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Abstract--Conventional numerical methods for finding multiple roots of polynomials are inaccu- 
rate. The accuracy is unsatisfactory because the derivatives of the polynomial in the intermediate 
steps of the associated root-finding procedures are eliminated. Engineering applications require that 
this problem be solved. This work presents an easy-to-implement method that theoretically com- 
pletely resolves the multiple-root issue. The proposed method adopts the Euclidean algorithm to 
obtain the greatest common divisor (GCD) of a polynomial and its first derivative. The GCD may 
be approximate because of computational inaccuracy. The multiple roots are then deflated into sim- 
ple ones and then determined by conventional root-finding methods. The multiplicities of the roots 
are accordingly calculated. A detailed derivation and test examples are provided to demonstrate the 
efficiency of this method. (~) 2006 Elsevier Ltd. All rights reserved. 

K o y w o r d s - - M u l t i p l e  root, Root finding, Zero finding, Polynomial GCD, Approximate divisibility, 
Approximate GCD. 

1. I N T R O D U C T I O N  

Finding  the  roots  or zeros of polynomials  is a fundamenta l  problem in mathemat ics .  Conventional  

methods  for numerical ly  solving polynomial  or algebraic equations include bisect ion method,  lin- 

ear in terpola t ion  method,  f ixed-point  i te ra t ion  methods ,  Muller 's  method,  Newton 's  method.  
Homer ' s  method,  and Bairs tow's  method  [1-5]. Bisection method  suffers from slow convergence. 

Linear  in terpolat ion,  f ixed-point  i terat ion,  Muller 's ,  and Newton 's  methods  can suffer from diver- 

gence. Horner ' s  and Bairs tow's  methods  are s t rong in te rms of convergence and computa t iona l  

efficiency. However, they  lose thei r  accuracy and ra te  of convergence for polynomials  with mul- 

t iple roots. So do Muller 's  and Newton 's  methods.  
Methods  of finding mult ip le  roots  are e lucidated  in [1,3,6]. However, their  formulat ions are 

valid only for double  roots  and not, in general,  for mul t ip le  roots. Today, well-known mathemat ics  
software packages such as MATLAB and MATHEMATICA are also weak in finding mult ip le  roots  

of polynomials ,  as discussed in Section 7. Many engineering appl icat ions  may have suffered from 
calculat ion results  by conventional  methods .  An effective resolut ion t h a t  avoids the  inaccuracy 

of mul t ip le- root  finding is in great  demand.  
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Pan [7] has outlined a quadtree algorithm that  defines initial suspect squares and performs 
proximity tests to isolate the roots of a polynomial. Hull and Mathon [8] have presented an 
algorithm that  simultaneously approximates the roots of a polynomial with quadratic convergence 
by utilizing Weierstrass-Durand-Kerner formulas. Fortune [9] has developed an algorithm that 
approximates all roots of a polynomial by means of computing iteratively eigenvalues of the 
generalized companion matrix of the polynomial. Malek and Vaillancourt [10,11] have proposed a 
three-stage composite algorithm that  reduces the multiple roots of a polynomial into simple ones, 
subsequently obtains roots by finding the eigenvalues of the first block of Schmeisser's companion 
matrix, and finally calculates the multiplicity of each root found by means of Lagouanelle's 
modified limiting formula. All aforementioned methods can obtain more accurate results than 
those obtained by conventional methods when multiple roots are encountered in polynomials. 

This paper proposes a method similar to that  derived in [11] for finding multiple roots. However. 
this paper will focus more on the derivation of an accurate polynomial GCD when the round-off 
error is concerned. The performance analysis addressed in Section 7 shows that  the proposed 
method can yield better precision of polynomial multiple roots than other known methods do. 

2. G E N E R A L  S C H E M E  F O R  R O O T S  

A solution of an equation f ( x )  = 0 is a root, A0, of the function f ( x ) ,  that  is f(Ao) = 0. A 
root is characterized by its degree or multiplicity, which may prevent conventional root-finding 
methods to find exact solutions. The following defines a multiple root, as a basis for further 
discussions. 

DEFINITION. MULTIPLICITY OF A ROOT (MR). (See [5].) Assume that  f ( x )  E C mr that is 
f ( x )  and its derivatives f ' ( x ) ,  . . .  , f (m) (x )  are defined and continuous in a neighborhood of  Ao. 
Then, f ( x )  = 0 has a root of  multiplicity m at x = Ao, i f  and only i f  

f (Ao) = 0, f~(Ao) = 0, . . . ,  f(m-1) (Ao) = 0, and f (m) (AO) ~ 0. 

Specifically, a root is a simple root i f  m = 1 and is a multiple root if m >1 2. 
I f  f ( x ) i s  continuous in a neighborhood of  its simple root, Ao, then it can be factored in the 

form, 

f (x) = (x - Ao) Wo (x), 

where Wo(A) is continuous in a neighborhood of  Ao and ~o(Ao) # 0 [6]. This factorization is a 
deflation, such that the simple root, Ao, is removed from f ( x ) ,  which is thus deflated into ~o(x).  
Extending deflation to a multiple root yields the following corollary. 

