
ELSEVIF_aR

An Intematlonal Joumal
Available online at www.sciencedirect.com computers &

.=,..=.~-~o,.==T. mathematics
with applications

Computers and Mathematics with Applications 51 (2006) 605-620
www.elsevier .com/locate/camwa

Method for Finding
Multiple Roots of Polynomials

C H A N G - D A U V A N AND W E I - H U A CH IE N G *
Department of Mechanical Engineering

National Chiao Tung University
Hsinchu City, Taiwan, R.O.C.

(Received April POOP; revised and accepted July P005)

Abstract--Conventional numerical methods for finding multiple roots of polynomials are inaccu-
rate. The accuracy is unsatisfactory because the derivatives of the polynomial in the intermediate
steps of the associated root-finding procedures are eliminated. Engineering applications require that
this problem be solved. This work presents an easy-to-implement method that theoretically com-
pletely resolves the multiple-root issue. The proposed method adopts the Euclidean algorithm to
obtain the greatest common divisor (GCD) of a polynomial and its first derivative. The GCD may
be approximate because of computational inaccuracy. The multiple roots are then deflated into sim-
ple ones and then determined by conventional root-finding methods. The multiplicities of the roots
are accordingly calculated. A detailed derivation and test examples are provided to demonstrate the
efficiency of this method. (~) 2006 Elsevier Ltd. All rights reserved.

K o y w o r d s - - M u l t i p l e root, Root finding, Zero finding, Polynomial GCD, Approximate divisibility,
Approximate GCD.

1. I N T R O D U C T I O N

Finding the roots or zeros of polynomials is a fundamenta l problem in mathemat ics . Conventional

methods for numerical ly solving polynomial or algebraic equations include bisect ion method, lin-

ear in terpola t ion method, f ixed-point i te ra t ion methods , Muller 's method, Newton 's method.
Homer ' s method, and Bairs tow's method [1-5]. Bisection method suffers from slow convergence.

Linear in terpolat ion, f ixed-point i terat ion, Muller 's , and Newton 's methods can suffer from diver-

gence. Horner ' s and Bairs tow's methods are s t rong in te rms of convergence and computa t iona l

efficiency. However, they lose thei r accuracy and ra te of convergence for polynomials with mul-

t iple roots. So do Muller 's and Newton 's methods.
Methods of finding mult ip le roots are e lucidated in [1,3,6]. However, their formulat ions are

valid only for double roots and not, in general, for mul t ip le roots. Today, well-known mathemat ics
software packages such as MATLAB and MATHEMATICA are also weak in finding mult ip le roots

of polynomials , as discussed in Section 7. Many engineering appl icat ions may have suffered from
calculat ion results by conventional methods . An effective resolut ion t h a t avoids the inaccuracy

of mul t ip le- root finding is in great demand.

*Author to whom all correspondence should be addressed.

0898-1221/06/$ - see front matter (~) 2006 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.camwa.2005.07.018

Typeset by .4A~9-TEX

606 CIIANG-DAU WAN AND WEI-HUA CHIENG

Pan [7] has outlined a quadtree algorithm that defines initial suspect squares and performs
proximity tests to isolate the roots of a polynomial. Hull and Mathon [8] have presented an
algorithm that simultaneously approximates the roots of a polynomial with quadratic convergence
by utilizing Weierstrass-Durand-Kerner formulas. Fortune [9] has developed an algorithm that
approximates all roots of a polynomial by means of computing iteratively eigenvalues of the
generalized companion matrix of the polynomial. Malek and Vaillancourt [10,11] have proposed a
three-stage composite algorithm that reduces the multiple roots of a polynomial into simple ones,
subsequently obtains roots by finding the eigenvalues of the first block of Schmeisser's companion
matrix, and finally calculates the multiplicity of each root found by means of Lagouanelle's
modified limiting formula. All aforementioned methods can obtain more accurate results than
those obtained by conventional methods when multiple roots are encountered in polynomials.

This paper proposes a method similar to that derived in [11] for finding multiple roots. However.
this paper will focus more on the derivation of an accurate polynomial GCD when the round-off
error is concerned. The performance analysis addressed in Section 7 shows that the proposed
method can yield better precision of polynomial multiple roots than other known methods do.

2. G E N E R A L S C H E M E F O R R O O T S

A solution of an equation f (x) = 0 is a root, A0, of the function f (x) , that is f(Ao) = 0. A
root is characterized by its degree or multiplicity, which may prevent conventional root-finding
methods to find exact solutions. The following defines a multiple root, as a basis for further
discussions.

DEFINITION. MULTIPLICITY OF A ROOT (MR). (See [5].) Assume that f (x) E C mr that is
f (x) and its derivatives f ' (x) , . . . , f (m) (x) are defined and continuous in a neighborhood of Ao.
Then, f (x) = 0 has a root of multiplicity m at x = Ao, i f and only i f

f (Ao) = 0, f~(Ao) = 0, . . . , f(m-1) (Ao) = 0, and f (m) (AO) ~ 0.

Specifically, a root is a simple root i f m = 1 and is a multiple root if m >1 2.
I f f (x) i s continuous in a neighborhood of its simple root, Ao, then it can be factored in the

form,

f (x) = (x - Ao) Wo (x),

where Wo(A) is continuous in a neighborhood of Ao and ~o(Ao) # 0 [6]. This factorization is a
deflation, such that the simple root, Ao, is removed from f (x) , which is thus deflated into ~o(x).
Extending deflation to a multiple root yields the following corollary.

