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Abstract—Fuzzy neural networks (FNNs) for pattern classifica-
tion usually use the backpropagation or C-cluster type learning
algorithms to learn the parameters of the fuzzy rules and mem-
bership functions from the training data. However, such kinds of
learning algorithms usually cannot minimize the empirical risk
(training error) and expected risk (testing error) simultaneously,
and thus cannot reach a good classification performance in the
testing phase. To tackle this drawback, a support-vector-based
fuzzy neural network (SVFNN) is proposed for pattern classifica-
tion in this paper. The SVFNN combines the superior classification
power of support vector machine (SVM) in high dimensional data
spaces and the efficient human-like reasoning of FNN in handling
uncertainty information. A learning algorithm consisting of three
learning phases is developed to construct the SVFNN and train its
parameters. In the first phase, the fuzzy rules and membership
functions are automatically determined by the clustering principle.
In the second phase, the parameters of FNN are calculated by the
SVM with the proposed adaptive fuzzy kernel function. In the
third phase, the relevant fuzzy rules are selected by the proposed
reducing fuzzy rule method. To investigate the effectiveness of the
proposed SVFNN classification, it is applied to the Iris, Vehicle,
Dna, Satimage, Ijcnn1 datasets from the UCI Repository, Statlog
collection and IJCNN challenge 2001, respectively. Experimental
results show that the proposed SVFNN for pattern classification
can achieve good classification performance with drastically
reduced number of fuzzy kernel functions.

Index Terms—Fuzzy kernel function, fuzzy neural network
(FNN), kernel method, mercer theorem, pattern classification,
support vector machine (SVM).

I. INTRODUCTION

AS IS WIDELY known, both fuzzy logic and neural net-
works are aimed at exploiting human-like knowledge

processing capability. The fuzzy logic system using linguistic
information can model the qualitative aspects of human knowl-
edge and reasoning processes without employing precise
quantitative analyzes [1]. The neural network is a popular
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generation of information processing systems that demonstrate
the ability to learn from training data [2]. Much research has
been done on fuzzy neural networks (FNNs), which combine
the capability of fuzzy reasoning in handling uncertain in-
formation and the capability of neural networks in learning
from processes [3]–[5]. They have been successfully applied
to classification, identification, control, pattern recognition,
and image processing, etc. In particular, many learning algo-
rithms of fuzzy (neural) classifiers have been presented and
applied in pattern classification and decision-making systems
[6], [7]. Moreover, several researchers have investigated the
fuzzy-rule-based methods for pattern classification [8]–[11].

A fuzzy system consists of a bunch of fuzzy IF–THEN rules.
Conventionally, the selection of fuzzy IF–THEN rules often re-
lies on a substantial amount of heuristic observation to express
proper strategy’s knowledge. Obviously, it is difficult for human
experts to examine all the input–output data to find a number
of proper rules for the fuzzy system. Most preresearches used
the backpropagation (BP) and/or C-cluster type learning algo-
rithms to train parameters of fuzzy rules and membership func-
tions from the training data [12], [13]. However, such learning
only aims at minimizing the classification error in the training
phase, and it cannot guarantee the lowest error rate in the testing
phase. In statistical learning theory, the support vector machine
(SVM) [14] has been developed for solving this bottleneck. The
SVM performs structural risk minimization and creates a clas-
sifier with minimized VC dimension. As the VC dimension is
low, the expected probability of error is low to ensure a good
generalization. The SVM keeps the training error fixed while
minimizing the confidence interval. So, the SVM has good gen-
eralization ability and can simultaneously minimize the empir-
ical risk and the expected risk for pattern classification prob-
lems. More importantly, an SVM can work very well in a high
dimensional feature space. However, the optimal solutions of
SVM rely heavily on the property of selected kernel functions,
whose parameters are always fixed and are chosen solely based
on heuristics or trial-and-error nowadays. The FNN on the other
hand is an approach that is based on adaptive local representa-
tions with iterative learning ability. With this motivation, a the-
oretical foundation for the FNN using the SVM method is de-
veloped in this paper. We exploit the knowledge representation
power and learning ability of the FNN to determine the kernel
functions of the SVM adaptively, and propose a novel adaptive
fuzzy kernel function, which has been proven to be a Mercer
kernel. There have been some researches on combining SVM
with FNN [15]–[18]. In [15], a self-organizing map with fuzzy
class memberships was used to reduce the training samples to
speed up the SVM training. The objective of [16]–[18] was on
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Fig. 1. Structure of the four-layered fuzzy neural network.

improving the accuracy of SVM on multiclass pattern recogni-
tion problems. The SVFNN developed in this paper can not only
well maintain the classification accuracy, but also reduce the
number of support vectors as compared with the regular SVM.
The regular SVM suffers from the difficulty of long computa-
tional time in using nonlinear kernels on large datasets which
come from many real applications. Therefore, one major con-
tribution of this paper is to propose a systematical procedure to
reduce the support vectors to deal with this problem.

