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Abstract

In this paper, the conventional mean–variance method is revised to determine the

optimal portfolio selection under the uncertain situation. The possibilistic area of the

return rate is first derived using the possibisitic regression model. Then, the Mellin trans-

formation is employed to obtain the mean and the risk by considering the uncertainty.

Next, the revised mean–variance model is proposed to deal with the problem of uncer-

tain portfolio selection. In addition, a numerical example is used to demonstrate the

proposed method. On the basis of the numerical results, we can conclude that the pro-

posed method can provide the more flexible and accurate results than the conventional

method under the uncertain portfolio selection situation.
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1. Introduction

The mean–variance approach was proposed by Markowitz to deal with the

portfolio selection problem [1]. A decision-maker can determine the optimal

investing ratio to each security based on the sequent return rate. The formula-
tion of the mean–variance method can be described as follows [1–3]:

min
Xn

i¼1

Xn

j¼1

rijxixj;

s.t.
Xn

i¼1

lixi P E;

Xn

i¼1

xi ¼ 1;

xi P 0 8i ¼ 1; . . . ; n;

ð1Þ

where li denotes the expected return rate of the ith security, rij denotes the

covariance coefficient between the ith security and the jth security, and E

denotes the acceptable least rate of the expected return.

It is clear that the accuracy of the mean–variance approach depends on the

accurate value of the expected return rate and the covariance matrix. Several

methods have been proposed to forecast the appropriate expected return rate

and variance matrix such as the arithmetic mean method [1–3] and the regres-

sion-based method [4]. However, these methods only derive the precise ex-

pected return rate and covariance matrix and do not consider the problem of

uncertainty. That is, since the decision-maker try to determine the optimal
portfolio strategy to gain the maximum profits in the future, how can we ignore

the future uncertainty. We should highlight that the possible area of the return

rate and the covariance matrix should be derived for the decision-maker to

determine the future optimal portfolio selection strategy. In addition, these

methods are based on the large sample theory and cannot obtain a satisfactory

solution in the small sample situation [5].

In this paper, the possible area of the return rate and the covariance matrix

are derived using the asymmetrical possibilistic regression. Then, the Mellin
transformation is employed to calculate the uncertain return rate and the var-

iance with the specific distribution. Finally, the optimal portfolio selection

model can be reformulated based on the concepts above. In addition, a numer-

ical example is used to illustrate the proposed method and compared with the



352 J.-J. Huang et al. / Appl. Math. Comput. 173 (2006) 350–359
conventional mean–variance method. On the basis of the simulated results, we

can conclude that the proposed method can provide the better portfolio selec-

tion strategy than the conventional mean–variance method by considering the

situation of uncertainty.

The remainder of this paper is organized as follows. The possibilistic regres-

sion model is discussed in Section 2. The Mellin transformation and the pro-
posed method are presented in Section 3. A numerical example, which is

used to illustrate the proposed method and compare with the mean–variance

method, is in Section 4. The discussions of the numerical results are presented

in Section 5 and the conclusions are presented in the last section.
2. Possibilistic regression

The possibilistic regression model was first proposed by Tanaka and Guo [6]

to reflect the fuzzy relationship between the dependent and the independent

variables. The upper and the lower regression boundaries are used in the pos-

sibilistic regression to reflect the possibilistic distribution of the output values.

By solving the linear programming (LP) problem, the coefficients of the possi-

bilistic regression can easy be obtained.

Next, we describe the possibilistic regression model [6] to obtain the uncer-

tain return rate and the variance as follows. In order to exactly obtain the
results, we extend the symmetrical fuzzy numbers to the asymmetrical fuzzy

numbers. The general form of a possibilistic regression can be expressed as

y ¼ A0 þ A1x1 þ � � � þ Anxn ¼ A0x; ð2Þ

where Ai is a asymmetrical possibilistic regression coefficient which is denoted
as (ai�ciL,ai,ai + ciR). In order to obtain the minimum degree of uncertainty,

the fitness function of the possibilistic regression can be defined as

min
a;c

J ¼
X

j¼1;...;m

c0Ljxjj þ c0Rjxjj. ð3Þ

In addition, the dependent variable should be restricted to satisfy the follow-

ing two equations:

yj P a0xj � c0Ljxjj; ð4Þ

yj 6 a0xj þ c0Rjxjj. ð5Þ

On the basis of the concepts above, we can obtain the formulation of a pos-

sibilistic regression model as follows:



Fig. 1. The possibilistic area of the return rate and the variance.
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min
a;c

J ¼
X

j¼1;...;m

c0Ljxjj þ c0Rjxjj;

s.t. yj P a0xj � c0Ljxjj;
yj 6 a0xj þ c0Rjxjj; j ¼ 1; . . . ;m;

cL; cR P 0.