COROLLARY. DEFLATION OF A MULTIPLE ROOT (DMR).  I f  f ( x )  is in C m and has a root of  
multiplicity m at A0, then there exists a function ~o(x),  such that f ( x )  can be expressed in the 
form 

f (x) = (x -- ,~o) m ~Oo (x) ,  

where ~o(X) is continuous in a neighborhood Of Ao and ~o(Ao) ~ 0. II 

PROOF. Assume that  n > m and f ( x )  E C n+l. A finite Taylor expansion of f ( x )  at Ao leads to 

f(x)=~(X~_k~o)kf(k)()tO)_~ (X--)~o)n+Xf(rt+l)(~) 
k=O (n + 1)! ' 

for some ~ E [A0,x]. If f ( x )  has a root of multiplicity m at A0, then by Definition MR, 

f (x) = ~ ( x - ,  f(k) (Ao) + (n q- 1)! 
~ o )  k (x - ~o) n+x 

f<,,+l) (¢) 
k=m 

= ( z  - ,Xo) m,Po ( z ) ,  
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where ~o(x) E C n-m, 

~o (x) = ~ (x - h°)k-mk! f(k) (ho) + ,(x -(nhO)'-m+l+ 1)! f(n+l) (~), 
k ~ m  

and ~0(h0) # 0. The corollary thus follows. | 

Applying Corollary DMR to all the roots of f(x) yields a general expression for f (x) ,  as shown 
in the following corollary. 

COROLLARY. GENERALIZED DEFLATION OF ROOTS (GDR).  Assume that f(x) has n roots. 
among them there are k distinct roots, each denoted by h~ and with multiplicity m, for i = 1 ~ k. 
respectively. Then, f(x) can be expressed in factored form as 

k 

s (x)  = ~ (x )  1- I  (x  - h, )  m' , 
i = l  

(1) 

where ~(x) # 0 is continuous in each neighborhood of hi for i = 1 ... k, respectively, and 
k 

n = E i = I  m i .  I 

PROOF. According to Corollary DMR, 

I ( z )  = (x - ~,~)'~' ~ ( z ) ,  

can be derived with respect to each distinct root hi for i = 1 ~ k. The corollary thus follows if' 
we set 

k 

~ '  (~1 = ~ (~1 I - [  (~ - hi)  m ~  
j=l,j¢~ 

3. G E N E R A L I Z E D  S I M P L I F I C A T I O N  

O F  M U L T I P L E  R O O T S  

Taking the first derivative of f(x) in (1) and factoring yields 

f ' ( x ) =  ~ ( x ) E  mi H (z- ,~3) +~o'(x) H ( x - h i  ) H ( x - , ~ )  ~ ' - 1 .  (2) 
i ~ l  j = l , j ¢ i  i = l  i=1 

Considering (1) and (2), we see that f(x) and if(x) have common factors. Let fc(x) represents 
the common factor of f(x) and f '(x), 

k 

sc (z)  = l - I  (z - h,)  m~-1 
i= l  

(3) 

Equation (3) shows that all simple roots are removed from f(x) ,  

fc (Ai) # 0, for all Ai with mi = 1. (4) 

According to Definition MR, 

fc(Ai) = 0, f~ (Ai) = 0 . . . .  , f(m,-2) (Ai) = 0 and f(m,-U (Ai) # 0, (5) 

for all Ai with mi >/2. 
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Factoring (1),(2) by means of f~(x) yields 

f (x) = f ,  (x) Yo (x) and f '  (x) = fc (x) f l  (x) ,  

respectively, and the two factored functions are as follows. 

k 

:0 (x) = ~ (x) ~ I  (x - ~ ' ) '  
i = 1  

(6) 

(7) 

k(k ) k  fl(x)=cp(X)~"~ mi H (m--Aj) -}-qJ(m)H(x-)h ). (8) 
i = 1  j = l ,  j ¢ ' i  i = l  

Utilizing (6) to relate f(x) to f'(x) leads to 

fc (x) f l  (x) = f '  (x) = f• (x) fo (x) + fc (x) f ;  (x) .  

Rearranging the above equation yields 

f l  (x) -- re1 (x) fo (x) + f ;  ix ) .  (9) 
A (z) 

The first te rm on the right side of (9) is eliminated since f0()h) = 0 and fc(Ai) ¢ 0 for simple 
roots, A~, according to (4),(7). Thus, 

I; I0 + f ;  (a,) f ;  ( , )  for m, = 1. f l  (Ai) ---- fe(Ai) ---- ' A ' 

However, a zero-divided-by-zero situation arises because fc(Ai) = 0 when a multiple root, Ai, 
is encountered, according to (5). l 'HSpital 's Rule [12], is used to resolve this indeterminate 
situation. For example, (5) shows tha t  f~(Ai) = 0 and f~(Ai) ¢ 0 for any root A~ with m, = 2. 
Applying l 'H6pital 's rule to the first term on the right side of (9) yields 

It t fl (A,) = f; (Ai) fo (A,) + f; (Ai) f[) (Ai) f~ (Ai) + f~ (A~) = 2f ;  (A,), for m, = 2. 

