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Gridding Spot Centers of Smoothly
Distorted Microarray Images

Jinn Ho, Wen-Liang Hwang, Henry Horn-Shing Lu, and D. T. Lee, Fellow, IEEE

Abstract—We use an optimization technique to accurately locate
a distorted grid structure in a microarray image. By assuming that
spot centers deviate smoothly from a checkerboard grid structure,
we show that the process of gridding spot centers can be formulated
as a constrained optimization problem. The constraint is equal to
the variations of the transform parameter. We demonstrate the ac-
curacy of our algorithm on two sets of microarray images. One set
consists of some images from the Stanford Microarray Database;
we compare our centers with those annotated in the Database. The
other set consists of oligonucleotide images, and we compare our
results with those obtained by GenePix Pro 5.0. Our experiments
were performed completely automatically.

Index Terms—Microarray image, spot gridding.

I. INTRODUCTION

THE NEW technique of DNA microarray imaging provides
a systematic method that can simultaneously measure

gene expression levels of the genomic scale. Because of its
high throughput capacity, the technique has great potential
for biological, medical, and industrial applications. Two of
the major categories of microarrays are cDNA [7]–[9], [25],
and oligonucleotide microarrays [19], [20]. Specific cDNA,
or oligonucleotide fragments of genes that are of interest, are
spotted or printed on an array matrix as probes to detect gene
expression. Samples of mRNAs are then reverse transcribed to
cDNAs, which are labeled with fluorescent dyes to act as targets.
The labeled cDNA targets are hybridized to probes by comple-
mentation, and the unhybridized targets are then washed out. A
laser scanner detects the fluorescent intensities in proportion to
the contents of the hybridized pairs of targets and probes. This
generates microarray images with pixel intensities for various
samples, indicating the relative expression levels of the genes.
Finally, image processing techniques and statistical methods are
applied to determine the expression levels of the spots of micro-
arrays in order to perform gene expression analysis [6], [27].
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Fig. 1. Block diagram of our approach. We use an ideal-arrayer model and
multithresholds to find the initial solution and solve the optimization problem
by the Jacobi iteration that uses the parameter �.

An important first step in gene expression analysis is
detecting the position of a spot center, and labeling its cor-
responding coordinate in an micro-arrayer [9], [21]. This is
called the spot gridding problem [5], [16], [30]. Even though
micro-arrayers arrange spots on a relatively regular checker-
board grid, spotting error irregularities that occur during the
array manufacturing process makes accurate gridding of spot
centers difficult. Deviations from microarray regularities are
attributable to different causes, such as center-to-center spacing
deviations of an arrayer, varied surface properties of the sub-
strate, and imprecise movement of manufacturing devices [26].
Spots can also vary in size and position due to noise in the
sample preparation and hybridization processes [28]. Dealing
with spot center variations is the principal source of complexity
in solving the gridding problem.

Some image analysis softwares for spot gridding found in
the Stanford Microarray Database (SMD) are ScanAlyze [24],
GenePix [11], and Koadarray [15]. These softwares require pa-
rameters and, at times, manual intervention to locate exact spot
centers. In GenePix, for example, a user must assign the layout
of blocks, the number of spots in each block, and the distances of
spot centers between adjacent rows and columns. An interactive
graphic-based environment may be provided to adjust the loca-
tion of blocks before gridding spot centers. Meanwhile, Koad-
array only uses two parameters, namely, the block number and
spot number in each block. Although simpler than GenePix, it
produces weak results for slightly rotated images.
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As an improvement to methods that require parameters and
manual intervention, we propose an algorithm that is accurate
and fully automatic. This is very hard to achieve without im-
posing some constraints on the possible solution. Thus, we only
specify one constraint, which assumes that spot centers deviate
from a sequence of similarity transformations whose parameters
vary smoothly. With this constraint, we can formulate the spot
center gridding problem as a constrained optimization problem
by combining a quantitative criterion that measures gridding re-
sult correctness with a constraint that reduces local parameter
variation. The problem can be solved numerically by an itera-
tive algorithm.