COROLLARY. DEFLATION OF A MULTIPLE ROOT (DMR). I f f (x) is in C m and has a root of
multiplicity m at A0, then there exists a function ~o(x), such that f (x) can be expressed in the
form

f (x) = (x -- ,~o) m ~Oo (x) ,

where ~o(X) is continuous in a neighborhood Of Ao and ~o(Ao) ~ 0. II

PROOF. Assume that n > m and f (x) E C n+l. A finite Taylor expansion of f (x) at Ao leads to

f(x)=~(X~_k~o)kf(k)()tO)_~ (X--)~o)n+Xf(rt+l)(~)
k=O (n + 1)! '

for some ~ E [A0,x]. If f (x) has a root of multiplicity m at A0, then by Definition MR,

f (x) = ~ (x - , f(k) (Ao) + (n q- 1)!
~ o) k (x - ~o) n+x

f<,,+l) (¢)
k=m

= (z - ,Xo) m,Po (z) ,

Method for Finding Multiple Roots 607

where ~o(x) E C n-m,

~o (x) = ~ (x - h°)k-mk! f(k) (ho) + ,(x -(nhO)'-m+l+ 1)! f(n+l) (~),
k ~ m

and ~0(h0) # 0. The corollary thus follows. |

Applying Corollary DMR to all the roots of f(x) yields a general expression for f (x) , as shown
in the following corollary.

COROLLARY. GENERALIZED DEFLATION OF ROOTS (GDR). Assume that f(x) has n roots.
among them there are k distinct roots, each denoted by h~ and with multiplicity m, for i = 1 ~ k.
respectively. Then, f(x) can be expressed in factored form as

k

s (x) = ~ (x) 1- I (x - h,) m' ,
i = l

(1)

where ~(x) # 0 is continuous in each neighborhood of hi for i = 1 ... k, respectively, and
k

n = E i = I m i . I

PROOF. According to Corollary DMR,

I (z) = (x - ~,~)'~' ~ (z) ,

can be derived with respect to each distinct root hi for i = 1 ~ k. The corollary thus follows if'
we set

k

~ ' (~1 = ~ (~1 I - [(~ - hi) m ~
j=l,j¢~

3. G E N E R A L I Z E D S I M P L I F I C A T I O N

O F M U L T I P L E R O O T S

Taking the first derivative of f(x) in (1) and factoring yields

f ' (x) = ~ (x) E mi H (z- ,~3) +~o'(x) H (x - h i) H (x - , ~) ~ ' - 1 . (2)
i ~ l j = l , j ¢ i i = l i=1

Considering (1) and (2), we see that f(x) and if(x) have common factors. Let fc(x) represents
the common factor of f(x) and f '(x),

k

sc (z) = l - I (z - h,) m~-1
i= l

(3)

Equation (3) shows that all simple roots are removed from f(x) ,

fc (Ai) # 0, for all Ai with mi = 1. (4)

According to Definition MR,

fc(Ai) = 0, f~ (Ai) = 0 , f(m,-2) (Ai) = 0 and f(m,-U (Ai) # 0, (5)

for all Ai with mi >/2.

608 CHANG-DAu YAN AND WEI-HUA CHIENG

Factoring (1),(2) by means of f~(x) yields

f (x) = f , (x) Yo (x) and f ' (x) = fc (x) f l (x) ,

respectively, and the two factored functions are as follows.

k

:0 (x) = ~ (x) ~ I (x - ~ ') '
i = 1

(6)

(7)

k(k) k fl(x)=cp(X)~"~ mi H (m--Aj) -}-qJ(m)H(x-)h). (8)
i = 1 j = l , j ¢ ' i i = l

Utilizing (6) to relate f(x) to f'(x) leads to

fc (x) f l (x) = f ' (x) = f• (x) fo (x) + fc (x) f ; (x) .

Rearranging the above equation yields

f l (x) -- re1 (x) fo (x) + f ; ix) . (9)
A (z)

The first te rm on the right side of (9) is eliminated since f0()h) = 0 and fc(Ai) ¢ 0 for simple
roots, A~, according to (4),(7). Thus,

I; I0 + f ; (a,) f ; (,) for m, = 1. f l (Ai) ---- fe(Ai) ---- ' A '

However, a zero-divided-by-zero situation arises because fc(Ai) = 0 when a multiple root, Ai,
is encountered, according to (5). l 'HSpital 's Rule [12], is used to resolve this indeterminate
situation. For example, (5) shows tha t f~(Ai) = 0 and f~(Ai) ¢ 0 for any root A~ with m, = 2.
Applying l 'H6pital 's rule to the first term on the right side of (9) yields

It t fl (A,) = f; (Ai) fo (A,) + f; (Ai) f[) (Ai) f~ (Ai) + f~ (A~) = 2f ; (A,), for m, = 2.

The above derivations imply that a general equation may exist. Therefore, considering a
multiple root, Ai, with mi = m + 1, and applying l 'H6pital 's rule m times to the first term on
the right side of (9) gives

:1 ()h) = [fc~ (A,) :o (A,)] (m) + f ; (Ai), for mi = m + 1. (10) (m)

Expanding the numerator using the product rule of combining derivatives [12] and the binomial
theorem [13] yields

[f:(~i) fo(J~i,](m'=~(m.)f(m-j+l'()q)f(oJ'(.~i), f o r m i = m + l . (11)
j=o

According to the following relations derived from (5),

fc ()h) = 0, fc ~ ()h) = 0, . . . , f(m-U ()~i) = 0 and f(m) (Ai) ~ O,

Method for Finding Multiple Roots 609

only the terms containing fc(m)(Ai) and f(cm+U(Ai) remain in (11) excluding those that contain
f(o°)(A~), that is f0(A,). Therefore,

[f: (A~) fo (Ai)] (m) - (?) f (m ' ()q) f (o l) (A ,)=mf (cm' (A i) f~ (A i) .

