointing to the first position

End if
counter = 0; the number of concepts that satisfy their lower bounds of weight
While (counter < m) do
; if counter = m, then all of the concepts have satisfied their weight lower bounds.
For j = 1 to m do
If (Acc_C[j] < h[j]) Then

x[IC[j][I[j]]] = 1
N = N + 1

T = T + t[IC[j][I[j]]]

For k = 1 to m do
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Acc_C[k] = Acc_C[k] + r[IC[j]I[j]][k]

D = D + d[IC[j][I[j]]]
I[j] = I[j] + 1
End If

End For
For j = 1 to m do
If (Acc_C[j] P h[j]) Then
counter = counter + 1

End If

End For

End While
Step 5. Substitute selected test items with candidate test items to meet the expected answering
time
p = 1
q = n
While (T < l) or (T > u) do
While (T < l) do

If (x[p] = 0) Then
x[p] = 1
T = T + t[p]
For j = 1 to m do
Acc_C[j] = Acc_C[j] + r[p][j]

End For
p = p + 1
D = D + d[p]
N = N + 1
End If

End While
While (T > u) then
While (x[IT[q]] = 1) do
q = q � 1; Find a candidate item with longest answering time
If q 6 p Then

q = n
p = p + 1

End If
End While

While (x[IT[p]] = 0) do
p � p + 1; Find a selected item with shortest answering time
If p P q Then
p = 1
q = q � 1
End If
End While
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exchange_flag = 1
For j = 1 to m do; Check if the substitution violates h[j] constraint
If (Acc_C[j] � r[IT[p], j] + r[IT[q], j] < h[j]) then

exchange_flag = 0
End If

If exchange_flag = 1 then
For k = 1 to m do

Acc_X[k] = Acc_C[k] � r[IT[p],k] + r[IT[q],k]
End For
x[IT[p]] = 0
x[IT[q]] = 1
D = D � d[IT[p]] + d[IT[q]]
Else

p = p + 1
End If

End While
End While
Step 6. Unselected any test item ds with degree of discrimination smaller than the average dis-
crimination under the prompt that l < T � t[ds] < u and Acc_C[j]P h[j] for it j = 1 to
m after unselecting ds.

Step 7. If T < u then select any test item ls with degree of discrimination greater than the average
discrimination under the prompt that l < T � t[ls] < u and Acc_C[j] P h[j] for j = 1 to m

after unselecting ls.
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