In the block diagram of our approach shown in Fig. 1, the
ideal arrayer block is a checkerboard grid, where the number of
spots in a block is known. We begin with block boundary detec-
tion to extract the block layout. A Bayesian approach, based on
a multithreshold Markov model [4], is combined with a model-
based recognition method to successively refine the spot centers
from a sequence of thresholds. This provides the initial trans-
form parameters of a subblock. If the parameters of the subblock
are inconsistent with those of its neighboring subblocks, we then
use a tree-based algorithm to correct the subblock’s parameters
so that robust initial transform parameters of each subblock can
be obtained. After obtaining the initial transform parameters, the
Lagrange multiplier controls the balance between the correct-
ness of the estimated transform parameters and the smoothness
of the transforms in the final solution.

Of the many approaches that can be used to solve the spot
gridding problem, graph matching [1] and Bayesian grid
matching [12] find the best solution, the former by dynamic
programming, and the latter by simulated annealing. However,
we have found that these approaches are too complex for our
goal. Our proposed method is based on an optical flow estima-
tion approach [14] in which a template structure is deformed to
numerically estimate the deformation.

We illustrate our results using images manufactured with
different techniques and different signal-to-noise (SNR) levels.
Note that our resultant images are obtained completely auto-
matically from the experimental images. That is to say, we use
the same set of parameters for all experiments. In Section II,
the spot addressing problem is formulated as a constrained op-
timization problem and solved numerically. Section III presents
a method to obtain a robust initial solution. In Section IV, the
accuracy of our method is illustrated. Finally, in Section V, we
present our conclusions.

II. GRIDDING PROBLEM

The first step of microarray data analysis is spot gridding,
which identifies the spot centers of a microarray image. Many
approaches for solving the gridding problem require parame-
ters, as well as human intervention. The usual parameters are:
the block layout structure, the width and height of each block,
and the distances of spot centers between adjacent rows and
columns. Even if these parameters are given, human interven-
tion is still needed to adjust overly-deviated spot centers.

Analyzing the causes of deviations and creating a fully au-
tomatic system is difficult. A reasonable approach is to assume
that spot center deviations can be modeled as smoothly varying

transformations, which can be characterized by a few local pa-
rameters. Let and be the coordinates of a pair of matched
centers in an ideal micro-arrayer model and an image, respec-
tively. We use to represent the transformation from to

and assume that the transformation can be approximated by
a similarity transform. Thus, and are related by the matrix
form

where

(1)

and

(2)

is a translation matrix. The parameters of a similarity transform
are a scaling factor , a rotation angle , and a
translation vector . We denote the centers in the model
and image as and , respectively, and use to
denote that and are a pair of matched centers. Because
the structure of an ideal arrayer is known, we can obtain all
points of the arrayer from . However, as is obtained by
processing a microarray image, it may not contain all the spot
centers. These two sets may, therefore, have different numbers
of elements. Thus, we use the active set of to
represent the largest subset of , in which any element only
has a matched center in . The mean-squared error of all
matched centers is

(3)
where is equal to the number of all matched pairs. Usu-
ally, the distortion varies smoothly in an image. Thus, we
can impose a smoothness constraint by minimizing the varia-
tions of and . Let us assume that and are
paired with and , respectively. If and are neighboring
grids, then according to the smoothness constraint, the param-
eters of , and , should
have similar values. We use to denote the set of neighbors
of in the active set. A simple measurement of the smoothness
of the parameters is

(4)
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where is the Frobenius norm. The Frobenius norm of ma-
trix is defined as , where is an element
in matrix . According to (3) and (4), we need to find the set of
matched pairs between and that minimizes ,
where is a nonnegative parameter that weights the matched
pair error relative to the departure from smoothness of the trans-
form parameters.

A. Numerical Solution

To find a numerical solution of , we use a finite-
element method because it is easy to implement and achieves
a satisfactory solution. Let and be paired, with in the
active set . If the coordinate of is and
the coordinate of is , then—to simplify the
formulation of a numerical method—we denote as , and
as ; the parameters in as and ; and the
parameters in as and . The mean-squared
error measurement in (3) is, therefore

where is the size of the active set and

.
We also use to denote the set of neighbors of in

the active set. In the system of first-order neighbors, a neighbor
of in the active set will be either , , , or

whose coordinates are, respectively

or

Equation (4) then becomes

(5)
where and

.
We need , , , and to minimize

(6)

To solve this, we differentiate with respect to , , ,
and and set the derivatives to zero. The resultant equations
are formed as a matrix representation and can be solved by the
Jacobi iterative scheme. In Appendix I, we present the Jacobi
iterative method for the optimal solution of the parameters ,

, , and . The final quality of the Jacobi iterative solu-
tion depends on the quality of the initial solution. In Section III,
we propose a method that finds a robust initial solution.