In this paper, we develop a support-vector-based fuzzy neural
network (SVFNN) for pattern classification, which is the real-
ization of a new idea for the adaptive kernel functions used in
the SVM. The use of the proposed fuzzy kernels provides the
SVM with adaptive local representation power, and thus brings
the advantages of FNN (such as adaptive learning and economic
network structure) into the SVM directly. On the other hand,
the SVM provides the advantage of global optimization to the
FNN and also its ability to minimize the expected risk; while
the FNN originally works on the principle of minimizing only
the training error. The proposed learning algorithm of SVFNN
consists of three phases. In the first phase, the initial fuzzy rule
(cluster) and membership of network structure are automatically
established based on the fuzzy clustering method. The input
space partitioning determines the initial fuzzy rules, which is
used to determine the fuzzy kernels. In the second phase, the
means of membership functions and the connecting weights be-
tween layers 3 and 4 of SVFNN (see Fig. 1) are optimized by
using the result of the SVM learning with the fuzzy kernels.
In the third phase, unnecessary fuzzy rules are recognized and
eliminated and the relevant fuzzy rules are determined. Exper-
imental results on five datasets (Iris, Vehicle, Dna, Satimage,
Ijcnn1) from the UCI Repository, Statlog collection and IJCNN
challenge 2001 show that the proposed SVFNN classification
method can automatically generate the fuzzy rules, improve the
accuracy of classification, reduce the number of required kernel
functions, and increase the speed of classification.

This paper is organized as follows. In Section II, the structure
and initial construction of the FNN is presented. Section III de-
scribes the proposed adaptive fuzzy kernel with sound theoretic
derivations. In Section IV, the learning algorithm of the SVFNN
is developed. In Section V, the SVFNN is applied to solve sev-
eral classification problems and performance comparisons with
other classification methods are made. Finally, the conclusions
are summarized in the Section VI.

II. STRUCTURE AND CONSTRUCTION OF INITIAL FUZZY

NEURAL NETWORK

A. Structure of FNNs

A four-layered FNN is shown in Fig. 1, which is comprised of
the input, membership function, rule, and output layers. Layer 1
accepts input variables, whose nodes represent input linguistic
variables. Layer 2 is to calculate the membership values, whose
nodes represent the terms of the respective linguistic variables.
Nodes at Layer 3 represent fuzzy rules. The links before Layer
3 represent the preconditions of fuzzy rules, and the link after
Layer 3 represent the consequences of fuzzy rules. Layer 4 is the
output layer. This four-layered network realizes the following
form of fuzzy rules:

Rule If is and is and is

Then is (1)

where are the fuzzy sets of the input variables ,
and are the consequent parameter of . For the

ease of analysis, a fuzzy rule 0 is added as

Rule If is and and is

Then is (2)

where is a universal fuzzy set, whose fuzzy degree is 1 for
any input value , and is the consequent
parameter of y in the fuzzy rule 0. Define and as the
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output and input variables of a node in layer , respectively.
The signal propagation and the basic functions in each layer are
described as follows.

Layer 1- Input layer: No computation is done in this layer.
Each node in this layer, which corresponds to one input variable,
only transmits input values to the next layer directly. That is

(3)

where , are the input variables of the FNN.
Layer 2—Membership function layer: Each node in this layer

is a membership function that corresponds one linguistic label
(e.g., fast, slow, etc.) of one of the input variables in Layer 1. In
other words, the membership value which specifies the degree
to which an input value belongs to a fuzzy set is calculated in
Layer 2

(4)

where is a membership function ,
, . With the use of Gaussian

membership function, the operation performed in this layer is

(5)

where and are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function of
the th term of the th input variable .

Layer 3—Rule layer: A node in this layer represents one
fuzzy logic rule and performs precondition matching of a rule.
Here, we use the AND operation for each Layer 2 node

(6)

where ,
, is

the FNN input vector. The output of a Layer-3 node represents
the firing strength of the corresponding fuzzy rule.

