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Abstract. A multimedia system-on-a-chip (SoC) usually contains one or more programmable digital signal
processors (DSP) to accelerate data-intensive computations. But most of these DSP cores are designed origi-
nally for standalone applications, and they must have some overlapped (and redundant) components with the
host microprocessor. This paper presents a compact DSP for multi-core systems, which is fully programmable
and has been optimized to execute a set of signal processing kernels very efficiently. The DSP core was de-
signed concurrently with its automatic software generator based on high-level synthesis. Moreover, it performs
lightweight arithmetic—the static floating-point (SFP), which approximates the quality of floating-point (FP) op-
erations with the hardware similar to that of the integer arithmetic. In our simulations, the compact DSP and
its auto-generated software can achieve 3X performance (estimated in cycles) of those DSP cores in the dual-
core baseband processors with similar computing resources. Besides, the 16-bit SFP has above 40 dB signal to
round-off noise ratio over the IEEE single-precision FP, and it even outperforms the hand-optimized programs
based on the 32-bit integer arithmetic. The 24-bit SFP has above 64 dB quality, of which the maximum preci-
sion is identical to that of the single-precision FP. Finally, the DSP core has been implemented and fabricated
in the UMC 0.18µm 1P6M CMOS technology. It can operate at 314.5 MHz while consuming 52mW average
power. The core size is only 1.5 mm×1.5 mm including the 16 KB on-chip memory and the AMBA AHB
interface.

1. Introduction

Today’s multimedia and communication systems de-
mand more and more computations that can no longer
be satisfied by a general-purpose microprocessor (µP)
at acceptable cost or power consumption [1]. The most
popular solution without sacrificing the flexibility is to
accompany theµP with a digital signal processor (DSP)
[2, 3]. Figure. 1 shows an example of the dual-core
processors (or dual-processor cores), where the DSP
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core handles the data-intensive tasks efficiently with a
dataflow engine and the µP takes the control-oriented
and interactive tasks via maintaining huge state ma-
chines. In general, these two cores are designed indi-
vidually for standalone uses, and they have overlapped
functionalities and thus some redundant components.
Recent µP architectures are enhanced for digital sig-
nal processing by incorporating single-cycle multiply-
accumulators (MAC), SIMD (MMX-like) datapaths, or
some specific functional units [4] to reduce the needs
for an additional core, but their signal processing per-
formance is still far behind that of a DSP with similar
computing resources [5]. This is because data-intensive
tasks are very distinct from general-purpose computa-
tions [6], and more importantly, the memory subsystem
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Figure 1. Example of dual-core media processor.

of the single-core system is difficult to optimize for the
two different types of tasks simultaneously.

Alternatively, this paper discusses the compaction
of the DSP core, and the µP is left unchanged for
software compatibility. The DSP core and its auto-
matic code generator have been developed and tuned
in parallel, where software techniques are extensively
investigated to reduce the hardware complexity as the
design principles of VLIW processors [7]. Moreover,
we have proposed the static floating-point (SFP)
arithmetic to emulate expensive floating-point (FP) [8]
DSP operations with hardware as simple as that for the
integer arithmetic. In the SFP arithmetic, data are rep-
resented as normalized fractional, which are similar to
the mantissa, but the normalization factors are kept in
the analysis software only, in contrast to the exponents
attached to each FP number. SFP helps to shrink the
DSP core effectively without significant overheads
of scaling and normalization in other fixed-point
implementations. In our simulations of the 2-D DCT
in JPEG [9], the 16-bit SFP has above 40 dB signal
to round-off noise ratio over the IEEE 754 single-
precision FP arithmetic, which even outperforms the
hand-optimized 32-bit integer code from the Indepen-
dent JPEG Group (IJG) [10]. The 24-bit SFP has above
64 dB with the identical maximum precision to that of
the FP arithmetic. Finally, the compact DSP core with
the SFP arithmetic has about 3X better performance
in the execution cycles than those conventional DSP
cores in the dual-core multimedia processors, such as
the Analog Devices ADSP-218x [11]. DSP-lite is a
16-bit prototype of the compact DSP core in the UMC
0.18 µm 1P6M CMOS technology. The operating
frequency of DSP-lite can achieve 314.5 MHz, while
its average power dissipation is only 52 mW. DSP-lite
has the standard AMBA AHB interface to simplify the
system integration, and its core size is 1.5×1.5 mm2

including the 16 KB on-chip memory.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the synchronous dataflow graph (SDFG)
and high-level synthesis, and describes an abstract
computing model for the configurable DSP datapaths
that execute SDFG. Section 3 illustrates our proposed
SFP arithmetic and the conversion of an FP SDFG into
an SFP one. Section 4 shows the architecture and devel-
opment software of the DSP-lite core. The simulation
and implementation results are available in Section 5.
Section 6 concludes this work and outlines our future
researches.