Consequently, (10) becomes

= mf(mfi(mA),)f~-- (At) +]~ (At)= (m + 1)f~ (A,) for mr = m + 1. fx (A,)
(A~)

Since f~(A~) ~ 0, considering (7) for any root, At, of f (x) , the above derivations yield the following
relation,

f l (At) = m~f~ (At) ~ O,

for At, i = 1 ~,- k, such that f0(Ai) = 0. Therefore, fo(x) and f l (x) share no common roots
and no common factors. Thus, the following corollary (the readers may also refer to [11]) can be
inferred.

COROLLARY. POLYNOMIAL ROOTS WITH MULTIPLICITIES (PRM). Assume that f (x) has n

roots and among them there are k distinct roots, each denoted by At with multiplicity m~ for
i = 1 ~ k, respectively. Then, f (x) and its first derivative, f ' (z) , have only one greatest common
factor based on the generalized deflation of roots, according to Corollary GDR,

k

fc (x) = H (x - A,) m'-I ,
i=1

such that

f (x) -- A (~) f0 (~) and f' (z) = A (z) fl (~),
where fo(x) has exactly the same k distinct roots, Ai, as those o f f (x) , which are all simple roots.
The multiplicity of any root, At, can be determined by

fl (A~) m ~ = ~ f o r i = l , - ~ k .

|
Corollary PRM can be proven directly by evaluating (7),(8) at all distinct roots. However, the

derivations are not trivial.

Corollary PRM implies that the specific factorization of a function may be decisive in effectively
determining its roots. The extracted function, f0(x), eliminates the concerns of inaccuracy in
the possible multiple roots of the original function, f(x). Consequently, conventional methods
efficiently and accurately find roots of the new target since the roots to be determined are all
simple ones. Simultaneously, the multiplicities of the roots are concisely obtained.

However, Corollary PRM is applicable to a function only when the greatest common factor
of the function and its first derivative are available based on the generalized deflation of roots.
Hence, it is suitable for algebraic equations but not transcendental equations. The following
sections establish a method for resolving the multiple-root issue of polynomial equations.

4. E U C L I D E A N A L G O R I T H M
F O R P O L Y N O M I A L S

An algebraic equation is defined as an equation p(x) = 0, in which p(x) is an algebraic function
obtained from algebraic operations on polynomials [4,12]. A polynomial of degree n has the
general form

p (x) = ~ a~x ~,
i=0

where an ~ 0 and n >i 1. A polynomial, p(x), is monic if its leading coefficient lc(p(x)) = an = 1.

610 CHANG-DAU YhN AND WEI-HUA CHIENG

An algorithm for polynomial division is introduced to factorize an algebraic function or a
polynomial.

DEFINITION. POLYNOMIAL DIVISION (PD). (See [14,15].) Let p(x) and d(x) be polynomials
with d(x) ~ O. Then there exist unique polynomials, the quotient q(x) and the remainder r(x).
such that

p(x) = d(x) q(x) + r (x),

where either r(x) = 0 or the degree of r(x) is less than the one old(x) . |

Polynomial division, according to the above definition, involves no arithmetic division if d(x) is
monic. The number of arithmetic operations is essentially proportional to n(m - n + 1), where m
and n are the degrees of p(x) and d(x), respectively, and m ~> n. Thus, the computational cost
or complexity of the algorithm is of order O(n(m - n + 1)). However, some fast algorithms may
have a lower computational complexity of O((m - n + 1) log(m - n + 1)) [14].

A polynomial, p(x), is divisible by d(x) if r(x) = O. If so, d(x) is called a divisor of p(x),
and so is q(x). Moreover, a polynomial, q(x), is said to be a common divisor of two or more
polynomials if q(x) is a divisor of each of those polynomials. The greatest common divisor (GCD)
of polynomials is the divisor divisible by all the common divisors, so that the GCD is the largest
of all the common divisors. Finding the GCD of two polynomials is surprisingly easier than
finding any other common divisor and is performed by extending to polynomials the Euclidean
algorithm for obtaining the GCD of two positive integers. The Euclidean theorem is described
for polynomials and proven as follows.

THEOREM. EUCLIDEAN THEOREM FOR POLYNOMIALS (ETP) . Let f (x) and g(x) be nonzero
polynomials and r(x) be the rema/nder obtained by dividing f (x) by g(x). I f GCD(f(x) , g(x))
denotes the GCD of f (x) and g(x), then GCD(f(x) , g(x)) -- GCD(g(x), r(x)). |

PROOF. Let dgc(x) be the GCD of f (x) and g(x), such that

f (x) = dgc (x) qf (x) and g (x) = dgc (x) qg (x),

where qf(x) and q~(x) are nonzero and have no common divisors. According to Definition PD,
dividing f (x) by g(x) yields

dgc (x) qf (x) = dgc (x) qg (x) q (x) + r (x) .