ð6Þ

By solving the mathematical programming model above, we can obtain the

uncertain return rate and the variance of the security with the specific distribu-
tion in the future.

Next, we depict a graph, as shown in Fig. 1, to describe the concept of the

proposed method. Suppose we have six period return rates of stocks and we

want to determine the optimal investing rate to each stock in period 7. Let

the broken line denotes the trend of the return rate of a stock. Then, we can

obtain the upper, the lower, and the center possibilistic regressions using Eq.

(6) to derive the possibilistic area of the return rate of period 7. Note that

the triangular possibilistic distribution is used in this example. However, other
possibilistic distributions can be employed using the same concepts.

We should highlight that the triangular area in period 7 because it denotes

the distribution of the possible return rate and variance of the stock. That

is, the decision-maker should incorporate the information above to determine

the optimal investing rate to each stock. However, since the possibilistic area

may be triangular, uniform, or other distributions, the problem is how to effi-

ciently and effectively calculate the possible return rate and the variance. Next,

the Mellin transformation is described to overcome this problem.
3. The Mellin transformation

Given a random variable, x 2 R+, the Mellin transformation, M(s), of a

probability density function (pdf) (f(x)) can be defined as



Table 1

The properties of the Mellin transformation

Properties of Mellin transformation Y = h(x) M(s)

Scaling property ax a�sM(s)

Multiplication by xa xaf(x) M(s + a)

Rising to a real power f(xa) a�1MðsaÞ; ða > 0Þ
Inverse x�1f(x�1) M(1�s)

Multiplication by lnx lnx f(x) d
ds MðsÞ

Derivative dk

dsk f ðxÞ
CðsÞ

Cðs�kÞ
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Mff ðxÞ; sg ¼ MðsÞ ¼
Z 1

0

f ðxÞxs�1 dx. ð7Þ

Let h is a measurable function on R into R and Y = h(x) is a transformed

random variable. Then, some properties of the Mellin transformation can be

described as shown in Table 1. For example, if Y = ax then the scaling property
can be expressed as

Mff ðaxÞ; sg ¼
Z 1

0

f ðaxÞxs�1 dx ¼ a�s

Z 1

0

f ðaxÞðaxÞs�1
dx ¼ a�sMðsÞ.

Next, let a continuous non-negative random variable, X, the nth moment of

X can be defined as

EðXnÞ ¼
Z 1

0

xnf ðxÞdx. ð8Þ

Then, by setting n = 1, the mean of X can be expressed as

EðX Þ ¼
Z 1

0

xf ðxÞdx ð9Þ

and the variance of X can be calculated by

r2
x ¼ EðX 2Þ � ½EðX Þ�2. ð10Þ

Since the relationship between the nth moment and the Mellin transforma-

tion of X can be linked using the equation

EðXnÞ ¼
Z 1

0

xðnþ1Þ�1f ðxÞdx ¼ Mff ðxÞ; nþ 1g; ð11Þ

the mean and the variance of X can be calculated by

EðX Þ ¼ Mff ðxÞ; 2g; ð12Þ
r2
x ¼ Mff ðxÞ; 3g � fMff ðxÞ; 2gg2. ð13Þ

From Eqs. (12) and (13), we can efficiently calculate the mean and the var-

iance of any distribution using the Mellin transformation. In practice, the uni-

form, the triangular and the trapezoidal distributions are usually used and their



Table 2

The Mellin transformation of three probability density functions

Distribution Parameters M(s)

Uniform UNI(a,b) bs�as
sðb�aÞ

Triangular TRI(l,m,u) 2
ðu�lÞsðsþ1Þ ½

uðus�msÞ
ðu�mÞ � lðms�lsÞ

ðm�lÞ �

Trapezoidal TRA(a,b,c,d) 2
ðcþd�b�aÞsðsþ1Þ

ðdsþ1�csþ1Þ
ðd�cÞ � bsþ1�asþ1Þ

ðb�aÞ

h i
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corresponding Mellin transformations can be summarized as shown in Table 2.

