High Work Function $Ir_x Si$ Gates on HfAlON p-MOSFETs

C. H. Wu, D. S. Yu, Albert Chin, Senior Member, IEEE, S. J. Wang, M.-F. Li, Senior Member, IEEE, C. Zhu, Member, IEEE, B. F. Hung, and S. P. McAlister, Senior Member, IEEE

Abstract—We have fabricated the fully silicided Ir_x Si-gated p-MOSFETs on HfAION gate dielectric with 1.7-nm equivalent oxide thickness. After 950 °C rapid thermal annealing, the fully Ir_x Si/HfAION device has high effective work function of 4.9 eV, high peak hole mobility of 80 cm²/V·s, and the advantage of being process compatible to the current VLSI fabrication line.

Index Terms-HfAlON, IrSi, MOSFET.

I. INTRODUCTION

ETAL-gate/high- κ technology is required for future CMOS devices to reduce the gate leakage current and eliminate poly gate depletion [1]-[8]. However, one of the difficult challenges for metal-gate/high- κ MOS is the large threshold voltage (V_t) due to Fermi-level pinning. This is especially difficult for p-MOSFET [1], [6], since only Ni (5.15 eV), Ir (5.27 eV), and Pt (5.65 eV) in the periodic table [9] have work function close to the desired 5.2 eV used in conventional p^+ poly Si-gated p-MOS. Among them, the Ni-rich silicide (Ni₃Si) [7] or germanide [8] has reasonable high work function, but it is still needed to develop the Ir- or Pt-gated high- κ p-MOS due to the lowered effective work function ($\phi_{m,\text{eff}}$) by Fermi-level pinning. Unfortunately, large metal diffusion through high- κ dielectric was found to cause the CMOS devices failure [1], [10], [11]. To overcome this problem, in this letter we have used the robust HfAlON to reduce the metal diffusion through gate dielectric by adding high diffusion barrier Al₂O₃ and oxynitride [10]–[13] into HfO₂. Although the HfAlON has improved metal diffusion property, the Ir-gated HfAlON p-MOS still failed at temperature higher than 900 °C. To further improve the thermal stability, we have developed the Ir/Si-gated HfAION p-MOSFET. After 950 °C rapid thermal annealing (RTA), the $Ir_xSi/HfAlON$ p-MOS shows good device integrity of high $\phi_{m,\text{eff}}$ of 4.9 eV, small V_t of -0.1 V, and high hole

Manuscript received September 15, 2005; revised November 14, 2005. This work was supported in part by the National Science Council of Taiwan under Grant 94-2215-E-006-056. The review of this letter was arranged by Editor C.-P. Chang.

D. S. Yu, A. Chin, and B. F. Hung are with the Department of Electronics Engineering, National Chiao-Tung University, University System of Taiwan, Hsinchu 300, Taiwan, R.O.C. (e-mail: achin@cc.nctu.edu.tw).

M.-F. Li and C. Zhu are with the Silicon Nano Device Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

S. P. McAlister is with the National Research Council of Canada, Ottawa, ON, Canada.

Digital Object Identifier 10.1109/LED.2005.862687

mobility of 80 cm²/Vs. These results are compatible with or better than the best reported metal–gate/high- κ p-MOSFETs [4].

II. EXPERIMENTAL PROCEDURE

N-type Si wafers with resistivity 1–10 Ω ·cm were used in this study. After standard RCA clean, the HfAlO was deposited by plasma vapor deposition (PVD) followed by postdeposition anneal (PDA). The HfAlON was formed by applying NH₃ plasma surface nitridation on HfAlO and 800 °C PDA. Then \sim 25-nm amorphous Si and 60-nm Ir was deposited by PVD [14], [15], patterned and RTA annealed at 600-950 °C for 30 s to form the MOS capacitor. For comparison, Al-, Ir-, or TiIrN-gated devices on HfAlON or HfO2 were also fabricated. The gate first p-MOSFET was fabricated by forming HfAlON, metal-gate deposition and patterning, Boron source/drain ion implantation at 25 keV, and activated at 950 °C RTA for 30 s. Note that this process is different from conventional salicide process, where the Ir_xSi was formed at the same time during RTA for ion implant activation. This can reduce the reaction of amorphous Si with high- κ dielectric to cause Fermi-level pinning, owing to the fast silicidation reaching to the Si/HfAlON interface in thin amorphous Si. The fabricated p-MOS devices were further characterized by C-V and I-V measurements.