Rearranging this leads to

r (x) = dgc (x) (ql (x) - q g (X) q (X)).

qf(x) -- qg(x)q(x) and qg(x) have no common divisor since there is no common divisor of qf(x)
and qg(x). Therefore, dgc(x) is the GCD of g(x) and r(x). The theorem thus follows. II

The Euclidean algorithm for polynomials repetitively applies theorem ETP to successive results
of polynomial divisions, starting by dividing f (x) by g(x). The divisor and the remainder of any
division are arranged as the dividend and the divisor, respectively, in the subsequent division,
yielding a sequence of remainders, called a Euclidean remainder sequence. The repetitive divisions
are continued until the remainder is zero. Accordingly, the penultimate remainder in the sequence
is exactly the GCD of f (x) and g(x).

ALGORITHM POLYNOMIALS G C D (PG) . Let the input polynomials f (x) and g(x) of degree m
and n, respectively, be

m n

f (x) = ~ aix i and g (x) = ~ bix i,
i = 0 i = 0

where the leading coefficients lc(f(x)) = am ~ 0 and lc(g(x)) = bn ~ O. The algorithm is as
follows.

Method for Finding Multiple Roots 611

Step 1. Set pl(x) = f(x) , dl(x) = g(x)/lc(g(x)), and i = 1.
Step 2. Compute ri(x), such that p~(x) = di(x)qi(x) + r~(x).
Step 3. Go to next step while r~(x) = 0. Otherwise, set pi+l(x) = d~(x), di+l(X) =

r~(x)/lc(ri(x)), and i = i + 1. And then go to Step 2.
Step 4. Output r~_y(x). |

The obtained GCD may be a constant (polynomial). If so, the polynomials are said to be
coprime. In this worst case, the algorithm has a computational complexity of O(n 2) although a
fast version can perform at O(n log 2 n) [14].

5. A L G O R I T H M F O R P O L Y N O M I A L
R O O T S W I T H M U L T I P L I C I T I E S

The above sections developed decisive tools for finding the roots of polynomials, whether simple
or multiple. The critical idea is to deflate all multiple roots into simple ones. Based on the deflated
polynomial, the distinct roots are searched for, and determined through standard or conventional
root-finding methods. Thereafter, the multiplicities of the roots are determined.

As mentioned earlier, Corollary PRM states that the deflated function can be obtained by using
the greatest common factor of the target function and its first derivative. For polynomials, the
aforementioned greatest common femtor is exactly the GCD of the target polynomial and its first
derivative. Most importantly, the deflated polynomial is always determinable. This polynomial is
determined by Algorithm PG and a successive polynomial division. Effective, practical procedures
are accordingly implemented to resolve the multiple-root issue and determine all the distinct roots
and their multiplicities, as follows.

ALGORITHM POLYNOMIAL ROOTS WITH MULTIPLICITIES (PRM). Let the input polynomial
f (x) be of degree n and have k distinct roots, each denoted by Ai with multiplicity rni for
i = 1 ~ k, respectively.

Step 1. Compute fl(x) of degree n - 1.
Step 2. Find the GCD dge(x) of f (x) and i f(x) by Algorithm PG.
Step 3. Compute qf(x) = f(x)/dgc(x) and %(z) = f'(x)/dgc(z).
Step 4. Employ a conventional method to determine all the k roots Ai, distinct and simple,

of qf (x).
Step 5. The multiplicities mi = 1 for i = 1 ~ k if the GCD dgc(x) is a constant (polynomial).

Otherwise, calculate the multiplicities mi = qg(Ai)q'f(Ai) rounded to the nearest
integer.

Step 6. Output the k roots hi with their multiplicities mi. |

Two computational aspects of this algorithm are considered. Step 2 involves algebraic opera-
tions to search for the GCD of two polynomials. The step has computational complexity O(n 2)
with Algorithm PG, or O(n log ~ n) with a fast version of the algorithm. Nevertheless, Step 4 uses
numerical, iterative methods to find simple roots of polynomials. The efficiency of these methods
that reveals their computational complexity is obtained by measuring the order of convergence.
The order of convergence of Newton's method is 2 while that of the Secant method is 1.618 and

that of Muller's method 1.839 I5,6].
The following polynomial is used as a test example to demonstrate the effectiveness of Algo-

rithm PRM,
f~ (x) = (x + 1) 3 (x ~ + x + 1) 5 . (12)

Expanding the above equation yields a polynomial of degree seven. It can be expressed by
arranging its coefficients in descending order of the degrees of polynomial terms. The resultant

list of coefficients is
ft (x) = {1,5, 12, 18, 18, 12, 5, 1} of degree 7. (13)

612 CHANG-DAu VAN AND WEI-I-IuA CHIENG

Taking its first derivative and making it monic leads to

{ 3 0 6 0 7 2 5 4 2 4 5 } of degree6. (14)
f~(x)= 1, 7 , 7 , 7 , 7 , 7 ' 7

Applying Algorithm PG to the above two polynomials yields the following Euclidean remainder
sequence.