Layer 4—Output layer: The single node in this layer is
labeled with , which computes the overall output as the sum-
mation of all input signals

(7)

where the connecting weight is the output action strength
of the Layer 4 output associated with the Layer 3 rule and the
scalar is a bias. Thus the fuzzy neural network mapping can
be rewritten in the following input–output form:

(8)

B. Construction of Fuzzy Rules

For constructing the initial fuzzy rules of the FNN, the fuzzy
clustering method is used to partition a set of data into a number

Fig. 2. Aligned clustering-based partition method giving both less number of
clusters as well as less number of membership functions.

of overlapping clusters based on the distance in a metric space
between the data points and the cluster prototypes. Each cluster
in the product space of the input–output data represents a rule
in the rule base. The goal is to establish the fuzzy preconditions
in the rules. The membership functions in Layer 2 of FNN can
be obtained by projections onto the various input variables
spanning the cluster space. In this work, we use an aligned clus-
tering-based approach proposed in [19]. This method produces
a partition result as shown in Fig. 2.

The input space partitioning is also the first step in con-
structing the fuzzy kernel function in the SVFNN. The purpose
of partitioning has a two-fold objective.

• It should give us a minimum yet sufficient number of clus-
ters or fuzzy rules.

• It must be in spirit with the SVM-based classification
scheme.

To satisfy the aforementioned conditions, we use a clustering
method which takes care of both the input and output values of
a data set. That is, the clustering is done based on the fact that
the points lying in a cluster also belong to the same class or
have an identical value of the output variable. The class infor-
mation of input data is only used in the training stage to generate
the clustering-based fuzzy rules; however, in testing stage, the
input data excite the fuzzy rules directly without using class in-
formation. In addition, we also allow existence of overlapping
clusters, with no bound on the extent of overlap, if two clus-
ters contain points belonging to the same class. We may have
a clustering like the one shown in Fig. 3. Thus a point may be
geometrically closer to the center of a cluster, but it can belong
only to the nearest cluster, which has the points belonging to the
same class as that point.

A rule corresponds to a cluster in the input space, with
and representing the center and variance of that cluster. For
each incoming pattern , the strength a rule is fired can be inter-
preted as the degree the incoming pattern belongs to the corre-
sponding cluster. It is generally represented by calculating de-
gree of membership of the incoming pattern in the cluster [20].
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Fig. 3. Clustering arrangement allowing overlap and selecting the member
points according to the labels (or classes) attached to them.

For computational efficiency, we can use the firing strength de-
rived in (6) directly as this degree measure

(9)

where . In the above equation the term
is the distance between and the center

of cluster . Using this measure, we can obtain the following
criterion for the generation of a new fuzzy rule. Let be the
newly incoming pattern. Find

(10)

where is the number of existing rules at time . If
, then a new rule is generated, where is a

prespecified threshold that decays during the learning process.
Once a new rule is generated, the next step is to assign initial
centers and widths of the corresponding membership functions.
Since our goal is to minimize an objective function and the cen-
ters and widths are all adjustable later in the following learning
phases, it is of little sense to spend much time on the assign-
ment of centers and widths for finding a perfect cluster. Hence,
we can simply set

(11)

in
(12)

according to the first-nearest-neighbor heuristic [21], where
decides the overlap degree between two clusters. Similar

methods are used in [22], [23] for the allocation of a new radial
basis unit. However, in [22] the degree measure does not take
the width into consideration. In [23], the width of each unit
is kept at a prespecified constant value, so the allocation result
is, in fact, the same as that in [22]. In this paper, the width is
taken into account in the degree measure, so for a cluster with
larger width (meaning a larger region is covered), fewer rules

will be generated in its vicinity than a cluster with smaller
width. This is a more reasonable result. Another disadvantage
of [22] is that another degree measure (the Euclidean distance)
is required, which increases the computation load.