Fig. 2. For a small �, the distance from p to L is approximated as the vertical
distance between p and q.

III. FINDING A ROBUST INITIAL SOLUTION

We use a sequence of robust image processing methods for
a more automated process of finding effective initial transform
parameters.

A. Boundary Detection and Block Extraction

In a microarray, spots are grouped into blocks, and each block
must be delineated in order to identify the spot centers within
the blocks. In [10], the blocks of a microarray are delineated
from the vertical and horizontal projection profiles of the image.
This method works well, provided that the microarray image has
no rotation deviation. We propose a method that can extract the
boundaries of a slightly rotated image. From the projection pro-
files at the perpendicular direction to each boundary, the blocks
of the rotated image can be separated from each other.

Boundary Detection: To extract the boundaries of a slightly
rotated image, we use the line equation
to represent the top or bottom boundary. We only discuss the
method to find either the top or bottom boundary, as the left and
right boundaries can be found by a similar method using the line
equation .

Fig. 2 shows that the distance from a point to a line
can be approximated as the difference

of the -coordinates , as long as there
is only a small rotation angle. To find the boundary line that
is tangent to the edges of spot centers located at a boundary, we
use the Gaussian-like weighting function

, in which and is the
image. This function gives more weight to a pixel that is closer
to line , or to one that has a greater absolute intensity gradient.
To find the line, we look for the and that minimize the
weighted-squared error

By differentiating the above equation with respect to and
and setting the results to zero, we have
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Fig. 3. Blocks in each image are enclosed by a rectangular bounding box. The
left image (size 1 824 � 1 828 pixels) is hp7005a, while the right image (size
1 896 � 2 032 pixels) is the block detection result of an image of LC23N085
rotated 1.5 .

Since and
, these equations

can be simplified to

and

If a point is close to line , then we have . This means
that can be approximated as . If we denote

to be the summation of all points near , we have the ap-
proximations of the above two equations, which are

and

The solutions of the above equations are

and

(7)

(8)

where .
Block Extraction: After extracting four boundary lines, we

slightly modify them such that they form a rectangular box. To
extract blocks, we project along each boundary line and select
the blocks from the projection profile, as described in [10]. Fig. 3
shows the block extraction results of two SMD images.

Fig. 4. Coordinate frame O is related to the frame O by a similarity
transformation. The parameters of the transformation are obtained from the
corresponding coordinate frames and the centers of the frames. The coordinates
of points P and P are the same with respect to frames O and O .

B. Initial Distortion Estimation

After the blocks are delineated, we estimate an initial distor-
tion of the spot centers in a block. A good initial estimation of
block distortion is obtained by dividing a block into subblocks,
and assuming that the transform within a subblock is the same
anywhere in that subblock. This allows us to efficiently apply
the geometric hashing algorithm to obtain transform parameters.
There is a tradeoff between the solutions of geometric hashing
and computation time, i.e., a subblock with more spots yields
a better result at the expense of higher computation time. Ex-
periments show that the geometric hashing algorithm estimates
acceptable transform parameters of a subblock if the size of the
subblock contains 16 to 64 spots.

Geometric Hashing to Find Matched Pairs in a Sub-
block: We assume that local distortion within a subblock can
be approximated by a similarity transform. That is, model point

and subblock point are related by the matrix transformation

(9)

Geometric hashing can find the parameters of this similarity
transform between the model points and subblock points, ac-
cording to an invariant property. We define a frame from two
model points, which form a basis, and assign the coordinate

to one point and to the other. The coordinates
of all other points with respect to the same basis will be pre-
served after applying any similarity transform to the points.
Fig. 4 shows invariant coordinates after a similarity transform
is applied to the points in the left subfigure. In this way, if
model points and subblock points are related by a similarity
transform, we can derive the parameters of the similarity trans-
form from the matched basis in the model and subblock. A
detailed discussion of geometric hashing can be found in [18],
[23], [29].