78 144 150 90 24 /
rtl(X) = 4~ '49 ' 49 ' 4 9 ' 4 9 ' 4 9 of degree 5, (15)

%]

r t2(x)={; 7 2 8 7 ~} ' 3' 9 ' 3' of degree 4, (16)

rta (x) = {0} of degree - o¢, i.e., zero polynomial. (17)

Hence, rt2 (x) is found as the GCD of ft(x) and f[(x).
According to Corollary PRM,

fro (z) - ft (x____)) _ xa + 212 + 2z + 1, (18)
rt~ (x)

where rt2 (x) has been made monic. Therefore, the usual root-finding methods from the textbooks
or off-the-shelf software can be used to solve fro (x). The results are very accurate at the distinct
roots, hi, of (12). In fact, (18) can be factored exactly as the minimal factorization of (12),

f~o (x) = (x + 1) (x 2 + x + 1),

that has the roots ~1 = -1, ~2 ~ -0.5 - 0.866i, and ~3 ~ -0.5 + 0.866i. Subsequently, the
following are computed

f~0 (x) = 3z 2 + 4x + 2,

£1 (~) - 1~ (x) = 7~ 2 + 9~ + 5,
r~ (z)

and then the root multiplicities, mi, are

m~ =]~oft~ (),~_~)(~) = 312712 ++ 4191 ++ 52 x=~, = 3, 2, and 2,

for ~1, A2, and A3, respectively.

6. A P P R O X I M A T E P O L Y N O M I A L G C D

As stated in the previous section, the proposed method successfully solves the test polyno-
mial (12) or (13) by deflating multiple roots into simple ones. The root multiplicities are sub-
sequently obtained. Notably, the polynomial has only integer coefficients. Algorithm PRM is
executed by arithmetic operations on rational numbers. Exact computation is thus possible. The
Euclidean remainder sequence (15)-(17) reveals this fact. However, inexact computation usually
occurs.

The number of digits in both the numerator and denominator of the fractional coefficients
involved in the division of high-degree polynomials may drastically increase [1,16]. Even though
such an occurrence is not obvious in the aforementioned example, because the Euclidean remain-
der sequence, rt~ (x), ends early at i = 3 due to the relatively high degree of the GCD. If the GCD
is of low degree or even a constant, the list will be longer and show the growth of the digits of
the coefficients. It may hinder the arithmetic computations in two ways. First, the computations

Method for Finding Multiple Roots 613

require more memory to store the coefficients. Second, the intermediate computation steps might
simplify the fractional coefficients and thus reduce their numbers of digits, seriously decreasing
the computational performance. For polynomials with real coefficients that cannot conveniently
or at all be transformed into fractions, the supposed GCD probably cannot be found.

For example, the Euclidean remainder sequence (15)-(17) expresses the coefficients in a floating-
point representation as follows.

rtl (x) = {0.367347, 1.59184, 2.93878, 3.06122, 1.83673, 0.489796},

rt2 (x) = {0.777778, 2.33333, 3.11111, 2.33333, 0.777778},

rt3 (x) = {-5.32907,-8.88178,-9.76996,-3.77476} × 10 -15.

Clearly, rt2 (x) does not exactly divide rtl (x) because the remainder, rt3 (x), is not zero, although
it is very small. The inexactness of the division follows from the inaccurate representation of
polynomial coefficients in the computer system and the round-off errors in the intermediate steps
of the computation. An approximation is therefore adopted to deal with such inaccuracy and
yield correct results [13,17].

A polynomial norm that is the same as the Euclidean norm for vectors is introduced to measure
the elimination of a polynomial [6,14]. The Euclidean norm is a generalization of vector length.
As the vector length tends to zero, the vector vanishes. Considering the coefficient list of a
polynomial as a vector, the polynomial norm tends to zero when the polynomial is vanishing.

DEFINITION POLYNOMIAL NORM (PN). (See [1].) A polynomial p(x) of degree n, for an ~ 0
and n >1 1, can be identified with its coefficient list

p (x) = ~-~aix ~ = { a n , a n - l , . . . ,al,a0}.
i=O

Then, the Euclidean norm (or 2-norm) of the polynomial is

|

The Euclidean remainder sequence that results from using Algorithm PG to search for the
GCD of polynomials (13) and (14) with real coefficients is therefore established. The following
presents the remainder norm sequence, rather than the coefficient lists.

{llrt, (x)[1 } = {4.92848, 4.66667, 1.47304 x 10-14, 0.171796, 5.82458, 0.818418, 0.0},

for i = 1 --, 7.

The algorithm clearly finds no GCD or a constant (polynomial). However, the above remain-
der norm sequence implies that the third division yields a remainder of approximately zero, as
determined by the very small norm of the third remainder. However, simply comparing the
norms of remainders one may not be completely sure when to stop calculating the remainder
sequence. The following presents another test polynomial of degree 30 to test the effectiveness of
determining the approximately zero remainder.

(x + 1) 1° (x 2 + x + 1) '0 (19)

Curve 1 in Figure 1 shows the scaled remainder norm sequence obtained by applying Algorithm
PG to polynomial (19) and its derivative. Compared to the other remainders, the third remainder
seems to be the one which is approximately zero. However, the decrease of Curve 1 questions the
absoluteness of the norm of the third remainder being minimum in the remainder norm sequence.
The concept of approximate divisibility of polynomials is introduced to solve this problem.

614 CHANG-DAU YAN AND WEI-HUA CHIENG

1 .E+02

1 .E+O0

I.E-02

I.E-04
e~

• ~ 1.E-06

I.E-08

I.E-10

1.E-12
i ! | | t

0 1. IIr(x)ll/10^7

" ~ 2. IIr(x)l!/llp(x)ll

3. IIr(x)ll/lld(x)ll

1 5 9 13 17 21 25 29

Remainder in Remainder Sequence

Figure 1. Sequences of approximate divisibility according to different definitions
while searching for the GCD of polynomial (19) and its first derivative.