2. Preliminaries

2.1. Synchronous Dataflow Graphs (SDFG) and
High-level Synthesis

Most DSP kernels can be efficiently described in a syn-
chronous dataflow graph (SDFG) [12,13]. An SDFG
lists the operations of a repetitive DSP algorithm for
an iteration, where the nodes represent computations
(e.g. arithmetic operators such as multiplications and
additions in our case), and an edge describes the depen-
dency between two nodes with a non-negative weight
w that indicates the number of iterations of the depen-
dency. For example, assume there are two nodes U and
V connected with an edge from U to V. It describes that
the computation of V requires the result from U before
wUV iterations. Figure 2(a) shows an illustrating SDFG
for y [n] = ax [n] +bx [n −1], where A and B represent
multiplication and C represents addition respectively.
In this example, “the result of A in the same iteration
of C” and “the result of B in the previous iteration”
will be added together by C to produce an output y.

High-level synthesis is the automated hardware gen-
eration from a high-level description such as the afore-
mentioned SDFG. It performs optimizations as module
selection, scheduling, allocation, and so on [14]. As-
sume an SDFG (i.e. that describes an iteration of a
repetitive DSP algorithm) is executed in N clock cy-
cles. For an edge from U to V, the variable U (i.e. the
output of an operator or an input of the DSP algorithm),
which appears at time slot u+PU , needs to be kept for
DF (U → V ) = N · wU V + v − u − PU cycles before
V consumes it [12]. DF is calculated as the number of
iterations of the dependency (wUV ) multiplied by the
number of cycles for a single iteration (N), and ad-
justed by the scheduled indices v and u for V and U
within the N cycles. PU denotes the latency (due to
registered I/O or pipelining) of the functional unit that
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Figure 2. SDFG example.

performs U and is subtracted from DF to obtain the
final result. The time diagram of Fig. 2(a) is depicted
in Fig. 2(b), where an iteration needs four clock cycles
and the computations A, B, and C are scheduled into
the time slots a =1, b = 2, and c = 3 respectively. As-
sume all functional units have an identical two-cycle
latency for their registered I/O ports (i.e. PA = PB =
PC = 2). Take the edge BC as an example. The result of
B from a multiplier needs three-cycle buffering before
it reaches the adder to perform C.

2.2. Configurable DSP Datapath

Figure 3 shows the abstract model of our proposed
computing engine that executes SDFG, where the data
generation is completely decoupled from the compu-
tations. The concurrent functional units need not care
about which data they are going to process and where
to find them, for the stream interface unit (SIU) in
the computing engine will deliver the required data to
these functional units. Moreover, the SIU also takes
the responsibility to gather the computed results for
output or further processing. In other words, the SIU is
the data generator of our proposed computing engine,
of which the input ports are connected to the output
of each functional unit and the inputs to the comput-
ing engine. Similarly, the output ports of the SIU are
connected to the inputs of each functional unit and the
outputs of the engine.

To execute an SDFG, the SIU needs to retrieve a
datum from the output of the functional unit that per-

FU

Stream Inteface Unit

(SIU)

FU FU

SIU-based DSP Engine
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Figure 3. SIU-based computing machines.

forms U at time u+PU for an edge from U to V. The
datum is forwarded to the functional unit that performs
V after DF (U → V ) = N ·wU V + v − u − PU cycles.
Generally, the latency of U (i.e. PU) will not be smaller
than two for its I/O registers, which allow a full clock
cycle for SIU routing. Let’s take the SDFG in Fig. 2
as an example. To perform the operation C1 (i.e. C in
the iteration 1 of cycle 4∼7), the SIU needs to retrieve
the outputs of A1 and of B0 from the multiplier at time
slots 7 and 4 respectively. B0 is buffered in the SIU for
three cycles (i.e. DF (B → C)) and then forwarded to
the adder with A1 at time 7.

