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Abstract

Theoretical derivations were made for the induced potential and the stopping power of a charged particle moving close and parallel to
the surface of a solid. It was illustrated that the induced potential produced by the interaction of particle and solid depended not only on
the velocity but also on the previous velocity of the particle before its last inelastic interaction. Another words, the particle kept a mem-
ory on its previous velocity, v0, in determining the stopping power for the particle of velocity v. Based on the dielectric response theory,
formulas were derived for the induced potential and the stopping power with memory effect. An extended Drude dielectric function with
spatial dispersion was used in the application of these formulas for a proton moving parallel to Si surface. It was found that the induced
potential with memory effect lay between induced potentials without memory effect for constant velocities v0 and v. The memory effect
was manifest as the proton changes its velocity in the previous inelastic interaction. This memory effect also reduced the stopping power
of the proton. The formulas derived in the present work can be applied to any solid surface and charged particle moving with arbitrary
parallel trajectory either inside or outside the solid.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

When a charged particle moves close and parallel to the
surface of a solid, induced potential is produced due to the
interaction of particle and solid. This potential is then acted
on the particle resulting to a stopping power. Theoretical
derivations of the induced potential and the stopping power
were previously made [1–4] for a constant velocity, v0, of the
particle until it experienced an inelastic interaction. After
the interaction, the particle changed its velocity to v and
continued to interact with the solid. For a second inelastic
interaction, it was generally assumed that a new induced
0168-583X/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.nimb.2005.08.186

* Corresponding author. Tel.: +886 3 5712121x54136; fax: +886 3
5727300.

E-mail addresses: cmkwei@mail.nctu.edu.tw, cmkwei@cc.nctu.edu.tw
(C.M. Kwei).
potential, dependent only on v but not on v0, was generated.
This new potential then determined the stopping power
acting on the particle of velocity v. In the present work,
the induced potential and stopping power for the second
inelastic interaction were derived using image charges and
dielectric response functions. It was found that the particle
previous velocity v0 had also an effect on the second inelastic
interaction. Another words, the particle kept a memory on
its previous velocity, v0, in determining the stopping power
for the particle of velocity v.

The response of solid to a charged particle moving close
and parallel to the surface may be characterized by its sur-
face loss-function, Im[�1/(e + 1)], where e is the dielectric
function of the solid and Im[ ] denotes the imaginary part.
A sum-rule-constrained extended Drude dielectric function
with spatial dispersion [5] was established with parameters
determined from optical data. Previously, this dielectric
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function was applied to the interface [6–8] and overlayer
systems [3,9,10] for a charged particle without memory
effect. With the consideration of memory effect, we applied
this dielectric function in this work. The induced potential
was then derived by solving Poisson equations in Fourier
space by a method of image charges which satisfied the
boundary conditions. The stopping power was then con-
structed from the derivative of the induced potential at par-
ticle position. Calculations were made using these formulas
for a proton moving parallel to Si surface. Results were ana-
lyzed for the dependences of the induced potential and stop-
ping power on proton velocities before and after the last
inelastic interaction, the distance from surface, and the dis-
tance from previous inelastic interaction. Finally, the calcu-
lated results with memory effect were compared with the
corresponding results without memory effect.

2. Theory

Fig. 1 illustrates the problem studied in the present work.
A particle of charge q, velocity~v0 and energy E0 moves par-
allel to the interface of two media of dielectric functions
e1ðk

*
;xÞ and e2ðk

*
;xÞ. The interface is located at z = 0, with

z-axis perpendicular to the interface plane and directed

from e1ðk
*
;xÞ to e2ðk

*
;xÞ. The particle is moving along y-

direction at a distanceD above the interface. At the moment
t = 0, the particle experiences an inelastic interaction which
changes particle velocity and energy to~v and E. Assuming
the particle continues to move along the same direction,
the induced potential at t > 0 is of special interest here.
For z > 0, the scalar potential is produced by the particle
and a fictitious charge at z < 0 near the interface. For
Fig. 1. A sketch of the problem studied in the present work. A particle of
charge q, velocity ~v0 moves parallel to the interface of two media of
dielectric functions e1ðk