After a rule is generated, the next step is to decompose the
multidimensional membership function formed in (11) and
(12) to the corresponding 1-D membership function for each
input variable. To reduce the number of fuzzy sets of each
input variable and to avoid the existence of highly similar
ones, we should check the similarities between the newly
projected membership function and the existing ones in each
input dimension. Before going to the details on how this overall
process works, let us consider the similarity measure first. Since
Gaussian membership functions are used in the SVFNN, we
use the formula of the similarity measure of two fuzzy sets with
Gaussian membership functions derived previously in [24].
Suppose the fuzzy sets to be measured are fuzzy sets and

with membership function
and , respectively. The union
of two fuzzy sets and is a fuzzy set such that

, for every . The inter-
section of two fuzzy sets and is a fuzzy set such
that , for every . The
size or cardinality of fuzzy set , , equals the sum of the
support values of : . Since the area
of the bell-shaped function, , is
[25] and its height is always 1, it can be approximated by an
isosceles triangle with unity height and the length of bottom
edge . We can then compute the fuzzy similarity measure
of two fuzzy sets with such kind of membership functions.
Assume as in [24], we can compute by

(13)

where . So the approximate similarity measure
is

(14)

where we use the fact that
[24]. By using this similarity measure, we

can check if two projected membership functions are close
enough to be merged into one single membership function

. The mean and variance of the
merged membership function can be calculated by

(15)

(16)

Fig. 2 illustrates this procedure, and the detailed algorithm is
given in Section IV.



LIN et al.: SUPPORT-VECTOR-BASED FUZZY NEURAL NETWORK 35

III. ADAPTIVE FUZZY KERNEL

The proposed fuzzy kernel in this paper is
defined as shown in (17) at the bottom of the page,
where and

are any two training samples,
and is the membership function of the th cluster. Let
the training set be with
explanatory variables and the corresponding class labels ,
for all where is the total number of training
samples. Assume the training samples are partitioned into
clusters through fuzzy clustering in Section II. We can perform
the following permutation of training samples:

...

(18)

where , is the number of points belonging to
the th cluster, so that we have . Then the fuzzy
kernel can be calculated by using the training set in (18), and
the obtained kernel matrix can be rewritten as the following
form:

. . .
...

...
. . .

. . .
(19)

where , is defined as shown in (20) at the
bottom of the page. In order that the fuzzy kernel function de-
fined by (17) is suitable for application in SVM, we must prove
that the fuzzy kernel function is symmetric and positive–definite
Gram Matrices [26]. To prove this, we first quote the following
theorems.

Theorem 1 (Mercer Theorem [26]): Let be a compact
subset of . Suppose is a continuous symmetric function
such that the integral operator

(21)

is positive; that is

(22)

for all . Then we can expand in a uniformly
convergent series (on ) in terms of ’s eigen-functions

, normalized in such a way that , and
positive associated eigenvalues

(23)

The kernel is referred to as Mercer’s kernel as it satisfies the
above Mercer theorem.

Proposition 1 [27]: A function is a valid kernel iff
for any finite set it produces symmetric and positive–definite
Gram matrices.

Proposition 2 [28]: Let and be kernels over ,
. Then the function is

also a kernel.
Definition 1 [29]: A function is said to be a

positive–definite function if the matrix is
positive semidefinite for all choices of points
and all .

Proposition 3 [29]: A block diagonal matrix with the posi-
tive–definite diagonal matrices is also a positive–definite matrix.

Theorem 2: For the fuzzy kernel defined by (17), if the mem-
bership functions , , are posi-
tive–definite functions, then the fuzzy kernel is a Mercer kernel.

Proof: First, we prove that the formed kernel matrix
is a symmetric matrix. According to the defi-

nition of fuzzy kernel in (17), if and are in the th cluster

if and are both in the th cluster

otherwise
(17)

. . .
...

...
. . .

. . .
(20)
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otherwise

So the kernel matrix is indeed symmetric. By the elementary
properties of Proposition 2, the product of two positively
defined functions is also a kernel function. And according to
Proposition 3, a block diagonal matrix with the positive–defi-
nite diagonal matrices is also a positive–definite matrix. So the
fuzzy kernel defined by (17) is a Mercer kernel.

Since the proposed fuzzy kernel has been proven to be a
Mercer kernel, we can apply the SVM technique to obtain the
optimal parameters of SVFNN. It is noted that the proposed
SVFNN is not a pure SVM, so it dose not minimize the em-
pirical risk and expected risk exactly as SVMs do. However, it
can achieve good classification performance with drastically re-
duced number of fuzzy kernel functions. The way to apply the
SVM technique to obtain the optimal parameters of SVFNN is
presented in Section IV in details.