More Mellin transformation for other probability density functions can refer

to [7].

On the basis of Table 2, we can efficiently derived the values of the mean and

the variance respect to the specific distribution by calculating M(2) and M(3).

Next, we can reformulate the conventional mean–variance method as shown in

the following mathematical programming model to consider the impact of

uncertainty:

min
Xn

i¼1

xixi � ½Mið3Þ �Mið2Þ2� þ
Xn

i¼1

Xn

j¼1

xixjrij;

s.t.
Xn

i¼1

xiMið2Þ P E;

Xn

i¼1

xi ¼ 1;

xi P 0 8i ¼ 1; . . . ; n;

ð14Þ

where the first part of the objective function denotes the next period risk of the

security, the second part of the objective function denotes the unsystematic risk

which is considered in the mean–variance model. Next, we use a numerical
example to illustrate the proposed method and to compare with the conven-

tional method.
4. A numerical example

For simplicity, the possibilistic area of the return rate is represented as the

triangular form in this numerical example. Suppose the historical sequent re-
turn rates of the five securities from periods t-6 to t-1 can be represented as

shown in Table 3. The corresponding time chart of the five securities can also

be depicted as shown in Fig. 2. Our concern here is to obtain the optimal port-

folio selection strategy in the next period t.

First, we use the conventional mean–variance model to obtain the optimal

portfolio selection strategy. To do this, the arithmetic mean and the covariance

matrix can be calculated as shown in Tables 4 and 5.



0.0800

0.0900
0.1000

0.1100

0.1200

0.1300
0.1400

0.1500

0.1600
0.1700

0.1800

t-6 t-5 t-4 t-3 t-2 t-1
Period

R
et

ur
n 

ra
te

Security 1

Security 2

Security 3

Security 4

Security 5

Fig. 2. The time chart of the five securities.

Table 3

The historical return rates of the five securities

Return rate

t-6 t-5 t-4 t-3 t-2 t-1

Security 1 0.1686 0.1117 0.1149 0.1293 0.1397 0.1406

Security 2 0.1330 0.1466 0.1741 0.1131 0.1022 0.1552

Security 3 0.1698 0.1528 0.1302 0.1471 0.1139 0.1177

Security 4 0.1750 0.1026 0.1543 0.1475 0.1158 0.1148

Security 5 0.1291 0.1192 0.1491 0.1318 0.1377 0.1450

Table 5

The covariance matrix

Security 1 Security 2 Security 3 Security 4 Security 5

Security 1 0.00036

Security 2 �0.00017 0.00060

Security 3 0.00010 0.00000 0.00039

Security 4 0.00024 0.00004 0.00027 0.00066

Security 5 0.00000 0.00009 �0.00014 0.00004 0.00010

Table 4

Arithmetic mean of the expected return

Security 1 2 3 4 5 Average

Arithmetic mean 0.1341 0.1374 0.1386 0.1350 0.1353 0.136
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Let the acceptable least rate of the expected return is equal to its average re-

turn rate, we can obtain the optimal portfolio selection using Eq. (1) as shown

in Table 8.



Table 6

The possibilistic area, the mean and the variance

Security 1 Security 2 Security 3 Security 4 Security 5

Possibilistic

area

(0.1117,0.1117,

0.1578)

(0.0868,0.1407,

0.1741)

(0.0890,0.0890,

0.1241)

(0.0646,0.0646,

0.1294)

(0.1500,0.1500,

0.1737)