*

;xÞ and e2ðk
*

;xÞ. The interface is located at z = 0
and the particle is moving along y-direction at a distance D above the
interface. At time t = 0, the particle experiences an inelastic interaction
which changes particle velocity to v. Special interest is on the induced
potential and the stopping power at t > 0.
z < 0, the potential is produced by a fictitious charge at par-
ticle position and by another fictitious charge at z > 0 near
the interface. These fictitious charges should be established
using boundary conditions that are satisfied at the interface.
Thus the Poisson equations in Fourier space are

u1ðk
*

;xÞ ¼ 4p

k2e1ðk
*

;xÞ
qðk

*

;xÞ þ qfðQ
*

;xÞ
h i

ð1Þ

for z < 0 and

u2ðk
*

;xÞ ¼ 4p

k2e2ðk
*

;xÞ
qðk

*

;xÞ � qfðQ
*

;xÞ
h i

ð2Þ

for z > 0, where k
*

¼ ðkx; ky ; kzÞ ¼ ðQ
*

; kzÞ is the momentum
transfer and x is the energy transfer. The Fourier trans-
form of the charge density distribution of the particle

qð~r; tÞ ¼ qdðxÞdðz� DÞ½dðy � v0tÞHð�tÞ
þ dðy � vtÞHðtÞ� ð3Þ

is given by

qðk
*

;xÞ ¼ qe�ikzD

Z 0

�1
eiðx�kyv0Þsdsþ

Z 1

0

eiðx�kyvÞsds

� �
; ð4Þ

where d( ) andH( ) are the delta- and step-functions, respec-
tively. To satisfy the boundary conditions at the interface,
the fictitious charge in Fourier space is given by

qfðQ
*

;xÞ ¼

Z 1

�1

qðk
*

;xÞ
k2

1

e2ðk
*

;xÞ
� 1

e1ðk
*

;xÞ

2
4

3
5dkz

Z 1

�1

1

k2
1

e2ðk
*

;xÞ
þ 1

e1ðk
*

;xÞ

2
4

3
5dkz

. ð5Þ

Combining Eqs. (4) and (5), one gets

qfðQ
*

;xÞ ¼ q
Z 0

�1
eiðx�kyv0Þsdsþ

Z 1

0

eiðx�kyvÞsds

� �

�
1

�e2ðD;Q
*
;xÞ

� 1

�e1ðD;Q
*
;xÞ

1

�e2ðQ
*
;xÞ

þ 1

�e1ðQ
*
;xÞ

2
4

3
5; ð6Þ

where the effective dielectric function is given by

1

�eLðD;Q
*

;xÞ
¼ 1

2p

Z 1

�1

e�ikzD

k2eLðk
*

;xÞ
dkz ð7Þ

for L = 1 and 2 and �eLðQ
*

;xÞ ¼ �eLð0;Q
*

;xÞ.
Substituting Eqs. (4)–(7) into Eqs. (1) and (2), one

obtains the scalar potentials in Fourier space, i.e. u1

ðk
*

;xÞ and u2ðk
*

;xÞ. The induced potentials in Fourier

space, uind
1 ðk

*

;xÞ and uind
2 ðk

*

;xÞ, are then obtained by
removing the vacuum potential of the particle from scalar
potentials. One gets

uind
1 ðk

*

;xÞ¼ 4p

k2
1

e1ðk
*

;xÞ
�1

0
@

1
Aqðk

*

;xÞþ 4p

k2e1ðk
*

;xÞ
qfðQ

*

;xÞ

ð8Þ
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for z < 0 and

uind
2 ðk

*

;xÞ ¼ 4p

k2
1

e2ðk
*

;xÞ
� 1

0
@

1
Aqðk

*

;xÞ � 4p

k2e2ðk
*

;xÞ
qfðQ

*

;xÞ

ð9Þ

for z > 0. If the particle is moving in vacuum, i.e. e2 = 1,
one gets

uind
2 ðk

*

;xÞ ¼ � 4pq

k2

Z 0

�1
eiðx�kyv0Þsdsþ

Z 1

0

eiðx�kyvÞsds

� �

�
1

�e2ðD;Q
*
;xÞ

� 1

�e1ðD;Q
*
;xÞ

1

�e2ðQ
*
;xÞ

þ 1

�e1ðQ
*
;xÞ

2
4

3
5 ð10Þ

after substituting Eq. (6) into Eq. (9). Since e is weakly
dependent on kz than the rest of k

*

components, one may
assume eðk

*
;xÞ ¼ eðQ

*
;xÞ. This assumption was previously

adopted by Yubero et al. [11,12] in the analyses of REELS
spectra and by Kwei et al. [9,13] in the calculations of elec-
tron elastic backscattering spectra. Using this assumption,
Eq. (7) becomes

1

�eLðD;Q
*

;xÞ
� e� Dj jQ

2Q
1

eLðQ
*

;xÞ
. ð11Þ

Applying the relation [14] for the product of the step-func-
tion and the delta-function, i.e. HðsÞdðsÞ ¼ 1