Note that in order to estimate the transform parameters with
the geometrical hashing algorithm, we need to find subblock
points first. These points are obtained by thresholding a sub-
block image so that it yields black and white pixels. The black
pixels that are connected to each other form disjoint connected
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Fig. 5. Acquisition of subblock transform parameters.

components. After removing connected components that are un-
likely to be spots, the centers of the resultant components are the
subblock points . The algorithm for finding the connect com-
ponents and their centers is presented in Appendix II.

Gridding Centers Using a Multithreshold Markov
Model: Because there are various signal intensities and noise
levels in a microarray, using a threshold to distinguish signals
from noise may yield either a spot pattern with insufficient
signal information, or one with too much noise information.
Thus, we use a simple multithreshold approach on a Markov
model to locate spots.

We begin with a coarse threshold to binarize a subblock
image, compute the connected components of the resultant
image, and find the center of each component. The transform
between the centers of the model and the subblock image is
obtained by the geometric hashing algorithm. We then refine
the threshold and repeat the above procedure, but replace the
geometric hashing algorithm with a Bayesian approach that
uses a Markov model to refine the initial transform parameters
of the subblock.

The block diagram for finding the initial subblock parameters
is shown in Fig. 5. To illustrate the process, let be a subblock
image, be the set of model points, and represent the set
of spot centers detected from the subblock , using a gray scale
threshold level . The spot centers , detected by using
threshold , binarize the subblock image. We then utilize the
algorithm in Appendix II to find the connected components and
calculate the center of each component. We use
to represent the similarity transform (9) obtained from mapping
model points to spot centers . From the Bayes theorem
and the assumption that the transform parameters of follow
equal prior distribution, the transform that maximizes the
posterior probability is equal to the transform
that maximizes the likelihood probability .
From a set of coarse to fine thresholds , the esti-
mation of

can be simplified by a Markov random field approach, which
yields

(10)

The transform of the initial threshold is obtained by
applying the geometrical hashing algorithm to spot centers

and . The threshold is iteratively modified in order
to refine the parameters of the transform that maximizes the
above equation. To simplify the notation, we illustrate below
the transform parameter refinement from to . Further
refinement of the parameters with a finer threshold can be
derived in a similar way.

We denote the matched pair of as . Given the
new spot centers , a matched pair in can be mod-
ified as by replacing with the closest center

. We denote this modified matched pair and the
new set of matched pairs between and as and ,
respectively, and let be all the matched pairs
between and . We assume that the joint probabilities

and can be factored
as the product of the marginal probability of each matched pair
element in and , respectively. We further assume that the
marginal probability of each element is a normal distribution,
determined from the distance between the two corresponding
spot centers by the transform . Then, we have

and

where is the variance, which is assumed to be constant for all
matched pairs. The transform that maximizes the likelihood
probability

equals the transform that minimizes

(11)

The parameters of the optimal similarity transform can be
obtained by taking the derivative of the above equation with
respect to each parameter of the transform and setting it to zero.
Each term in (11) is a quadratic function of its parameters.
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Hence, each term’s derivative is a linear function of the param-
eters, and the optimal parameters can be obtained by solving
a system of linear equations. Although the above procedure
determines the optimal parameters of a subblock image for two
thresholds, it can be extended effortlessly to any sequence of
thresholds.

Tree-Based Outlier Correction: The initial parameters of a
subblock, obtained from the block diagram in Fig. 5, may be
inconsistent with those of its neighboring subblocks. If this is
the case, we say that the subblock is an outlier. Because local
distortion varies smoothly, the transform parameters of neigh-
boring subblocks should have similar values. An error in a pre-
vious parameter estimation can, thus, be adjusted, based on the
estimated parameters of neighboring subblocks. An outlier sub-
block can be determined by comparing the rotation and scale

of the subblock parameters to those of its neighboring sub-
blocks. We use the following simple method to define an outlier:
if is outside of the proper range , or , where

is the median scale of its neighboring inlier subblocks and
is a given threshold, then the subblock is an outlier.