IV. LEARNING ALGORITHM OF SVFNN

The learning algorithm of the SVFNN consists of three
phases. The details are given below:

Learning Phase 1—Establishing initial fuzzy rules
The first phase establishes the initial fuzzy rules, which were

usually derived from human experts as linguistic knowledge.
Because it is not always easy to derive fuzzy rules from human
experts, the method of automatically generating fuzzy rules
from numerical data is issued. The input space partitioning de-
termines the number of fuzzy rules extracted from the training
set and also the number of fuzzy sets. We use the centers and
widths of the clusters to represent the rules. To determine the
cluster to which a point belongs, we consider the value of
the firing strength for the given cluster. The highest value of
the firing strength determines the cluster to which the point
belongs. The whole algorithm for the generation of new fuzzy
rules as well as fuzzy sets in each input variable is as follows.
Suppose no rules are existent initially.

IF is the first incoming input pattern,
THEN do
PART 1. Generate a new rule with center

and width ,
IF the output pattern belongs to class
1 (namely, ), for
indicating output node 1 been excited.}
ELSE , for indicating
output node 2 been excited.}
ELSE for each newly incoming input , do
PART 2. Find , as
defined in (9).
IF ,

set and generate
a new fuzzy rule, with ,

and
, where decides the overlap

degree between two clusters. In addition,
after decomposition, we have ,

, . Do the
following fuzzy measure for each input
variable :

Degree

where is defined in (14).
IF Degree
THEN adopt this new membership func-

tion, and set , where is the
number of partitions of the th input
variable.

ELSE merge the new membership function
with closest one

ELSE
If
generate a new fuzzy rule

with ,
, and the respective

consequent weight . In
addition, we also need to do the fuzzy
measure for each input variable .

In the previous algorithm, is a prespecified constant,
is the rule number at time , decides the overlap de-

gree between two clusters, and the threshold determines the
number of rules generated. For a higher value of , more rules
are generated and, in general, a higher accuracy is achieved. The
value is a scalar similarity criterion, which is monotonically
decreasing such that higher similarity between two fuzzy sets is
allowed in the initial stage of learning. The prespecified values
are given heuristically. In general, , ,

, . In addition, after we determine the pre-
condition part of fuzzy rule, we also need to properly assign
the consequence part of fuzzy rule. Here we define two output
nodes for doing two-cluster recognition. If output node 1 ob-
tains higher exciting value, we know this input–output pattern
belongs to class 1. Hence, initially, we should assign the proper
weight for the consequence part of fuzzy rule. The
above procedure gives us means and variances in
(9). Another parameter in (7) that needs concern is the weight

associated with each . We shall see later in Learning
Phase 2 how we can use the results from the SVM method to
determine these weights.

Learning Phase 2—Calculating the parameters of SVFNN
Through learning phase (1), the initial structure of SVFNN is

established and we can then use SVM [30] to find the optimal
parameters of SVFNN based on the proposed fuzzy kernels. The
dual quadratic optimization of SVM [31] is solved in order to
obtain an optimal hyperplane for any linear or nonlinear space:

maximize

subject to
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and (24)

where is the fuzzy kernel in (17) and is a
user-specified positive parameter to control the tradeoff
between complexity of the SVM and the number of non-
separable points. This quadratic optimization problem can
be solved and a solution can be
obtained, where are Lagrange coefficients, and is the
number of support vectors. The corresponding support vectors

can be obtained, and the
constant (threshold) in (7) is

with

(25)

where is the number of fuzzy rules (support vectors); the
support vector belongs to the first class and support vector

belongs to the second class. Hence, the fuzzy rules
of SVFNN are reconstructed by using the result of the SVM
learning with fuzzy kernels. The means and variances of the
membership functions can be calculated by the values of sup-
port vector , , in (5) and (6) and the
variances of the multidimensional membership function of the
cluster that the support vector belongs to, respectively. The coef-
ficients in (7) corresponding to can be calculated
by . In this phase, the number of fuzzy rules can be in-
creased or decreased. The adaptive fuzzy kernel is advantageous
to both the SVM and the FNN. The use of variable-width fuzzy
kernels makes the SVM more efficient in terms of the number of
required support vectors, which are corresponding to the fuzzy
rules in SVFNN.