III. RESULTS AND DISCUSSION

Fig. 1(a) and (b) shows the C-V and J-V characteristics of different RTA temperature-annealed Ir_xSi/HfAlON, Ir/HfAlON, TiN/Ti_{0.5}Ir_{0.5}N/HfO₂, Ir_xSi/HfO₂, and control Al/HfAlON capacitors. We have chosen the Al-gated capacitor as a reference since the pure metal at low RTA temperature has little Fermilevel pinning on high- κ dielectric [5]. An equivalent oxide thickness (EOT) of ~ 1.7 nm is measured, while the shift of C–V curves with different gate electrodes are attributed to different work function. This is because the 800 °C PDA has already annealed out some defects and the Ir_xSi formation was also confirmed by X-ray diffraction (XRD) measurement. However, the Ir_xSi/HfO_2 device fails even after 800 °C RTA due to the reaction of amorphous-Si with HfO2. The TiN/Ti0.5Ir0.5N/HfO2 also fails at temperature higher than 800 °C that may be due to Ir diffusion into HfO2. Thus, the using metal-nitride (IrN) is run out of solution to achieve both high work-function and good thermal stability. The thermal stability is largely improved to 900 °C by using HfAlON instead of HfO2 even for Ir-gated capacitor, but still failed at higher temperature. The adding of additional ~ 25 -nm amorphous Si to form the Ir_xSi on HfAlON

C. H. Wu and S. J. Wang are with the Institute of Microelectronics, Department of Electronics Engineering, National Cheng-Kung University, Tainan, Taiwan, R.O.C.

Fig. 1. (a) C-V and (b) J_g-V_g characteristics of Ir_xSi/HfAlON, Ir/HfAlON, Al/HfAlON, TiN/Ti_{0.5}Ir_{0.5}N/HfO₂, and Ir_xSi/HfO₂ capacitors measured under accumulation. The device area is 100 × 100 μ m.

can further improve the thermal stability to 950 °C with a reasonable leakage current. The increasing flat band voltage ($V_{\rm fb}$) with increasing RTA temperature of Ir_xSi/HfAlON capacitors may be due to more Ir diffusion toward HfAlON surface to increase the work function. However, the better thermal stability of Ir_xSi/HfAlON than Ir/HfAlON is traded by the lower work function. From *C*–*V* shift to Al control gate, the extracted $\phi_{m,\text{eff}}$ of Ir_xSi/HfAlON and Ir/HfAlON are 4.9 and 5.3 eV, respectively. Therefore, good thermal stability of 950 °C RTA, reasonable high $\phi_{m,\text{eff}}$ of 4.9 eV, and low gate dielectric leakage current can be simultaneously achieved in Ir_xSi/HfAlON MOS capacitors. It is important to note that although the $V_{\rm fb}$ tuning can also be obtained by dopant diffusion in FUSI/SiON, this method becomes less effective in high- κ metal–oxide due to the stronger interface reaction.

Fig. 2 shows the transistor I_d - V_d characteristics as a function of V_g - V_t for 950 °C RTA annealed Ir_xSi/HfAlON p-MOSFETs. The well-behaved I_d - V_d curves of Ir_xSi/HfAlON shows little device performance degradation using Ir_xSi gate.

Fig. 3 shows the I_d-V_g characteristics of Ir_x Si-gated p-MOS-FETs with HfAlON film as the gate dielectric. A $V_{\rm th}$ as low as -0.1 V is obtained from the linear I_d-V_g plot, which is consistent with the large $\phi_{m,\rm eff}$ of 4.9 eV from C-V curves.

Fig. 2. I_d - V_d characteristics of Ir_xSi/HfAlON p-MOSFET. The gate length is 10 μ m.

Fig. 3. $I_d - V_g$ characteristics of ${\rm Ir}_x {\rm Si}/{\rm HfAlON}$ p-MOSFETs. The gate length is 10 μ m.

Fig. 4. Extracted hole mobility from I_d - V_d characteristics of Ir_xSi/HfAlON p-MOSFET.

Fig. 4 shows the extracted hole motility versus gate electric field from measured I_d – V_g curves of p-MOSFETs. High hole mobility of 80 and 57 cm²/V·s is obtained at peak value and 1 MV/cm effective field for Ir_xSi/HfAlON p-MOSFETs, respectively. This result also suggests low Ir diffusion through HfAlON even though excess Ir must be used to avoid unreacted amorphous Si and prevent gate depletion or Fermi lever pinning.

This indicates the successful integration of Ir_xSi on HfAlON p-MOSFETs with advantage of process compatible to current VLSI line.

IV. CONCLUSION

Good device performance of $Ir_xSi/HfAlON p$ -MOSFET is shown by the high $\phi_{m,eff}$, good thermal stability, and hole mobility close to universal mobility values with additional merit of process compatible to current VLSI line.

ACKNOWLEDGMENT

The authors at National Chiao-Tung University would like to thank Prof. R. N. Kwo, M. H. Hong, and H. L. Hwang at National Tsing Hua University for their support.