DEFINITION APPROXIMATE DIVISIBILITY (AD). (See [13].) Consider the polynomials p(x), d(x),
and r(x), such that r(x) is the remainder oTp(x) divided by d(x). Thus, d(x) divides p(x) - r(x).
The approximate divisibility is defined as either

A = I I r (~) l l or A = I I r (x) l l
l tP(x)l l I Id (x) l t '

Then, d(x) is said to be an e-divisor of p(x) ff A < ~ for a given c > O. |

Curves 2 and 3 in Figure 1, illustrate two different sequences of approximate divisibility accord-
ing to Definition AD. Clearly, both definitions of approximate divisibility can determine which
remainder is approximately zero. Therefore, the remainder before the one which is approximately
zero in the Euclidean remainder sequence is found as the approximate GCD. It is said to be an s-
GCD of polynomial (19) and its derivative based on Definition PN. Algorithm PG may thus
be modified to accommodate the computationally inaccurate search of GCD with floating-point
arithmetic.

ALGOI~ITHM APPROXIMATE POLYNOMIAL G C D (APG) . Consider two input polynomials f (x)
and g(x) with nonzero leading coefficients. Choose e to be sufficiently small, say 10 -s , as the
threshold of the approximate divisibility. The following steps describe the algorithm.

Step 1. Set pl(x) = f (x) , dl(x) = g(x)/ lc(g(x)) , and i = 1.
Step 2. Compute ri(x), such that pi(x) = di(x)q,(x) + ri(x).
Step 3. Compute I[r~(x)l[and A = [[ri(z)t[/[[d~(x)H. Go to Step 5 while A < ~.
Step 4. Compute di+l(z) = ri(x)/lc(r~(z)) and Ildi+l(x)l I = IIr~(x)ll/lc(r~(z)). Set p~+l(x) =

dr(x) and i = i + 1 and then go to Step 2.
Step 5. Output r i - l (x) .

Consequently, for polynomials with real coefficients, Algorithm PRM that simultaneously finds
polynomial roots and their multiplicities must depend on Algorithm APG in Step 2 to search for
the approximate GCD rather than Algorithm PG to search for the exact GCD.

Method for Finding Multiple Roots 615

7. P E R F O R M A N C E A N A L Y S I S

This section presents examples to verify the performance of the proposed root-finding method.
Two commercial software packages, MATLAB and MATHEMATICA, are used to solve polynomial
equations as compared with the performance of the proposed method.

The MATLAB software [18] provides a function, roots(), to find polynomial roots. The function
basically constructs a companion matrix by arranging the coefficients of the polynomial to be
solved. It then determines the eigenvalues of the matrix through the QR algorithm. Some errors
may occur during the computation of eigenvalues. Another software package, MATHEMATICA [19],
takes a different approach. It essentially manipulates mathematical expressions and equations
through symbolic operations. Hence, when solving a polynomial equation, MATHEMATICA tries
to factor it and then decompose it if possible. For example, the function Solve[f [x] : = 0, x] may
be used to find the roots of f(x) in polynomial (12). However, the function Solve[f [x] = = 0, x]
may induce fixed-point arithmetic for root finding when f(x) is in a symbolically decomposable
form. We chose the function NSolve[f[x] : : 0, x] to find roots in the floating-point arithmetic
benchmark given in following sequels.

The polynomial to be tested is

(x + 1) m (x 2 + x + 1) m of degree 3m, (20)

where m, to be specified, denotes the root multiplicity. Polynomial (20) clearly has three distinct,
multiple roots at x = - 1 and x = (- 1 ± ivY)~2. Figure 2 illustrates the results of finding the
roots of polynomial (20) using the built-in functions of MATLAB and MATHEMATICA, as well as
the proposed method. The results are presented for calculated roots, as average percentages of
the computational errors with respect to the root multiplicity specified for the test polynomial.
The computational errors are meaningful only because the roots are located on the unit circle.
Curve 1 in the figure shows the results obtained using MATLAB. Significant errors begin to be
observed at root multiplicity m = 4, increasing quadratically until m = 7. The curve reveals that
the root-finding inaccuracy dramatically increases when the root multiplicity m > 7.

[] 1. M A T L A B

A 2. Mathemat ica

- O - 3 . P rop . Me thod

12%

11%

10%

9%

8%
7%

6%

5%

4%

3%

2%

1%

0%

/ - /
_/ /

P

1 2 3 4 5 6 7 8 9 10

R o o t Multiplicity (m)

Figure 2. Average root-finding inaccuracy with respect to root multiplicity for poly-
nomial (20) with floating-point arithmetic.

616 CHANG-DAu YAN AND WEI-HUA CHIENG

1.E-01

1 .E-04

1 .E-07

1.E-10

1.E-13

1.E-16

1.E-19

1 .E-22

C
- I ~ Approx . G C D

0 Calc. Roots

I I I I I I I I

1 2 3 4 5 6 7 8 9 10

R o o t Multiplicity (m)

Figure 3. Average inaccuracy of found approximate GCDs and calculated roots with
respect to root multiplicity for polynomial (20).

1.E+01

:E

 .E+00 l t% ®.,,
. . |

I m 0

j | I ~ !

].E-02 - : , ; . , 7 ~,
l I i a • e k l ; , , ,'

1.E-03 ,~ ~ ®, ."

I

1 .E-04 ~ '

1.E-05 [] m = 6

~ m - - 7

1.E-06 - .O - m=8

I

1.E-07
1 5 9 13 17 21 25 29 33

R e m a i n d e r in R e m a i n d e r S e q u e n c e

Figure 4. Sequences of approximate divisibility while searching for the GCDs of poly-
nomial (21) and their first derivatives with respect to different maximum multiplicity,
m, of roots.