2
dðsÞ, Eq. (10)

may be written as

uind
2 ðk

*

;xÞ ¼ � 4p2q

k2
dðx� kyv0Þ þ dðx� kyvÞ
� �

� e� Dj jQ e1ðQ
*

;xÞ � 1

e1ðQ
*

;xÞ þ 1

2
4

3
5. ð12Þ

Applying eðQ
*

;xÞ ¼ eðQ;xÞ and e(Q, �x) = e*(Q, x), the
induced potential in real space is obtained by an inverse
Fourier transform as

uind
2 ð~r; tÞ ¼ �q

p2

Z 1

0

dx
Z 1

0

dk
Z p

0

sin hdh

�
Z 2p

0

d/dðx� kyv0Þe� Dj jQ
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� �

þ�q
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Z 1
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�
Z 2p

0

d/dðx� kyvÞe� Dj jQ

� cos kzzð ÞRe
e1ðQ;xÞ � 1

e1ðQ;xÞ þ 1
ei kxxþkyy�xtð Þ

� �
. ð13Þ
Expanding the d-function according to

dðx� kv sin h sin/Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkv sin hÞ2 � x2

q

� d /� sin�1 x
kv sin h

� �n

þd /� p� sin�1 x
kv sin h

� �h io
;

ð14Þ
and applying the conservation relations of energy and
momentum, it gives

uind
2 ð~r; tÞ ¼ �2q

p2

Z E

0

dx
Z kmax
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Z k

x
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dQ
Q
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; ð15Þ

where Q ¼ k sin h, kmax ¼
ffiffiffiffiffiffiffiffiffiffi
2ME

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ME � 2Mx

p
, kmin ¼ffiffiffiffiffiffiffiffiffiffi

2ME
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ME � 2Mx

p
and M is the mass of the particle.

The stopping power is related to the derivative of
uind

2 ð~r; tÞ at the position of particle, i.e. ~rp ¼ ðxp; yp; zpÞ ¼
ð0; vt;DÞ, for t > 0. One finds
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Fig. 3. The induced potential for a proton moving parallel to the surface
of Si. Results (solid curve) are plotted at proton position for yp = 5 a.u.,
v0 = 10 a.u. and D = 1 a.u. as a function of proton velocity v. Corre-
sponding results without the memory effect are plotted (dotted curve) for a
comparison.
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Letting v = v0, Eqs. (15) and (16) reduce to the same for-
mulas for the induced potential and the stopping power
that were derived without memory effect by Kwei et al.
[3]. Note that the stopping power in Eq. (16) is yp depen-
dent. Thus the stopping power with memory effect may
be obtained by an average over all particles paths

� dW
ds

¼
R1
0

yp
k e

�yp=k � dW
ds yp
� � 

dypR1
0

yp
k e

�yp=k dyp
; ð17Þ

where
yp
k e

�yp=k is the probability that the particle encoun-
ters an inelastic interaction in the distance yp [11,15] and
k is the inelastic mean free path.

3. Results and discussion

Fig. 2 shows plots of the real and imaginary parts of the
surface response function, i.e. [e1(0, x) � 1]/[e1(0, x) + 1],
for vacuum–Si interface as a function of energy transfer
x. The solid curves are fitting results obtained in the pres-
ent work. The dotted curves are corresponding data
deduced from optical data [16]. It is seen that the calculated
results are in good agreement with measured data.

The induced potential for a proton moving parallel to
the surface of Si was calculated using Eq. (15). Results at
the position of proton for yp = 5 a.u., v0 = 10 a.u. and
D = 1 a.u. are plotted in Fig. 3 (solid curve) as a function
of proton velocity v. These results are compared with cor-
responding data without the memory effect (dotted curve),
where the abscissa v here may also be interpreted as v0. It
reveals that both curves show a dip around v = 1.5 a.u.
The existence of a dip was also shown for a proton moving
parallel to Al surface in the plasmon-pole dielectric func-
tion model [2]. As indicated in the figure, the magnitude
of induced potential decreases with increasing velocity for
Fig. 2. A plot of the real and imaginary parts of the surface response
function, [e1(0, x) � 1]/[e1(0, x) + 1], for vacuum–Si interface as a func-
tion of energy transfer x. The solid curves are fitting results using the
extended Drude dielectric function. The dotted curves are results deduced
from the optical data [16].
velocities larger than the dip velocity and increases with
increasing velocity for velocities smaller than the dip veloc-
ity. Note that there is a significant difference between solid
and dotted curves. At v = 2 a.u., for instance, solid and
dotted curves correspond to v0 = 10 a.u. (with memory
effect) and v0 = 2 a.u. (without memory effect), respectively.
Since the velocity change, v0 � v, in the solid curve is large
so that the difference between solid and dotted curves is
also large. At v = 8 a.u., on the other hand, solid and dot-
ted curves correspond to v0 = 10 a.u. and 8 a.u., respec-
tively. In this case, the velocity change in the solid curve
is small so that the difference is also small. Thus the differ-
ence in induced potentials calculated with and without the
memory effect increases with increasing velocity change in
the previous inelastic interaction when v P 1.5 a.u. When
v < 1.5 a.u., however, the difference decreases with increas-
ing velocity change.