Mean 0.1306 0.1339 0.1007 0.0862 0.1579

Variance 0.000118 0.000323 0.000068 0.000233 0.000031

Table 7

The new covariance matrix

Security 1 Security 2 Security 3 Security 4 Security 5

Security 1 0.00031

Security 2 �0.00015 0.00052

Security 3 0.00010 0.00001 0.00051

Security 4 0.00023 0.00006 0.00046 0.00086

Security 5 �0.00001 0.00007 �0.00022 �0.00010 0.00015

Table 8

The comparisons of the portfolio selections

Portfolio strategy 1 2 3 4 5 Return rate Portfolio risk

Conventional 0.000 0.069 0.195 0.303 0.433 0.136 0.000056

Proposed method 0.136 0.070 0.141 0.118 0.535 0.136 0.000073
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Next, we use the proposed method to obtain the optimal portfolio selection

as follows. In order to obtain the possibilistic area of the five securities, the pos-

sibilistic regression is employed. Then, using the Mellin transformation we can

obtain the forecasting mean and risk of the securities by considering the situ-

ation of uncertainty as shown in Table 6.

Furthermore, we incorporate the information of the forecasting mean to

derive the second part of the objective function in Eq. (14), i.e. the covariance

matrix, as shown in Table 7.
Finally, with the same acceptable least rate of the expected return rate we

can obtain the optimal portfolio selection under the uncertain situation using

Eq. (14). The comparison of the conventional and the proposed method can

be described as shown in Table 8.

From Table 8, it can be seen that the main difference is the portfolio selec-

tion in Securities 1 and 4. In the next section, we will discuss the irrational rea-

son using the conventional method in our numerical example.
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5. Discussions

The mean–variance method is widely used in the finance area to deal with

the portfolio selection problem. However, the conventional method does not

consider the situation of future uncertainty and usually fails under the small

sample situation. We can describe the shortcomings of the conventional
method from its purpose and theory, respectively, as follows.

The purpose of the mean–variance approach is to determine the t period

optimal investing rate to each security based on the historical sequent return

rate. The key is to forecast the t period return rate as accurately as possible.

However, it is clear that the arithmetic mean can only reflect the average states

of the past return rate instead of the future. Although many regression-based

methods have been proposed to overcome the problem, these methods must

obey the assumption of the large sample theory and cannot be used in the small
sample situation theoretically.

In addition, these methods cannot reflect the degree of uncertainty. Since we

want to determine the optimal portfolio selection in the future, the information

of future uncertainty should not be ignore in the model. In this paper, the pos-

sibilistic regression model is employed to derive the possible mean and the var-

iance in the future. Then, the Mellin transformation is used to obtain the mean

and the risk in the future by considering the uncertain situation. Finally, we

can use the information above to reformulate the mean–variance method to
obtain the optimal uncertain portfolio selection.

In order to highlight the shortcoming of the conventional method and to

compare it with the proposed method, a numerical example is used in Section

4. Now, we can depict the time chart of Securities 1 and 4 to describe the irra-

tional results using the conventional method as shown in Fig. 3.

From the time chart, it can be seen from Security 1 that there is an increase

in the period of t-4 to t-1. It is rational to suppose Security 1 also has the
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Fig. 3. The time chart of Securities 1 and 4.



J.-J. Huang et al. / Appl. Math. Comput. 173 (2006) 350–359 359
positive return rate in the period t. On the other hand, Security 4 shows the

decrease since the period t-4, the optimal portfolio selection should eliminate

the investing ratio in Security 4. On the basis of the numerical results, we

can conclude that it is irrational to determine the uncertain portfolio selection

using the conventional method. On the other hand, the proposed method can

accurately reflect the deduction above. In addition, the proposed method can
provide the more flexible portfolio alternatives. That is, a decision-maker

can determine the optimal possibilistic distribution based on his domain

knowledge or the empirical results to obtain the exactly portfolio selection

strategy.
6. Conclusions

Portfolio selection problem has been a popular issue in the finance area since

1950s. However, the conventional mean–variance method can not provide the

satisfactory solution under the uncertain portfolio selection and the small sam-

ple situations. In this paper, the possibilistic regression model is employed to

derive the possibilistic area of the future return rate. The Mellin transforma-

tion, then, is used to obtain the mean and the risk by considering the uncer-

tainty. Using the information above, we propose the revised mean–variance

model which incorporates the degree of uncertainty to deal with the problem
of portfolio selection. A numerical example is used to demonstrate the pro-

posed method. On the basis of the numerical results, we can conclude that

the proposed method can provide the more flexible and accurate results than

the conventional method under the uncertain portfolio selection situation.
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