Considering MATHEMATICA'S root finding for polynomial (20), Curve 2 in F igure 2 plots the

errors in the computed roots with respect to the multiplici ty. The errors significantly increase

Method for Finding Multiple Roots 617

1.E+05

1.E+02

1.E-01

1.E-04

1.E-07

~ 1.E-10

1. .-13

1.E-16

1.E-19

=

/
m

[] Approx. G CD

O Cal¢. Roots --

1 .E-22
I I I I I I I I

1 2 3 4 5 6 7 8 9 10

Max. R o o t Multiplicity (m)

Figure 5. Average inaccuracy of found approximate GCDs and calculated roots with
respect to root multiplicity for polynomial (21), in which those for m > 6 are not
shown because no approximate GCDs are properly found.

i

1 .E+00

1 .E-02

I.E-04

1 .E-06

1.E-08

1.E-10

I.E-12

1.E-14

1.E-16

1.E-18

, f
/ 7 2

7/(,/

• /
D MATLAB

~ Mathematica

0 Prop. Method
I I I I I l I

1 2 3 4 5 6 7 8 9 10

Max. Ro o t Multiplicity (m)

Figure 6. Average root-finding inaccuracy with respect to root multiplicity in loga-
r i thmic scaling for polynomial (21), in which those for m > 6 are not shown because
no approximate GC Ds axe properly found.

from m = 6. The function apparently shows better results than M A T L A B , perhaps because
some symbolic manipulation or other techniques are used to find roots of polynomials with real
coefficients. However, the errors that result from the root-finding functions of both MATLAB and
M A T H E M A T I C A are not acceptable for engineering applications.

618 CHANG-DAU YAN AND WEI-HUA CHIENG

Table i. Results using the proposed method, MATHEMATICA, MATLAB, and corre-

Polynomial\ Max. Error

P4

P5

P6

P7

P9

P13

P19

P20

sponding pro:

Proposed Method

7.28E- 15

0

5.97E- 13

2.49E - 06

3.87E- 13

1.71E - 09

5.14E - 12

2.56E- 10

rams from the DROOTS/IMSL library/NAG library [8].

MATHEMATICA MATLAB DROOTS IMSL NAG

1.08E-07 7.02E-06 1.71E-12 2.46E-07 2.83E-05

7.49E- 03 4.76E - 02 4.10E - 10 8.69E - 11 0

3.44E - 05 1.29E - 04 5.01E - 05 2.96E - 06 1.61E - 04

1.01E-01 6.03E-04 4.70E-08 4.65E-05 6.34E-04

8.06E-07 8 . 4 8 E - 0 5 1.31E-06 7.23E-07 2.81E-04

3.04E-12 5.22E-03 8.57E-04 1.02E-02 1.35E-02

1.12E-05 3.71E-08 7.14E-10 6.47E-07 7.34E-08

3.30E-02 2.59E-04 2.28E-10 8.16E-03 5.81E-04

In contrast , Curve 3 dras t ica l ly outperforms the other two curves in F igure 2. The results

are ob ta ined by implement ing the proposed method in bo th MATLAB and MATHEMATICA. Both
implementa t ions produce v i r tua l ly the same results. F igure 3 presents the average inaccuracy

of the found approx imate GCDs and calculated roots. The figures demons t ra te the excellent

performance of the proposed method in finding roots, as compared to t ha t of MATLAB and

MATHEMATICA. Fhr thermore , the proposed method yields the mult ipl ic i t ies of the roots,

However, F igure 3 reveals t ha t inaccuracy in finding roots grows as the root mul t ip l ic i ty in-

creases, even with the proposed method. The following example incorpora tes the i l l-condit ioned

p roper ty of polynomials to tes t the performance of the root-f inding methods. As an extension of
one of the tes t polynomials in [20], the following polynomial is used,

rn
~I (X -- O.ln) m-n+l of degree m(m + 1) (21)

2 ' n=l

where m, to be specified, denotes the max imum mult ip l ic i ty of the d is t inct roots. Polynomial (21)
has cons tant t e rm 1.2 × 10 -5 for m = 3, -3 .456 x 10 -11 for m = 5, and 1.254 x 10 -17 for m = 7.

I t is apparen t ly i l l -condit ioned when m is large because some coefficients are too small to be
handled by computer systems.

Figure 4 depicts the sequences of approximate divisibi l i ty while searching for the GCDs of

polynomial (21) and their first derivatives for m = 6, 7, and 8. Algor i thm A P G easily and

proper ly finds the approx imate GCD for m = 6. The approximate GCD for m = 7 is correct ly

found if ¢ is chosen as high as 10 -3. I f m = 8 or larger, an incorrect ly approx imate GCD or only
a constant po lynomia l is obta ined. The proposed method fails in such cases.

Figure 5 displays the average inaccuracy of the found approx imate GCDs and calculated roots.
The great inaccuracy of approximate GCDs at m > 6 reveals the failure of the search for GCDs.
Consequently, no further calculat ion of polynomial roots is done. However, as compared with

MATLAB and MATHEMATICA, the proposed method performs very well when tackl ing the ill-

condi t ioned polynomials as shown in Fig. 6, if the approx imate G C D is p roper ly found.
A set of different polynomials wi th mul t ip le roots, l isted below, are tes ted to demons t ra te the

effectiveness of the proposed method in comparison with other known algori thms.