Figure 4 shows two basic SIU architectures—one
with output queues and the other with input queues,
where the data are buffered at the outputs or the inputs
of the functional units accordingly. The dashed lines
illustrate how these two extreme architectures buffer
a multiplier output for three cycles and forward it to
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Figure 4. (a) Output-queue and (b) input-queue SIU-based architectures.
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the adder, as the B variables in the previous exam-
ple. Assume the queue length is L, and the SIU with
output queues will need NL registers and 2N N(L+1)-
input multiplexers. On the other hand, the SIU with
input queues will require 2NL registers and 2N(L+1)
(N+1)-input multiplexers. To reduce the power dis-

sipation, the data movements on these “dynamic”
queues can be replaced by updating the pointers on the
“static” queues. Figure 5 shows a static input queue,
which is functionally equivalent to the dynamic input
queues shown in Fig. 4(b). Note the static queues can
be implemented with multi-port memory modules of
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Figure 6. (a) Baseline SFP units for linear operations, and (b) 8-bit fractional multiplication.

compact layout. An input queue can be implemented
using an N-write/1-read memory module and similarly,
an output queue can be implemented with an N-read/1-
write memory module. By the way, the memory-based
SIU architectures need not access the data variables in
sequence (i.e. as queue) any more.

3. Static Floating-Point Arithmetic

Digital signal processing demands high precision for
quality and enough dynamic ranges to prevent over-
flow. The floating-point (FP) arithmetic provides the
full precision of mantissa and a huge dynamic range
with exponent [8], and all data variables and inter-
mediate results have a constant wordlength with au-
tomatic rounding and normalization. Therefore, FP is
very suitable for algorithm development and simula-
tion. However, the cost of FP hardware, which dynam-
ically aligns the operands and normalizes the results
for every operation, is prohibitively high for most em-
bedded applications, in terms of power consumption,
speed, silicon area. Besides, signal ranges in most well-
designed DSP algorithms are modest and do not vary
very much. Embedded DSP designers usually adopt
the integer arithmetic and manually scale down the
variables to prevent overflow. But the conversion from
FP to integer is ad-hoc, which requires extensive &
time-consuming simulations, and it usually results in
less optimal designs.

We have made a compromise between the FP and
the integer arithmetic and propose the static FP (SFP)
arithmetic in this paper. The SFP arithmetic performs

data alignment and normalization for each operation as
FP, but it decides and schedules the shifts at the design
time instead (i.e. the so-called “static”). To improve
the hardware utilization and parallelism, the internal
shifters in the FP units (for operand alignment and re-
sult normalization) are shrunk as 1-bit pre-scalers and
normalizers in the SFP units (SFPU). An additional
barrel shifter is integrated to carry out the shifting
over multiple (>1) bits. Figure 6(a) shows the base-
line SFPU for linear operations, of which the hardware
cost is similar to that of the integer arithmetic, except
that SFP performs fractional multiplications as the FP
multipliers. Figure 6(b) shows an example where the
insignificant bits are rounded off autonomously [15].

The following describes the static analysis of the
SFP arithmetic on a DSP kernel represented in SDFG.
First, each node of the FP SDFG (including inputs,
arithmetic operators, and outputs) is associated with
a peak estimation vector (PEV) [M r] to perform the
worst-case FP simulation, where M denotes the maxi-
mum magnitude that may occur on the node output and
r is used to track the radix point (i.e. as the exponent).
M should be kept as a value between 0.5 and 1 for frac-
tional operations (with the data ranges between −1 and
1) to prevent overflow while maximizing the precision.
Assume the inputs are normalized fractional numbers
(i.e. PEV = [1 0]), and the PEV of the remnant nodes
are calculated by following the three rules:

• Keep M between 0.5 and 1 by carrying out “M di-
vided (multiplied) by 2” and “r minus (plus) 1” si-
multaneously
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• r (radix point) should be identical before summation
or subtraction

• [M1 r1]×[M2 r2] = [M1×M2 r1+ r2]