The above derivations imply that  a general equation may exist. Therefore, considering a 
multiple root, Ai, with mi = m + 1, and applying l 'H6pital 's rule m times to the first term on 
the right side of (9) gives 

:1 ()h) = [fc~ (A,) :o (A,)] (m) + f ;  (Ai), for mi = m + 1. (10) (m) 

Expanding the numerator  using the product  rule of combining derivatives [12] and the binomial 
theorem [13] yields 

[f:(~i) fo(J~i,](m'=~(m.)f(m-j+l'()q)f(oJ'(.~i), f o r m i = m + l .  (11) 
j=o 

According to the following relations derived from (5), 

fc ()h) = 0, fc ~ ()h) = 0, . . . ,  f(m-U ()~i) = 0 and f(m) (Ai) ~ O, 
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only the terms containing fc(m)(Ai) and f(cm+U(Ai) remain in (11) excluding those that contain 
f(o°)(A~), that is f0(A,). Therefore, 

[f: (A~) fo (Ai)] ( m ) -  (? ) f (m ' ( )q ) f (o l ) (A , )=mf (cm' (A i ) f~ (A i ) .  

Consequently, (10) becomes 

= mf(mfi(mA),)f~-- (At) + ]~ (At)= ( m +  1)f~ (A,) for mr = m +  1. fx (A,) 
(A~) 

Since f~(A~) ~ 0, considering (7) for any root, At, of f (x) ,  the above derivations yield the following 
relation, 

f l  (At) = m~f~ (At) ~ O, 

for At, i = 1 ~,- k, such that f0(Ai) = 0. Therefore, fo(x) and f l (x)  share no common roots 
and no common factors. Thus, the following corollary (the readers may also refer to [11]) can be 
inferred. 

COROLLARY. POLYNOMIAL ROOTS WITH MULTIPLICITIES (PRM). Assume that f ( x )  has  n 

roots and among them there are k distinct roots, each denoted by At with multiplicity m~ for 
i = 1 ~ k, respectively. Then, f (x)  and its first derivative, f ' (z) ,  have only one greatest common 
factor based on the generalized deflation of roots, according to Corollary GDR, 

k 

fc (x) = H (x - A,) m'-I  , 
i=1 

such that 

f (x) -- A (~) f0 (~) and f'  (z) = A (z) fl  (~), 
where fo(x) has exactly the same k distinct roots, Ai, as those o f f (x ) ,  which are all simple roots. 
The multiplicity of any root, At, can be determined by 

fl (A~) m ~ = ~  f o r i = l , - ~ k .  

| 
Corollary PRM can be proven directly by evaluating (7),(8) at all distinct roots. However, the 

derivations are not trivial. 

Corollary PRM implies that the specific factorization of a function may be decisive in effectively 
determining its roots. The extracted function, f0(x), eliminates the concerns of inaccuracy in 
the possible multiple roots of the original function, f(x).  Consequently, conventional methods 
efficiently and accurately find roots of the new target since the roots to be determined are all 
simple ones. Simultaneously, the multiplicities of the roots are concisely obtained. 

However, Corollary PRM is applicable to a function only when the greatest common factor 
of the function and its first derivative are available based on the generalized deflation of roots. 
Hence, it is suitable for algebraic equations but not transcendental equations. The following 
sections establish a method for resolving the multiple-root issue of polynomial equations. 

4. E U C L I D E A N  A L G O R I T H M  
F O R  P O L Y N O M I A L S  

An algebraic equation is defined as an equation p(x) = 0, in which p(x) is an algebraic function 
obtained from algebraic operations on polynomials [4,12]. A polynomial of degree n has the 
general form 

p (x) = ~ a~x ~, 
i=0 

where an ~ 0 and n >i 1. A polynomial, p(x), is monic if its leading coefficient lc(p(x)) = an = 1. 
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An algorithm for polynomial division is introduced to factorize an algebraic function or a 
polynomial. 

DEFINITION. POLYNOMIAL DIVISION (PD).  (See [14,15].) Let p(x) and d(x) be polynomials 
with d(x) ~ O. Then there exist unique polynomials, the quotient q(x) and the remainder r(x). 
such that 

p(x)  = d(x) q(x) + r (x), 

where either r(x) = 0 or the degree of r(x) is less than the one old(x) .  | 

Polynomial division, according to the above definition, involves no arithmetic division if d(x) is 
monic. The number of arithmetic operations is essentially proportional to n(m - n + 1), where m 
and n are the degrees of p(x) and d(x), respectively, and m ~> n. Thus, the computational cost 
or complexity of the algorithm is of order O(n(m - n + 1)). However, some fast algorithms may 
have a lower computational complexity of O((m - n + 1) log(m - n + 1)) [14]. 