The transform parameters of an outlier subblock can be cor-
rected by the parameters of its neighboring inlier subblocks.
We use a quadtree structure to organize all the subblocks. Each
subblock is a leaf of the tree, and four neighboring subblocks
have a parent node. The spot centers of the parent node are the
union of the spot centers of its children nodes. Four neighboring
parent nodes are then grouped and assigned to a parent node.
This process continues recursively until the root of the quadtree
is reached. Any node can be associated to a set of transform
parameters. The transform is obtained from the transform pa-
rameters of the node’s inlier children. Let be the set of inlier
children of the node and let be the set of matched
pairs between model and subblock , which is an inlier child
of . Further, let be the index of an element in the set. The
transform of node can then be obtained by finding the trans-
form that minimizes

(12)

The optimal similarity transform parameters can be derived by
taking a partial derivative of the formula of each parameter and
setting each result to zero. The new transform parameters of the
outlier children of node are the optimal parameters of the node

. Fig. 6 shows a quadtree of a microarray block. An outlier node
(4, 2) in the figure can be corrected by its inlier sibling nodes,
(3, 1), (3, 2), and (4, 1), as described by (12). The new transform
of the outlier node (4, 2) is inherited from the transform of its
parent node .

The quadtree structure allows us to extend this simple ex-
ample to correct any number of outlier subblocks of different
sizes. If some children of a node are inliers, the parameters of
the inlier children nodes are used to calculate the parameters of
the parent node , according to (12). The resultant parameters
are passed to all outlier children of , and become the new pa-
rameters of the outlier nodes. If all the children of are outliers,
then is an outlier. We can use the parameters obtained from the
inlier sibling of as the new parameters of . These parameters

Fig. 6. Subblock quadtree, where p is the parent node of subblocks (3, 1), (3,
2), (4, 1), and (4, 2). Subblock (4, 2) is an outlier whose transform parameters
pass through p and are obtained from nodes (3, 1), (3, 2), and (4, 1).

Fig. 7. Acquisition of initial transform parameters from the initial subblock
parameters of Fig. 5.

replace those of the children of . Details of this tree-based out-
lier correction algorithm are given in Appendix III. Fig. 7 shows
a block diagram, using a tree to correct subblock parameters in
order to obtain the final initial transform parameters.

IV. PERFORMANCE EVALUATION

We evaluate our spot gridding algorithm by comparing our
results with those obtained by other algorithms on two sets
of microarray images. One set contains some poor quality
images from SMD, while the other set contains Agilent 60-mer
oligonucleotide microarrays whose specifications are on the
related web pages [2]. The Agilent’s microarrays are some
of the best quality oligonucleotide chips currently available
commercially. We use these sets of images to demonstrate
that our method can accurately grid the spot centers of images
of varying quality produced by different technologies. We
implement our algorithm using the Windows XP platform and
all images are processed in the Matlab environment. The gray
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Fig. 8. (a) Block containing various types of noise. (b) Block (2, 2) of hp7004b
divided into 16 subblocks. (c) Result of geometric hashing. (d) Alignment of the
initial and final centers. The initial centers are marked by asterisks and the final
centers by circles.

level image in SMD takes eight bits, while that of Agilent’s
image takes sixteen bits. Throughout our experiments, we
use grayscale images and set the control parameter to 1/16.
Our experiments show that this setting is robust for different
microarray images.

In the following experiment, we first demonstrate the step-by-
step results of applying our procedure to an image from SMD.
The top half of Fig. 8 shows a block and the subblocks of image
hp7004b from SMD. The result of mapping the model points
using the transform obtained by geometric hashing is shown
in Fig. 8(c). The initial spot centers (marked by asterisks) are
aligned with the final spot centers (marked by circles), as shown
in Fig. 8(d). Comparing the initial and final centers, we find that
the distances between the centers of strong signals are shorter
than those between weak signals. Thus, the Jacobi iterations re-
fine the spot centers of weak signals. Fig. 9(a) shows the super-
imposition of our centers on the block images. The only center
that lies outside of a box corresponds to a very weak signal.
Fig. 9(c) shows the histogram of the distances of our centers and
the centers provided by SMD. The mean and standard deviation
of the histogram are 1.2 and 0.9 pixels, respectively. The average
distance of adjacent spot centers of both SMD and our method
is 15 pixels. Thus, our method accurately locates the spot cen-
ters of this image. Fig. 9(b) shows the distribution of the spot
center distance versus the average spot intensity. The distance
between the spot centers with the largest average intensity and
those with the smallest average intensity is then uniformly di-
vided into four sections. The mean and the standard deviation
of the distance between our spot centers and those of SMD with
spots, whose average intensities are located within each section,
are calculated and plotted in Fig. 9(d). As this subfigure shows,