REFERENCES

- J. K. Schaeffer, C. Capasso, L. R. C. Fonseca, S. Samavedam, D. C. Gilmer, Y. Liang, S. Kalpat, B. Adetutu, H.-H. Tseng, Y. Shiho, A. Demkov, R. Hegde, W. J. Taylor, R. Gregory, J. Jiang, E. Luckowski, M. V. Raymond, K. Moore, D. Triyoso, D. Roan, B. E. White, Jr., and P. J. Tobin, "Challenges for the integration of metal gate electrodes," in *IEDM Tech. Dig.*, 2004, pp. 287–290.
- [2] B. Tavel, T. Skotnicki, G. Pares, N. Carriéere, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, "Totally silicided (CoSi₂) polysilicon: A novel approach to very low-resistive gate (~2 Ω/□) without metal CMP nor etching," in *IEDM Tech. Dig.*, 2001, pp. 815–828.
- [3] W. P. Maszara, Z. Krivokapic, P. King, J. S. Goollgweon, and M. R. Lin, "Transistors with dual work function metal gate by single full silicidation (FUSI) of polysilicon gates," in *IEDM Tech. Dig.*, 2002, pp. 367–370.
- [4] T. Nabatame, M. Kadoshima, K. Iwamoto, N. Mise, S. Migita, M. Ohno, H. Ota, N. Yasuda, A. Ogawa, K. Tominaga, H. Satake, and A. Toriumi, "Partial silicides technology for tunable work function electrodes on high-κ gate dielectrics—Fermi level pinning controlled PtSi_x for HfO_x(N) pMOSFET," in *IEDM Tech. Dig.*, 2004, pp. 83–86.

- [5] M. Koyama, Y. Kamimuta, T. Ino, A. Kaneko, S. Inumiya, K. Eguchi, M. Takayanagi, and A. Nishiyama, "Careful examination on the asymmetric Vfb shift problem for Poly Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the Poly Si interface with small EOT expense," in *IEDM Tech. Dig.*, 2004, pp. 499–502.
- [6] H.-H. Tseng, C. C. Capasso, J. K. Schaeffer, E. A. Hebert, P. J. Tobin, D. C. Gilmer, D. Triyoso, M. E. Ramón, S. Kalpat, E. Luckowski, W. J. Taylor, Y. Jeon, O. Adetutu, R. I. Hegde, R. Noble, M. Jahanbani, C. El Chemali, and B. E. White, "Improved short channel device characteristics with stress relieved pre-oxide (SRPO) and a novel tantalum carbon alloy metal gate/HfO₂ stack," in *IEDM Tech. Dig.*, 2004, pp. 821–824.
- [7] K. Takahashi, K. Manabe, T. Ikarashi, N. Ikarashi, T. Hase, T. Yoshihara, H. Watanabe, T. Tatsumi, and Y. Mochizuki, "Dual workfunction Ni-silicide/HfSiON gate stacks by phase-controlled full-silicidation (PC-FUSI) technique for 45 nm-node LSTP and LOP devices," in *IEDM Tech. Dig.*, 2004, pp. 91–94.
- [8] C. H. Huang, D. S. Yu, A. Chin, W. J. Chen, C. X. Zhu, M.-F. Li, B. J. Cho, and D. L. Kwong, "Fully silicided NiSi and germanided NiGe dual gates on SiO₂/Si and Al₂O₃/Ge-On-insulator MOSFET's," in *IEDM Tech. Dig.*, 2003, pp. 319–322.
- [9] H. B. Michaelson, "The work function of the elements and its periodicity," *J. Appl. Phys.*, vol. 48, pp. 4729–4733, Nov. 1977.
 [10] C. C. Liao, C. F. Cheng, D. S. Yu, and A. Chin, "The copper contami-
- [10] C. C. Liao, C. F. Cheng, D. S. Yu, and A. Chin, "The copper contamination effect on Al₂O₃ gate dielectric on Si," *J. Electrochem. Soc.*, vol. 151, pp. G693–G696, Oct. 2004.
- [11] Y. H. Lin, F. M. Pan, Y. C. Liao, Y. C. Chen, I. J. Hsieh, and A. Chin, "The Cu contamination effect in oxynitride gate dielectrics," *J. Electrochem. Soc.*, vol. 148, pp. G627–G629, Nov. 2001.
- [12] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, "Device and reliability of high-κ Al₂O₃ gate dielectric with good mobility and low D_{it}," in *Symp. VLSI Tech. Dig.*, 1999, pp. 133–134.
- [13] C. H. Huang, M. Y. Yang, A. Chin, W. J. Chen, C. X. Zhu, B. J. Cho, M.-F. Li, and D. L. Kwong, "Very low defects and high performance Ge-On-Insulator p-MOSFET's with Al₂O₃ gate dielectrics," in *Symp. VLSI Tech. Dig.*, 2003, pp. 119–120.
- [14] C. H. Lai, A. Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, "Novel SiO₂/AlN/HfAlO/IrO₂ memory with fast erase, large $\Delta V_{\rm th}$ and good retention," in *Symp. VLSI Tech. Dig.*, 2005, pp. 210–211.
- [15] K. C. Chiang, A. Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, "Very high κ and high density TiTaO MIM capacitors for analog and RF applications," in *Symp. VLSI Tech. Dig.*, 2005, pp. 62–63.