A polynomial, p(x), is divisible by d(x) if r(x) = O. If so, d(x) is called a divisor of p(x), 
and so is q(x). Moreover, a polynomial, q(x), is said to be a common divisor of two or more 
polynomials if q(x) is a divisor of each of those polynomials. The greatest common divisor (GCD) 
of polynomials is the divisor divisible by all the common divisors, so that  the GCD is the largest 
of all the common divisors. Finding the GCD of two polynomials is surprisingly easier than 
finding any other common divisor and is performed by extending to polynomials the Euclidean 
algorithm for obtaining the GCD of two positive integers. The Euclidean theorem is described 
for polynomials and proven as follows. 

THEOREM. EUCLIDEAN THEOREM FOR POLYNOMIALS (ETP) .  Let f ( x )  and g(x) be nonzero 
polynomials and r( x ) be the rema/nder obtained by dividing f ( x ) by g( x ). I f  GCD(f(x) ,  g( x ) ) 
denotes the GCD of f ( x )  and g(x), then GCD(f(x) ,  g(x)) -- GCD(g(x), r(x)).  | 

PROOF. Let dgc(x) be the GCD of f ( x )  and g(x), such that  

f (x) = dgc (x) qf (x) and g (x) = dgc (x) qg (x),  

where qf(x) and q~(x) are nonzero and have no common divisors. According to Definition PD, 
dividing f ( x )  by g(x) yields 

dgc (x) qf (x) = dgc (x) qg (x) q (x) + r (x) . 

Rearranging this leads to 

r (x) = dgc (x) (ql (x) - q g  (X) q (X)). 

qf(x) -- qg(x)q(x) and qg(x) have no common divisor since there is no common divisor of qf(x) 
and qg(x). Therefore, dgc(x) is the GCD of g(x) and r(x). The theorem thus follows. II 

The Euclidean algorithm for polynomials repetitively applies theorem ETP  to successive results 
of polynomial divisions, starting by dividing f ( x )  by g(x). The divisor and the remainder of any 
division are arranged as the dividend and the divisor, respectively, in the subsequent division, 
yielding a sequence of remainders, called a Euclidean remainder sequence. The repetitive divisions 
are continued until the remainder is zero. Accordingly, the penultimate remainder in the sequence 
is exactly the GCD of f ( x )  and g(x). 

ALGORITHM POLYNOMIALS G C D  (PG) .  Let the input polynomials f ( x )  and g(x) of degree m 
and n, respectively, be 

m n 

f (x) = ~ aix i and g (x) = ~ bix i, 
i = 0  i = 0  

where the leading coefficients lc(f(x))  = am ~ 0 and lc(g(x)) = bn ~ O. The algorithm is as 
follows. 
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Step 1. Set pl(x) = f(x) ,  dl(x) = g(x)/lc(g(x)), and i = 1. 
Step 2. Compute ri(x), such that  p~(x) = di(x)qi(x) + r~(x). 
Step 3. Go to next step while r~(x) = 0. Otherwise, set pi+l(x) = d~(x), di+l(X) = 

r~(x)/lc(ri(x)), and i = i + 1. And then go to Step 2. 
Step 4. Output  r~_y(x). | 

The obtained GCD may be a constant (polynomial). If  so, the polynomials are said to be 
coprime. In this worst case, the algorithm has a computational complexity of O(n 2) although a 
fast version can perform at O(n log 2 n) [14]. 

5. A L G O R I T H M  F O R  P O L Y N O M I A L  
R O O T S  W I T H  M U L T I P L I C I T I E S  

The above sections developed decisive tools for finding the roots of polynomials, whether simple 
or multiple. The critical idea is to deflate all multiple roots into simple ones. Based on the deflated 
polynomial, the distinct roots are searched for, and determined through standard or conventional 
root-finding methods. Thereafter, the multiplicities of the roots are determined. 

As mentioned earlier, Corollary PRM states that  the deflated function can be obtained by using 
the greatest common factor of the target function and its first derivative. For polynomials, the 
aforementioned greatest common femtor is exactly the GCD of the target polynomial and its first 
derivative. Most importantly, the deflated polynomial is always determinable. This polynomial is 
determined by Algorithm PG and a successive polynomial division. Effective, practical procedures 
are accordingly implemented to resolve the multiple-root issue and determine all the distinct roots 
and their multiplicities, as follows. 

ALGORITHM POLYNOMIAL ROOTS WITH MULTIPLICITIES (PRM).  Let the input polynomial 
f (x)  be of degree n and have k distinct roots, each denoted by Ai with multiplicity rni for 
i = 1 ~ k, respectively. 

Step 1. Compute fl(x) of degree n - 1. 
Step 2. Find the GCD dge(x) of f (x)  and i f(x) by Algorithm PG. 
Step 3. Compute qf(x) = f(x)/dgc(x) and %(z) = f'(x)/dgc(z). 
Step 4. Employ a conventional method to determine all the k roots Ai, distinct and simple, 

of qf (x). 
Step 5. The multiplicities mi = 1 for i = 1 ~ k if the GCD dgc(x) is a constant (polynomial). 