Fig. 9. (a) Our final centers are super-imposed on the block. All but one center
are within box boundaries. The boxes are from SMD. (b) The scatter plot of the
distribution of the pixel distance of our spot centers and those of SMD versus the
average intensity of the spots. (c) The histogram of the distance between our spot
centers and those in SMD. The average distance between adjacent SMD spot
centers is 15 pixels. (d) The distribution in (b) is partitioned into four sections
of equal distance and average spot intensity. The spot intensity of each section
is either [96; 133), [133;170), [170;207), or [207;244], where 96 and 244
are, respectively, the smallest and the largest spot intensities. The mean and the
standard deviation of each section are plotted in this subfigure.

Fig. 10. (a), (c) Two image blocks of oligonucleotide chips; (b) is obtained by
super-imposing our spot centers on (a), while (d) is obtained by super-imposing
our spot centers on (c). The rectangular boxes in the images are obtained by
using GenePix Pro 5.0. The distance between adjacent spot centers of the two
images is 10 pixels.

the variation of the mean and the standard deviation of different
spot intensities can be neglected, which indicates that the accu-
racy of our method is consistent for all spot intensities. This is
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Fig. 11. Comparison of the spot centers of our method and GenePix Pro 5.0.
(a), (b), and (d) are, respectively, the distributions of the horizontal, the vertical,
and the distance of the spot-center-difference versus the spot intensity; (c) is
the plot of the number of points versus the spot center distance of (d); (e) and
(f) are the mean and the standard deviation of each segment. The statistics are
calculated from all the points in (d) that are located in the segment.

because the initial spot centers, found by using the modeling ap-
proach and a sequence of robust procedures, are close to the ac-
curate spot centers. Moreover, the spot centers of weak signals,
which are usually less accurate in the initial solution, are refined
by Jacobi’s iterations. Consequently, our method for gridding
spot centers renders an accuracy that is independent of the in-
tensity of a spot.

Fig. 10(a) and (c) represents two image blocks of Agilent
60-mer oligonucleotide microarrays. There are 400 spots in
the image and the distance between adjacent spot centers is
ten pixels. The spot centers of our method in Fig. 10(a) and
(c) is super-imposed on the images and shown in Fig. 10(b)
and (d), respectively. The rectangular boxes are obtained by
using GenePix Pro 5.0, and statistical measurement is used to
demonstrate that our spot centers and those of GenePix Pro 5.0
are matched. Fig. 11(a) and (b) is the respective distributions
of the horizontal and vertical differences between our
spot centers and those provided by GenePix Pro 5.0, compared
to the average spot intensity. The distributions are obtained by
accumulating the results of eight blocks of Agilent’s microarrays
with typical blocks, as shown in Fig. 10. Measuring the mean and
standard deviations of all the spot differences of these images,
the horizontal mean and standard deviation of spot-center-differ-
ences are 0.1 and 1.0 pixels, respectively, while those of vertical

Fig. 12. Spot centers compared with those provided by SMD; (a) and (b) are,
respectively, a block in image SHDR146 of SMD and the super-imposition of
our spot centers on the image. The spots provided by SMD images are shown as
boxes, while detected spot centers are marked by small, bold squares; (c) shows
the distance histogram of four randomly chosen blocks of SHDR146. The
average distance between adjacent spot centers is about 15 pixels, while the
mean and the standard deviation of the spot center difference, are 0.9 and 0.6
pixels, respectively; (d) is the distribution of the spot center distance verus the
average spot intensity. This distribution is divided into four segments of equal
length. The mean and the standard deviation in each segment are plotted in (e).