The induced potential shown in Fig. 3 is at proton posi-
tion, i.e. y = yp. Fig. 4 plots the induced potential at a posi-
tion, along the trajectory of proton, with a distance y � yp
from the proton for yp = 5 a.u. and D = 1 a.u. The solid
curve is results (with memory effect) of the induced poten-
tial for v0 = 5 a.u. and v = 3 a.u. The dotted and dashed
curves are corresponding results (without memory effect)
for v = v0 = 3 a.u. and 5 a.u., respectively. In all cases,
the induced potential exhibits an oscillation behavior over
the distance from the proton, a behavior which was also
observed by Arista [4]. Note that the induced potential
for v0 = 5 a.u. and v = 3 a.u. (with memory effect) lies
between induced potentials for v = v0 = 3 a.u. and 5 a.u.
(without memory effect). This indicates that the induced
potential carries a memory effect on proton previous veloc-
ity before its last inelastic interaction. A similar plot is
made in Fig. 5 for a proton moving at distances D = 1



Fig. 4. The induced potential at a distance y � yp from the proton with
yp = 5 a.u. and D = 1 a.u. from Si surface. The solid curve is results with
the memory effect for v0 = 5 a.u. and v = 3 a.u. The dotted and dashed
curves are results without the memory effect for v = v0 = 3 a.u. and 5 a.u.,
respectively.

Fig. 5. The induced potential at a distance y � yp from the proton with
D = 1 (solid curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si
surface. Here yp = 5 a.u., v0 = 5 a.u. and v = 3 a.u.

Fig. 6. Results of the stopping power for a proton moving parallel to with
a distance D = 2 a.u. from the Si surface. Solid and dotted curves are for
v0 = 10 a.u. (with memory effect) and v0 = v (without memory effect),
respectively.
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(solid curve), 2 (dotted curve) and 3 a.u. (dashed curve)
from Si surface with yp = 5 a.u., v0 = 5 a.u. and v = 3 a.u.
It is seen that as D increases the induced potential (absolute
value) decreases. This reveals that the induced potential is
greater for a proton moving closer to the solid surface.

Fig. 6 shows results of the stopping power for a proton
moving parallel to and with at a distance D = 2 a.u. from
the Si surface. Solid and dotted curves are for
v0 = 10 a.u. (with memory effect) and v0 = v (without mem-
ory effect), respectively. The existence of a maximum stop-
ping power at a velocity around 1.5 a.u. was shown. The
existence of a maximum was also found for some semi-infi-
nite solids by Arista [4]. A notable difference between solid
and dotted curves was shown in the figure. Without the
memory effect, stopping power is solely determined by v

without reference to v0. With memory effect, however, the
stopping power is affected by both v and v0. The memory
effect reduced the stopping power for the proton.
4. Conclusions

A theoretical treatment was developed to account for
the memory effect on the induced potential and the stop-
ping power for a charged particle moving close and parallel
to the surface of a solid. It was illustrated that the particle
had a memory on its velocity before the previous inelastic
interaction, v0, in determining the induced potential and
the stopping power for the particle of velocity v. Using
the method of image charges, analytical formulas have
been derived for the induced potential and the stopping
power for particle–surface interactions. An extended
Drude dielectric function with spatial dispersion was used
in the calculations of the induced potential for a proton
moving parallel to Si surface. It was found that the mem-
ory effect affected the induced potential and the stopping
power. The induced potential with memory effect lay
between induced potentials without memory effect for con-
stant velocities v0 and v. The stopping powers with memory
effect were lower than those without memory effect. For a
small difference between v0 and v, which was more probable
in an interaction, the memory effect on both induced poten-
tial and stopping power was unobvious. Thus, any Monte
Carlo simulation using inelastic cross sections without the
memory effect in the particle transport near the surface
was practically valid. The memory effect, however, should
be detected for rare consecutive surface interactions involv-
ing large difference between v0 and v. The formulas derived
in the present work can be applied to any solid surface and
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charged particle moving with arbitrary parallel trajectory
either inside or outside the solid.
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