Otherwise, calculate the multiplicities mi = qg(Ai)q'f(Ai) rounded to the nearest 
integer. 

Step 6. Output  the k roots hi with their multiplicities mi. | 

Two computational aspects of this algorithm are considered. Step 2 involves algebraic opera- 
tions to search for the GCD of two polynomials. The step has computational complexity O(n 2) 
with Algorithm PG, or O(n log ~ n) with a fast version of the algorithm. Nevertheless, Step 4 uses 
numerical, iterative methods to find simple roots of polynomials. The efficiency of these methods 
that  reveals their computational complexity is obtained by measuring the order of convergence. 
The order of convergence of Newton's method is 2 while that  of the Secant method is 1.618 and 

that  of Muller's method 1.839 I5,6]. 
The following polynomial is used as a test example to demonstrate the effectiveness of Algo- 

rithm PRM, 
f~ (x) = (x + 1) 3 (x ~ + x + 1) 5 . (12) 

Expanding the above equation yields a polynomial of degree seven. It  can be expressed by 
arranging its coefficients in descending order of the degrees of polynomial terms. The resultant 

list of coefficients is 
ft (x) = {1,5, 12, 18, 18, 12, 5, 1} of degree 7. (13) 
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Taking its first derivative and making it monic leads to 

{ 3 0 6 0 7 2 5 4 2 4 5 }  of degree6. (14) 
f~(x)= 1, 7 ,  7 ,  7 ,  7 , 7 ' 7  

Applying Algorithm PG to the above two polynomials yields the following Euclidean remainder 
sequence. 

78 144 150 90 24 / 
rtl(X) = 4~ '49 '  49 ' 4 9 ' 4 9 ' 4 9  of degree 5, (15) 

% ] 

r t2(x)={;  7 2 8 7  ~} ' 3' 9 ' 3' of degree 4, (16) 

rta (x) = {0} of degree - o¢, i.e., zero polynomial. (17) 

Hence, rt2 (x) is found as the GCD of ft(x) and f[(x). 
According to Corollary PRM, 

fro (z) - ft (x____)) _ xa + 212 + 2z + 1, (18) 
rt~ (x) 

where rt2 (x) has been made monic. Therefore, the usual root-finding methods from the textbooks 
or off-the-shelf software can be used to solve fro (x). The results are very accurate at the distinct 
roots, hi, of (12). In fact, (18) can be factored exactly as the minimal factorization of (12), 

f~o (x) = (x + 1) (x 2 + x + 1), 

that has the roots ~1 = -1,  ~2 ~ -0.5 - 0.866i, and ~3 ~ -0.5 + 0.866i. Subsequently, the 
following are computed 

f~0 (x) = 3z 2 + 4x + 2, 

£1 (~) - 1~ (x) = 7~ 2 + 9~ + 5, 
r~ (z) 

and then the root multiplicities, mi, are 

m~ = ]~oft~ (),~_~)(~) = 312712 ++ 4191 ++ 52 x=~, = 3, 2, and 2, 

for ~1, A2, and A3, respectively. 

6.  A P P R O X I M A T E  P O L Y N O M I A L  G C D  

As stated in the previous section, the proposed method successfully solves the test polyno- 
mial (12) or (13) by deflating multiple roots into simple ones. The root multiplicities are sub- 
sequently obtained. Notably, the polynomial has only integer coefficients. Algorithm PRM is 
executed by arithmetic operations on rational numbers. Exact computation is thus possible. The 
Euclidean remainder sequence (15)-(17) reveals this fact. However, inexact computation usually 
occurs. 

The number of digits in both the numerator and denominator of the fractional coefficients 
involved in the division of high-degree polynomials may drastically increase [1,16]. Even though 
such an occurrence is not obvious in the aforementioned example, because the Euclidean remain- 
der sequence, rt~ (x), ends early at i = 3 due to the relatively high degree of the GCD. If the GCD 
is of low degree or even a constant, the list will be longer and show the growth of the digits of 
the coefficients. It may hinder the arithmetic computations in two ways. First, the computations 
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require more memory to store the coefficients. Second, the intermediate computation steps might 
simplify the fractional coefficients and thus reduce their numbers of digits, seriously decreasing 
the computational performance. For polynomials with real coefficients that  cannot conveniently 
or at all be transformed into fractions, the supposed GCD probably cannot be found. 

For example, the Euclidean remainder sequence (15)-(17) expresses the coefficients in a floating- 
point representation as follows. 

rtl (x) = {0.367347, 1.59184, 2.93878, 3.06122, 1.83673, 0.489796}, 

rt2 (x) = {0.777778, 2.33333, 3.11111, 2.33333, 0.777778}, 

rt3 (x) = {-5.32907,-8.88178,-9.76996,-3.77476} × 10 -15. 

Clearly, rt2 (x) does not exactly divide rtl (x) because the remainder, rt3 (x), is not zero, although 
it is very small. The inexactness of the division follows from the inaccurate representation of 
polynomial coefficients in the computer system and the round-off errors in the intermediate steps 
of the computation. An approximation is therefore adopted to deal with such inaccuracy and 
yield correct results [13,17]. 