spot-center-differences are 0.4 and 1.04 pixels, respectively.
Fig. 11(c) is the histogram of the number of pixels versus the dis-
tance of spot centers for our spot centers and those of GenePix.
The maximal value of the histogram occurs at approximately
one pixel. The reason may be that if we assume the marginal
probabilities of horizontal and vertical spot-center-differences
are of normal density with mean zero and variance one, then
the distance of spot centers becomes a Rayleigh distribution
whose maximal value occurs at one pixel [22]. The distribution
of the distance between the spot centers of our method and
those of GenePix Pro 5.0 is plotted in Fig. 11(d). To measure the
effects of the average spot intensity on the spot center distance,
we partition the points in the distribution according to their
intensities into a different number of segments. We then measure
the mean and standard deviation of the points located in each
segment. The results of eight and sixteen segments are shown
in Fig. 11(e) and (f), respectively. The intensity interval of each
segment is calculated by using a similar method to that used to
obtain the intensity interval of Fig. 9(d), where the range between
the minimal and the maximal intensity values is divided into
segments of equal length. From Fig. 11(e) and (f), the spot center
differences between our method and those of GenePix appears
to be independent of the average intensity of the spots on these
images.
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Fig. 13. Block (1, 2) of LC23N085 is shown in (a), and the super-imposition
of our spot centers is shown in (b). The spots provided by SMD images are
shown as boxes, while detected spot centers are marked by small, bold squares;
(c) shows the distance histogram of four randomly chosen blocks of LC23N085.
The average distance between SMD adjacent spot centers is about 15 pixels,
while the mean and the standard deviation of the spot center distance, are 1.5 and
1.0 pixels, respectively; (d) is the distribution of spot center distance versus the
average spot intensity. This distribution is divided into four segments of equal
length. The mean and the standard deviation in each segment are plotted in (e).

We use the array notation to denote the block at the th
row and the th column of a microarray image. Fig. 12(a) shows
the block (2, 4) in the microarray image SHDR146 of SMD,
while Fig. 12(b) shows a super-imposition of our detected spot
centers over the image block provided by SMD. All spot centers
detected by our method are located within their corresponding
boxes. Fig. 12(c) plots the histogram of the distance between
our spot centers and those provided by SMD for four blocks in
SHDR146, including the block (2, 4). To show the dependence
of our method on the average spot intensity, we plot the distri-
bution of the distance of spot centers versus the average spot
intensity in Fig. 12(d). The range of the spot intensity is divided
into four segments of equal length. The mean and the standard
deviation of points in the distribution located in each segment
are plotted in Fig. 12(e).

Figs. 13–15 show other examples of processing noisy SMD
images. Distance histograms of our spot centers and those of
SMD are given in Figs. 13(c)–15(c), respectively. The mean
and standard deviation of each segment of distance distribution
versus average spot intensity, as shown in Figs. 13(d)–15(d), are
plotted in Figs. 13(e)–15(e), respectively. The average adjacent
spot distance of these images is 15 pixels, while the mean and
the standard deviation are each less than two pixels. Moreover,
the distance between our spot centers and those of SMD is irrel-
evant to the spot intensity.

Fig. 14. Block (3, 4) of lc30n008 is shown in (a), and the super-imposition
of our spot centers is shown in (b). The spots provided by SMD images are
shown as boxes, while detected spot centers are marked by small, bold squares;
(c) shows the distance histogram of four randomly chosen blocks of lc30n008.
The average distance between SMD adjacent spot centers is about 15 pixels,
while the mean and the standard deviation of the spot center distance, are 1.4 and
1.0 pixels, respectively; (d) is the distribution of spot center distance versus the
average spot intensity. This distribution is divided into four segments of equal
length. The mean and the standard deviation in each segment are plotted in (e).

From the results of processing oligonucleotide images and
noisy SMD images, we show that our method can accurately
detect the spot centers of images of varying quality that are
manufactured by different techniques. The accuracy of our spot
gridding method is irrelevant to the intensity of a spot. The
method is robust and automatic because, in our experiments,
we do not use any manual adjustments to find spot centers after
a block is delineated. Our algorithm takes less than 15 min to
grid an image of about 450 450 pixels on a CPU whose speed
is 2.4 GHz per second. The slowest part of our algorithm occurs
when computing connected components. This can be improved
when implemented in an environment that is more efficient than
Matlab.