P4 (x - 1)2(x - 5i)2(x + i)3
P5 (x- 1) 1°
P6 (x - 0.1)4(x - 0.2)3(x - 0.3)2(x - 0.4)

P7 (x - 4 - 0 . 1 i) (x - 4 + 0 . 1 i) (x - 1 0) (x - 5) (x - 4) 2 (x - 3) 2 (x - 2) (x - 1)

P9 (x - 3)3(x + 1)4(x + i)2(x - 1 - 2 i) (z - 1)
P13 x6(z + 10)5(z - 10)S(x + i)2(x - i)2
P19 (x 2 4 - x 2 3 - x 22 x - l) 2

P20 (x 1 2 - z m - x 1° x - l) 4

Method for Finding Multiple Roots 619

The above polynomials are labeled according to the ordinal numbers originally listed in Table II
in [8]. Test results are shown in Table 1.

8. C O N C L U S I O N

Conventional methods for finding the roots of algebraic functions or polynomials lose accuracy
when multiple roots are involved. In particular, the inaccuracy is dramatically increased for
polynomials that have roots with a large multiplicity. This work presents a method that resolves
the multiple-root issue and provides the multiplicities of roots.

The proposed method is derived from the following findings. A GCD can be found from a
polynomial and its first derivative. Dividing the polynomial by the GCD yields a resultant poly-
nomial whose roots are proven to be simple and the same as the distinct roots of the original
polynomial. Usually, the resultant polynomial with only simple roots can be accurately found
using conventional methods. More advantageously, the multiplicity of each root can be deter-
mined easily. The results are confirmed by the test examples for which the functions of MATLAB
and MATHEMATICA are inadequate.

However, the proposed method fails to find roots of a polynomial whose GCD is not correctly
found. The failure follows from the round-off errors due to the inaccurate representation of
floating-point coefficients and inexact polynomial division. Approximate divisibility is introduced
to determine when to stop the computation of the remainder sequence, and then locate the
approximate GCD. Experimental results have shown that the approximate GCD can be concisely
and appropriately determined in the Euclidean remainder sequence. After the approximate GCD
is correctly found, the proposed method yields highly accurate results for the roots and their
multiplicities.

R E F E R E N C E S

1. J. yon zur Gathen and J. Gerhard, Modern Computer Algebra, pp. 131-135, 147., Cambridge University Press,
(1999).

2. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Sixth Edition, pp. 38-87, Addison-Wesley.
(1999).

3. M.L. James, G.M. Smith and J.C. Wolford, Applied Numerical Methods for Digital Computation, Fourth
Edition, pp. 66-119, HarperCollins, (1993).

4. M.J. Maron, Numerical Analysis: A Practical Approach, Second Edition pp. 41, 61-94, Macmillan, (1987).
5. J.H. Mathews and K.D. Fink, Numerical Methods Using MATLAB, Third Edition pp.40-100, Prentice-HalL

(1999).
6. C.W. Ueberhuber, Numerical Computation: Methods, Software, and Analysis, Volume Two, pp. 7-8, 296-

314, Springer, (1997).
7. V.Y. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Review 39 (2), 187-220,

(1997).
8. T.E. Hull and R. Mathon, The mathematical basis and a prototype implementation of a new polynomial

rootfinder with quadratic convergence, ACM Transactions on Mathematical Software 22 (3), 261-280, (1996).
9. S. Fortune, Polynomial root finding using iterated eigenvalue computation, In Proceedings of the POOl Inter-

national Symposium on Symbolic and Algebraic Computation, (ISSAC'2001) , pp. 121-128, (2001).
10. F. Malek and R. Vaillancourt, Polynomial zerofinding iterative matrix algorithms, Computers Math. Applic.

29 (1), 1-13., (1995).
11. F. Malek and R. Vaillancourt, A composite polynomial zerofinding matrix algorithm, Computers Math.

Applic. 30 (2), 37-47, (1995).
12. G.R. Bradley and K.J. Smith, Calculus, Second Edition, pp. 31-32, 145, 301, Prentice-Hall, (1999).
13. V.Y. Pan, Computation of approximate polynomial GCDs and an extension, Information and Computation

167, 71-85, (2001).
14. D. Bini and V. Pan, Polynomial and Matrix Computations, Volume I: Fundamental Algorithm, pp. 18-42,

90, Birkh~iuser, (1994).
15. D.E. Knuth, The Art of Computer Programming, Volume P: Seminumerical Algorithms, Second Edition,

pp. 399-436, Addison-Wesley, (1981).
16. W.S. Brown, On Euclid's algorithm and the computation of polynomial greatest common divisors', Journal

of Association for Computing Machinery 18 (4), 478-504, (1971).
17. I.Z. Emiris, A. Galligo and H. Lombardi, Certified approximate univariate GCDs, Journal of Pure and

Applied Algebra 117 g~ 118, 229-251, (1997).

620 CHANG-DAu VAN AND WEI-HUA CHIENG

18. MathWorks Inc., The Student Edition of MATLAB, Version 4, User's Guide, pp. 185-186, 559-560, Prentice-
Hall, (1995).

19. S. Wolfram, The MATHEMATICA Book, Fourth Edition, pp. 85-88, 99-100, 786-790, Cambridge University
Press, (1996).

20. M.A. Jenkins and J.F. Traub, Principles for testing polynomial zerofinding programs, A C M Transactions on
Mathematical Software 1 (1), 26-34, (1975).