A polynomial norm that  is the same as the Euclidean norm for vectors is introduced to measure 
the elimination of a polynomial [6,14]. The Euclidean norm is a generalization of vector length. 
As the vector length tends to zero, the vector vanishes. Considering the coefficient list of a 
polynomial as a vector, the polynomial norm tends to zero when the polynomial is vanishing. 

DEFINITION POLYNOMIAL NORM (PN).  (See [1].) A polynomial  p(x)  of  degree n, for an ~ 0 
and n >1 1, can be identified with its coefficient list 

p ( x )  = ~-~aix  ~ = { a n , a n - l , . . .  ,al,a0}. 
i=O 

Then, the Euclidean norm (or 2-norm) of  the polynomial  is 

| 

The Euclidean remainder sequence that  results from using Algorithm PG to search for the 
GCD of polynomials (13) and (14) with real coefficients is therefore established. The following 
presents the remainder norm sequence, rather than the coefficient lists. 

{llrt, (x)[ 1 } = {4.92848, 4.66667, 1.47304 x 10-14, 0.171796, 5.82458, 0.818418, 0.0}, 

for i = 1 --, 7. 

The algorithm clearly finds no GCD or a constant (polynomial). However, the above remain- 
der norm sequence implies that  the third division yields a remainder of approximately zero, as 
determined by the very small norm of the third remainder. However, simply comparing the 
norms of remainders one may not be completely sure when to stop calculating the remainder 
sequence. The following presents another test polynomial of degree 30 to test the effectiveness of 
determining the approximately zero remainder. 

(x + 1) 1° (x  2 + x + 1) '0 (19) 

Curve 1 in Figure 1 shows the scaled remainder norm sequence obtained by applying Algorithm 
PG to polynomial (19) and its derivative. Compared to the other remainders, the third remainder 
seems to be the one which is approximately zero. However, the decrease of Curve 1 questions the 
absoluteness of the norm of the third remainder being minimum in the remainder norm sequence. 
The concept of approximate divisibility of polynomials is introduced to solve this problem. 
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Figure 1. Sequences of approximate divisibility according to different definitions 
while searching for the GCD of polynomial (19) and its first derivative. 

DEFINITION APPROXIMATE DIVISIBILITY (AD). (See [13].) Consider the polynomials p(x), d(x), 
and r(x),  such that  r(x)  is the remainder oTp(x) divided by d(x). Thus, d(x) divides p(x) - r(x).  
The approximate divisibility is defined as either 

A = I I r (~) l l  or A =  I I r ( x ) l l  
l tP(x)l l  I Id (x) l t '  

Then, d(x) is said to be an e-divisor of p(x) ff A < ~ for a given c > O. | 

Curves 2 and 3 in Figure 1, illustrate two different sequences of approximate divisibility accord- 
ing to Definition AD. Clearly, both definitions of approximate divisibility can determine which 
remainder is approximately zero. Therefore, the remainder before the one which is approximately 
zero in the Euclidean remainder sequence is found as the approximate GCD. It is said to be an s- 
GCD of polynomial (19) and its derivative based on Definition PN. Algorithm PG may thus 
be modified to accommodate the computationally inaccurate search of GCD with floating-point 
arithmetic. 

ALGOI~ITHM APPROXIMATE POLYNOMIAL G C D  (APG) .  Consider two input polynomials f ( x )  
and g(x) with nonzero leading coefficients. Choose e to be sufficiently small, say 10 -s ,  as the 
threshold of the approximate divisibility. The following steps describe the algorithm. 

Step 1. Set pl(x)  = f ( x ) ,  dl(x)  = g(x)/ lc(g(x)) ,  and i = 1. 
Step 2. Compute ri(x),  such that  pi(x) = di(x)q,(x) + ri(x). 
Step 3. Compute I[r~(x)l[ and A = [[ri(z)t[/[[d~(x)H. Go to Step 5 while A < ~. 
Step 4. Compute di+l(z) = ri(x)/lc(r~(z)) and Ildi+l(x)l I = IIr~(x)ll/lc(r~(z)). Set p~+l(x) = 

dr(x) and i = i + 1 and then go to Step 2. 
Step 5. Output  r i - l ( x ) .  

Consequently, for polynomials with real coefficients, Algorithm PRM that  simultaneously finds 
polynomial roots and their multiplicities must depend on Algorithm APG in Step 2 to search for 
the approximate GCD rather than Algorithm PG to search for the exact GCD. 
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7. P E R F O R M A N C E  A N A L Y S I S  

This section presents examples to verify the performance of the proposed root-finding method. 
Two commercial software packages, MATLAB and MATHEMATICA, are used to solve polynomial 
equations as compared with the performance of the proposed method. 