V. CONCLUSION

A large proportion of grid distortion can be approximated by
a locally smooth distortion. In this manuscript, an optimiza-
tion approach is proposed to grid the exact spot centers of a
microarray image, whose grids are slowly varying similarity
transforms. A Bayesian approach and a multithreshold Markov
model are used to find robust initial parameters. The initial pa-
rameters are refined by Jacobi iterations, which solves our op-
timization problem. Experiments show that our method can ro-
bustly extract accurate spot centers from microarrays with local
smooth grid distortions. In practice, however, grid distortions
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Fig. 15. Block (1, 1) of lc30n010 is shown in (a), and the super-imposition of
our spot centers on the block is shown in (b); (c) shows the distance histogram
of four randomly chosen blocks of lc30n010. The average distance between
SMD adjacent spot centers is about 15 pixels, while the mean and the standard
deviation of the spot center distance are 1.76 and 1.2 pixels, respectively; (d) is
the distribution of the spot center distance verus the average spot intensity. This
distribution is divided into four segments of equal length. The mean and the
standard deviation in each segment are plotted in (e).

can be discontinuous. Improving our method for images of dis-
continuous distortion grids is an issue worth further study.

APPENDIX I
FINDING THE OPTIMAL PARAMETERS

BY THE JACOBI ITERATIVE SCHEME

We use to represent the number of neighbors of
that are in the active set . Differentiating in (6) with
respect to , , , and yields

where , , , and are the local averages of , ,
, and , respectively. Extremum values occur when the

above derivatives of equal zero. To simplify the formulation,
let be the matrix in the equation at the bottom of the page.
The resultant equations can be combined in the following matrix
form:

After multiplying both sides of the above equation by (if
does not exist, we can use the pseudo inverse of ), we

have
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We can solve the above equation for , , , and by
the Jacobi iterative scheme

The new values of , , , and are equal to the av-
erage of the surrounding values multiplied by a matrix, and the
addition of an adjustment term. The final quality of the Jacobi
iterative scheme solution depends on the quality of the initial
solution.

APPENDIX II
FINDING CONNECTED COMPONENTS AND THEIR CENTERS

The region growing technique proposed in [3] is a popular
method for finding the connected components of black pixels
from a binarized image. The algorithm is not optimal, but it is
efficient and simple to implement. The initial step of the algo-
rithm is to un-label all black pixels. It then iteratively performs
the following steps until all the black pixels are labeled.

Step 1. Choose an un-labeled black pixel
as the seed for a newly connected compo-
nent and label it.
Step 2. Any un-labeled pixel that neigh-
bors a pixel in the connected component is
labeled and included in the connected com-
ponent.
Step 3. Step 2 is repeated until there are
no un-labeled pixels neighboring any pixel
in the component.
Step 4. If any un-labeled pixels still
exist, return to Step 1.

The center of a connected component is the mean of the coor-
dinates of the pixels in the connected component. Criteria, such
as the compactness of a spot [17], could be used to determine
whether a connected component is associated with a spot. How-
ever, in our algorithm, we use the size of a connected component
to determine whether it is likely to be a spot.

We assume that an image subblock composed of by spots
has by pixels. The numbers and can be obtained from
the model subblock. Thus, a spot in the image takes at most

(uv/mn) pixels. We remove a connected component whose
size is either too small for , or too close to . A connected
component that is too small is likely to occur because of noise
variations, while one that is too large may yield a larger error in
center computation.

APPENDIX III
TREE-BASED OUTLIER CORRECTION ALGORITHM

We correct all outliers by first using the Bottom-up Algo-
rithm, then the Top-down Algorithm.

Bottom-up Algorithm
Step 0. Build the quadtree.
Step 1. Calculate the similarity transform
of each subblock. Subblocks are repre-
sented as the leaves of the tree.
Step 2. Mark subblocks that have inconsis-
tent parameters as outliers.
Step 3. Use (12) and the parameters of the
inlier subblocks to calculate the trans-
form parameters of the parent nodes. If
all the children of a node are outliers,
mark the node as an outlier.
Step 4. If all nodes at the current level
are inliers, we stop at this level. Oth-
erwise, we proceed with Steps 3 and 4 one
leaf higher than the current level until
the root of the tree is reached.

Top-down Algorithm
Step 0. Begin at the root of the tree,
(which is assumed to be an inlier).
Step 1. If we reach the lowest level of
the tree, we stop. Otherwise, for each
node at a level, if any of its children
nodes are outliers, we use the parameters
of the node as the new parameters of its
outlier children and remove the outlier
mark on them.
Step 2. Repeat Step 1 one level down.
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