Learning Phase 3—Removing irrelevant fuzzy rules
In this phase, we propose a method for reducing the number

of fuzzy rules learning in Phases 1 and 2 by removing some irrel-
evant fuzzy rules and retuning the consequent parameters of the
remaining fuzzy rules under the condition that the classification
accuracy of SVFNN is kept almost the same. Several methods
including orthogonal least squares (OLS) method and singular
value decomposition QR (SVD-QR) had been proposed to se-
lect important fuzzy rules from a given rule base [32]–[34]. In
[32] the SVD-QR algorithm select a set of independent fuzzy
basis function that minimize the residual error in a least squares
sense. In [33], an orthogonal least-squares method tries to mini-
mize the fitting error according to the error reduction ratio rather
than simplify the model structure [34]. The proposed method
reduces the number of fuzzy rules by minimizing the distance
measure between original fuzzy rules and reduced fuzzy rules
without losing the generalization performance. To achieve this
goal, we rewrite (8) as

(26)

where is the number of fuzzy rules after Learning phases
1 and 2. Now, we try to approximate it by the expansion of a
reduced set

and (27)

where is the number of reducing fuzzy rules with ,
is the consequent parameters of the remaining fuzzy rules,

and and are the mean and variance of reducing fuzzy
rules. To this end, one can minimize [35]

(28)

where . Evidently, the
problem of finding reduced fuzzy rules consists of two parts:
one is to determine the reduced fuzzy rules and the other is to
compute the expansion coefficients . This problem can be
solved by choosing the more important fuzzy rules from
the old fuzzy rules. By adopting the sequential optimization
approach in the reduced support vector method in [36], the
approximation in (27) can be achieved by computing a whole
sequence of reduced set approximations

(29)

for . Then, the mean and variance parameters,
and , in the expansion of the reduced fuzzy-rule set in

(27) can be obtained by the following iterative optimization rule
[36]:

(30)

According to (30), we can find the parameters, and ,
corresponding to the first most important fuzzy rule and then
remove this rule from the original fuzzy rule set represented by

, and put (add) this rule into the reduced
fuzzy rule set. Then the procedure for obtaining the reduced
rules is repeated. The optimal coefficients , ,
are then computed to approximate by

[36], and can be obtained as

(31)
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where (32) and (33), as shown at the bottom of the page, hold,
and

(34)

The whole learning scheme is iterated until the new rules are
sufficiently sparse.

V. EXPERIMENTAL RESULTS

The classification performance of the proposed SVFNN is
evaluated on five well-known benchmark datasets. These five
datasets can be obtained from the UCI repository of machine
learning databases [37] and the Statlog collection [38] and
IJCNN challenge 2001 [39], [40], respectively.

A. Data and Implementation

From the UCI Repository, we choose one dataset: Iris dataset.
From Statlog collection we choose three datasets: Vehicle, Dna
and Satimage datasets. The problem Ijcnn1 is from the first
problem of IJCNN challenge 2001. These five datasets will be
used to verify the effectiveness of the proposed SVFNN classi-
fier. The first dataset (Iris dataset) is originally a collection of
150 samples equally distributed among three classes of the Iris
plant namely Setosa, Verginica, and Versicolor. Each sample is
represented by four features (septal length, septal width, petal
length, and petal width) and the corresponding class label.
The second dataset (Vehicle dataset) consists of 846 samples
belonging to 4 classes. Each sample is represented by 18 input
features. The third dataset (Dna dataset) consists of 3186 feature
vectors in which 2000 samples are used for training and 1186
samples are used for testing. Each sample consists of 180 input
attributes. The data are classified into three physical classes. All
Dna examples are taken from Genbank 64.1. The four dataset
(Satimage dataset) is generated from Landsat Multispectral
Scanner image data. In this dataset, 4435 samples are used for
training and 2000 samples are used for testing. The data are
classified into six physical classes. Each sample consists of

36 input attributes. The five dataset (Ijcnn1 dataset) consists
of 22 feature vectors in which 49 990 samples are used for
training and 45 495 samples are used for testing. Each sample
consists of 22 input attributes. The data are classified into two
physical classes. The computational experiments were done
on a Pentium III-1000 with 1024MB RAM using the Linux
operation system.

For each problem, we estimate the generalized accuracy using
different cost parameters in (24).
We apply 2-fold cross-validation for 10 times on the whole
training data in Dna, Satimage and Ijcnn1, and then average
all the results. We choose the cost parameter that results in
the best average cross-validation rate for SVM training to pre-
dict the test set. Because Iris and Vehicle datasets don’t contain
testing data explicitly, we divide the whole data in Iris and Ve-
hicle datasets into two halves, for training and testing datasets,
respectively. Similarly, we use the above method to experiment.
Notice that we scale all training and testing data to be in .