The MATLAB software [18] provides a function, roots(), to find polynomial roots. The function 
basically constructs a companion matrix by arranging the coefficients of the polynomial to be 
solved. It  then determines the eigenvalues of the matrix through the QR algorithm. Some errors 
may occur during the computation of eigenvalues. Another software package, MATHEMATICA [19], 
takes a different approach. It  essentially manipulates mathematical expressions and equations 
through symbolic operations. Hence, when solving a polynomial equation, MATHEMATICA tries 
to factor it and then decompose it if possible. For example, the function Solve[f [x] : =  0, x] may 
be used to find the roots of f(x) in polynomial (12). However, the function Solve[f [x] = =  0, x] 
may induce fixed-point arithmetic for root finding when f(x) is in a symbolically decomposable 
form. We chose the function NSolve[f[x] : :  0, x] to find roots in the floating-point arithmetic 
benchmark given in following sequels. 

The polynomial to be tested is 

(x + 1) m (x 2 + x + 1) m of degree 3m, (20) 

where m, to be specified, denotes the root multiplicity. Polynomial (20) clearly has three distinct, 
multiple roots at x = - 1  and x = ( - 1  ± ivY)~2. Figure 2 illustrates the results of finding the 
roots of polynomial (20) using the built-in functions of MATLAB and MATHEMATICA, as well as 
the proposed method. The results are presented for calculated roots, as average percentages of 
the computational errors with respect to the root multiplicity specified for the test polynomial. 
The computational errors are meaningful only because the roots are located on the unit circle. 
Curve 1 in the figure shows the results obtained using MATLAB. Significant errors begin to be 
observed at root multiplicity m = 4, increasing quadratically until m = 7. The curve reveals that 
the root-finding inaccuracy dramatically increases when the root multiplicity m > 7. 

[] 1. M A T L A B  

A 2. Mathemat ica  

- O - 3 .  P rop .  Me thod  

12% 
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1% 

0% 

/ - /  
_/ / 

P 

1 2 3 4 5 6 7 8 9 10 

R o o t  Multiplicity ( m )  

Figure 2. Average root-finding inaccuracy with respect to root multiplicity for poly- 
nomial (20) with floating-point arithmetic. 
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Figure 3. Average inaccuracy of found approximate GCDs and calculated roots with 
respect to root multiplicity for polynomial (20). 
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Figure 4. Sequences of approximate divisibility while searching for the GCDs of poly- 
nomial (21) and their first derivatives with respect to different maximum multiplicity, 
m, of roots. 

Considering MATHEMATICA'S root  finding for polynomial  (20), Curve 2 in F igure  2 plots the  

errors in the  computed  roots  with respect  to the  multiplici ty.  The  errors significantly increase 



Method for Finding Multiple Roots  617 

1.E+05 

1.E+02 

1.E-01 

1.E-04 

1.E-07 

~ 1.E-10 

1. .-13 

1.E-16 

1.E-19 

= 

/ 
m 

[] Approx.  G CD  

O Cal¢. Roots  -- 

1 .E-22 
I I I I I I I I 

1 2 3 4 5 6 7 8 9 10 

Max. R o o t  Multiplicity (m )  
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respect  to root multiplicity for polynomial  (21), in which those  for m > 6 are not  
shown because no approximate  GCDs  are properly found. 
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Figure 6. Average root-finding inaccuracy with respect  to root multiplicity in loga- 
r i thmic scaling for polynomial  (21), in which those  for m > 6 are not  shown because 
no approximate  GC Ds  axe properly found. 

from m = 6. The function apparently shows better results than M A T L A B ,  perhaps because 
some symbolic manipulation or other techniques are used to find roots of polynomials with real 
coefficients. However, the errors that result from the root-finding functions of both MATLAB and 
M A T H E M A T I C A  are not acceptable for engineering applications. 
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Table i. Results using the proposed method, MATHEMATICA, MATLAB, and corre- 

Polynomial\ Max. Error 

P4 

P5 

P6 

P7 

P9 

P13 

P19 

P20 

sponding pro: 

Proposed Method 

7.28E- 15 

0 

5.97E- 13 

2.49E - 06 

3.87E- 13 

1.71E - 09 

5.14E - 12 

2.56E- 10 

rams from the DROOTS/IMSL library/NAG library [8]. 

MATHEMATICA MATLAB DROOTS IMSL NAG 

1.08E-07 7.02E-06 1.71E-12 2.46E-07 2.83E-05 

7.49E- 03 4.76E - 02 4.10E - 10 8.69E - 11 0 

3.44E - 05 1.29E - 04 5.01E - 05 2.96E - 06 1.61E - 04 

1.01E-01 6.03E-04 4.70E-08 4.65E-05 6.34E-04 

8.06E-07 8 . 4 8 E - 0 5  1.31E-06 7.23E-07 2.81E-04 

3.04E-12 5.22E-03 8.57E-04 1.02E-02 1.35E-02 

1.12E-05 3.71E-08 7.14E-10 6.47E-07 7.34E-08 

3.30E-02 2.59E-04 2.28E-10 8.16E-03 5.81E-04 

In contrast ,  Curve 3 dras t ica l ly  outperforms the other  two curves in F igure  2. The  results 

are ob ta ined  by implement ing the proposed method  in bo th  MATLAB and MATHEMATICA. Both 
implementa t ions  produce v i r tua l ly  the  same results. F igure  3 presents  the  average inaccuracy 

of the  found approx imate  GCDs and calculated roots. The  figures demons t ra te  the  excellent 

performance of the  proposed method  in finding roots,  as compared  to t ha t  of MATLAB and 

MATHEMATICA. Fhr thermore ,  the  proposed method  yields the  mult ipl ic i t ies  of the  roots, 

However, F igure  3 reveals t ha t  inaccuracy in finding roots  grows as the  root  mul t ip l ic i ty  in- 

creases, even with  the  proposed method.  The  following example  incorpora tes  the  i l l-condit ioned 

p roper ty  of polynomials  to tes t  the  performance of the  root-f inding methods.  As an extension of 
one of the  tes t  polynomials  in [20], the  following polynomial  is used, 

rn 
~I (X -- O.ln) m-n+l of degree m(m + 1) (21) 

2 ' n=l  

where m, to  be specified, denotes the  max imum mult ip l ic i ty  of the  d is t inct  roots. Polynomial  (21) 
has cons tant  t e rm 1.2 × 10 -5  for m = 3, -3 .456  x 10 -11 for m = 5, and 1.254 x 10 -17 for m = 7. 

I t  is apparen t ly  i l l -condit ioned when m is large because some coefficients are too  small  to be 
handled  by computer  systems. 

Figure  4 depicts  the  sequences of approximate  divisibi l i ty while searching for the  GCDs of 

polynomial  (21) and their  first derivatives for m = 6, 7, and 8. Algor i thm A P G  easily and 

proper ly  finds the  approx imate  GCD for m = 6. The  approximate  GCD for m = 7 is correct ly 

found if ¢ is chosen as high as 10 -3. I f  m = 8 or larger, an incorrect ly  approx imate  GCD or only 
a constant  po lynomia l  is obta ined.  The  proposed method  fails in such cases. 

Figure  5 displays the  average inaccuracy of the  found approx imate  GCDs and calculated roots. 
The  great  inaccuracy of approximate  GCDs at  m > 6 reveals the  failure of the  search for GCDs.  
Consequently,  no further calculat ion of polynomial  roots  is done. However, as compared  with 

MATLAB and MATHEMATICA, the  proposed method  performs very well when tackl ing the  ill- 

condi t ioned polynomials  as shown in Fig. 6, if the  approx imate  G C D  is p roper ly  found. 
A set of different polynomials  wi th  mul t ip le  roots,  l isted below, are tes ted  to demons t ra te  the  

effectiveness of the  proposed  method  in comparison with other  known algori thms.  

P4 (x - 1)2(x - 5i)2(x + i)3 
P5 (x-  1) 1° 
P6 (x - 0.1)4(x - 0.2)3(x - 0.3)2(x - 0.4) 

P7 ( x -  4 -  0 . 1 i ) ( x -  4 + 0 . 1 i ) ( x -  1 0 ) ( x -  5 ) ( x -  4 ) 2 ( x -  3 ) 2 ( x -  2 ) ( x -  1) 

P9 (x - 3)3(x + 1)4(x + i)2(x - 1 - 2 i ) (z  - 1) 
P13 x6(z + 10)5(z - 10)S(x + i)2(x - i)2 
P19 (x 2 4 - x  2 3 - x  22 . . . . .  x - l )  2 

P20 (x 1 2 - z  m - x  1° . . . . .  x - l )  4 



Method for Finding Multiple Roots 619 

The above polynomials are labeled according to the ordinal numbers originally listed in Table II 
in [8]. Test results are shown in Table 1. 

8. C O N C L U S I O N  

Conventional methods for finding the roots of algebraic functions or polynomials lose accuracy 
when multiple roots are involved. In particular, the inaccuracy is dramatically increased for 
polynomials that have roots with a large multiplicity. This work presents a method that resolves 
the multiple-root issue and provides the multiplicities of roots. 

The proposed method is derived from the following findings. A GCD can be found from a 
polynomial and its first derivative. Dividing the polynomial by the GCD yields a resultant poly- 
nomial whose roots are proven to be simple and the same as the distinct roots of the original 
polynomial. Usually, the resultant polynomial with only simple roots can be accurately found 
using conventional methods. More advantageously, the multiplicity of each root can be deter- 
mined easily. The results are confirmed by the test examples for which the functions of MATLAB 
and MATHEMATICA are inadequate. 

However, the proposed method fails to find roots of a polynomial whose GCD is not correctly 
found. The failure follows from the round-off errors due to the inaccurate representation of 
floating-point coefficients and inexact polynomial division. Approximate divisibility is introduced 
to determine when to stop the computation of the remainder sequence, and then locate the 
approximate GCD. Experimental results have shown that the approximate GCD can be concisely 
and appropriately determined in the Euclidean remainder sequence. After the approximate GCD 
is correctly found, the proposed method yields highly accurate results for the roots and their 
multiplicities. 
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