B. Experimental Results

Tables I–V present the classification accuracy rates and the
number of used fuzzy rules (i.e., support vectors) in the SVFNN
on Iris, Vehicle, Dna, Satimage and Ijcnn1 datasets, respectively.
The criterion of determining the number of reduced fuzzy rules
is the difference of the accuracy values before and after reducing
one fuzzy rule. If the difference is larger than 0.5%, meaning
that some important support vector has been removed, then we
stop the rule reduction. In Table I, the SVFNN is verified by
using Iris dataset, where the constant in the symbol SVFNN-
means the number of the learned fuzzy rules. The SVFNN uses
fourteen fuzzy rules and achieves an error rate of 2.6% on the
training data and an error rate of 4% on the testing data. When
the number of fuzzy rules is reduced to seven, its error rate in-
creased to 5.3%. When the number of fuzzy rules is reduced
to four, its error rate is increased to 13.3%. Continuously de-
creasing the number of fuzzy rules will keep the error rate in-
creasing. From Tables II–V, we have the similar experimental
results as those in Table I.

. . .
...

...
. . .

. . .
(32)

. . .
...

...
. . .

. . .
(33)
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TABLE I
EXPERIMENTAL RESULTS OF SVFNN CLASSIFICATION ON THE IRIS DATASET

TABLE II
EXPERIMENTAL RESULTS OF SVFNN CLASSIFICATION ON THE

VEHICLE DATASET

TABLE III
EXPERIMENTAL RESULTS OF SVFNN CLASSIFICATION ON THE DNA DATASET

These experimental results show that the proposed SVFNN
is good at reducing the number of fuzzy rules and maintaining
the good generalization ability. Moreover, we also refer to some
recent other classification performance include support vector
machine and reduced support vectors methods [41]–[43]. The
performance comparisons among the existing fuzzy neural net-
work classifiers [44], [45], the RBF-kernel-based SVM (without
support vector reduction) [41], reduced support vector machine
(RSVM) [43] and the proposed SVFNN are made in Table VI.
These results indicate that the SVFNN classifier produces lower
testing error rates as compared to FNN classifiers [44], [45], and
uses less support vectors as compared to the regular SVM using

TABLE IV
EXPERIMENTAL RESULTS OF SVFNN CLASSIFICATION ON THE

SATIMAGE DATASET

TABLE V
EXPERIMENTAL RESULTS OF SVFNN CLASSIFICATION ON THE IJNN1 DATASET

fixed-width RBF kernels [41]. As compared to RSVM [43], the
proposed SVFNN can not only achieve high classification accu-
racy, but also reduce the number of support vectors quit well. It
is noticed that although the SVFNN uses more support vectors
in the Ijcnn1 dataset than the RSVM, it maintains much higher
classification accuracy than the RSVM. In summary, the pro-
posed SVFNN classifier exhibits better generalization ability on
the testing data and use much smaller number of fuzzy rules.

VI. CONCLUSION

This paper proposed an SVFNN, which combines the su-
perior classification power of SVMs in high-dimensional data
spaces and the efficient human-like reasoning of FNN in han-
dling uncertainty information. The SVFNN is the realization of
a new idea for the adaptive kernel functions used in the SVM.
The use of the proposed fuzzy kernels provides the SVM with
adaptive local representation power, and thus brings the advan-
tages of FNN (such as adaptive learning and economic network
structure) into the SVM directly. The major advantages of the
proposed SVFNN classification are as follows.

1) The proposed SVFNN can automatically generate fuzzy
rules, and improve the accuracy and learning speed of
classification.

2) It combined the optimal classification ability of SVM and
the human-like reasoning of fuzzy systems. It improved
the classification ability by giving SVM with adaptive
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TABLE VI
CLASSIFICATION ERROR RATE COMPARISONS AMONG FNN, RBF-KERNEL-BASED

SVM, RSVM AND SVFNN CLASSIFIERS, WHERE NA MEANS “NOT AVAILABLE”

fuzzy kernels and increased the speed of classification by
reduced fuzzy rules.

3) The fuzzy kernels using the variable-width fuzzy mem-
bership functions can make the SVM more efficient in
terms of the number of required support vectors, and also
make the learned FNN more understandable to human.

4) The ability of the structural risk minimization induction
principle, which forms the basis for the SVM method to
minimize the expected risk, gives better generalization
ability to the FNN classification.
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