Figure 7(a) shows two illustrating examples of the
PEV calculations. After the PEV analysis, shifts are in-
serted to align the data operands and to normalize the
intermediate results. Note that the pre-scaling and the
normalization in the two examples can be carried out in
the embedded 1-bit shifters of the adder and the mul-
tiplier without invoking the additional barrel shifter.
Note that the above PEV analysis may over-estimate
the data ranges because it neglects the correlations be-
tween variables, such as the example given in Fig. 7(b).
It can be improved by recording the intermediate vari-
ables in the affine forms [16]:

∑
αi · xi
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[0 1 0]
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Figure 7. Examples: (a) PEV analysis; (b) range over-estimation;
and (c) affine PEV analysis.

where αi denotes the contribution of each indepen-
dent variable xi (e.g. an input node of linear trans-
forms). The magnitude M of a node is calculated with
its corresponding αi instead of the input M directly.
Figure 7(c) shows an example for the PEV calcula-
tion with the affine data representations. By the way,
for non-linear operations such as multiplication of two
variables, our analysis software creates independent
variables to simplify the range estimation.

4. DSP-lite Core

4.1. Core Architecture

DSP-lite is our first prototype of the proposed compact
DSP core. It is equipped with the 16-bit static floating-
point units (SFPU), including:

• a 17-bit adder/subtractor with two 1-bit input scalers
and one 1-bit output normalizer,

• a 16-bit fractional multiplier with a 1-bit output nor-
malizer, and

• a 16-bit barrel shifter with sign-extension capability.
A fully configurable stream interface unit (SIU) is

integrated to generate data streams for the concurrent
computations as described in Section 2. Table 1
compares several SIU architectures. The 2nd and the
3rd rows summarize the complexities of buffering
and routing of dynamic queues. Then, the silicon
areas of the SIU architectures for four functional
units (i.e. three for the baseline SFPU and one for the
load/store unit) are listed, and these designs are all
implemented in the 0.18 µm 1P6M CMOS technology.
The numbers in parentheses show the equivalent gate
counts. The input queues with doubled registers do
not consume twice larger area than the output queues,
for their interconnections are localized and each
register has only one fanout (i.e. one multiplexer

Table 1. Comparison of SIU architectures.

Output queue Input queue

Storage NL registers 2NL registers

Interconnect 2N multiplexers; each
has N(L+1) inputs

2N(L+1) multiplexers;
each has N+1 inputs

Dynamic 280,900 µm2 (16,803) 313,600 µm2 (23,255)

Static 336,400 µm2 (20,359) 360,000 µm2 (26,702)

Reduced 220,900 µm2 (16,030) 144,400 µm2 (10,968)
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input for the cascaded register). Finally, the last row
compares two reduced SIU architectures based on
1-read/1-write memory modules, instead of those with
full N-write/1-read (for input queue) or N-read/1-write
(for output queue) access ports, where the memory
conflicts are resolved in software via an optimal
operation scheduling described later. Note that the
SIU with the reduced input queues has the smallest
area, for its load/store queue is redundant and has
already been removed. Therefore, the reduced input
queue has been chosen for our DSP-lite core.

DSP-lite has a microinstruction memory that stores
the addresses to access the SIU memory modules and
some control signals, such as those to enable the align-
ers and the normalizers of the SFPU. Besides, it con-
tains a ping-pong I/O buffer for efficient data exchang-
ing with the µP and external I/O devices. Moreover, the
standard AMBA AHB interface is integrated to sim-
plify the system integration. Figure 8 shows the core
architecture of DSP-lite and illustrates the dataflow
to perform the 2-D discrete cosine transform (DCT)
[9]. When the SIU-based DSP engine performs DCT
on the 2nd 8-by-8 image block, the system DMA is
busy storing back to the main memory the DCT co-

efficients for the 1st image block and transferring the
3rd image block to the I/O buffer for the next iteration
DCT.

In order to simplify the control, all memory modules
of the I/O buffer and of the SIU have the mechanism
to remap the virtual addresses (i.e. specified in mi-
croinstructions) to access different physical memory
locations in different iterations. The address remap-
per consists of a stride register, a bound register, and
an iteration counter, where the virtual addresses are
decremented with the stride number for each itera-
tion. Besides, the remapped addresses are modulo of a
bound value specified in the bound register, and thus
the addresses are rotating. Figure 9 shows an illustrat-
ing example. The virtual address “3” is remapped to
the physical addresses “3”, “2”, and “1” in the 1st,
2nd, and 3rd iteration respectively, when the remapper
is enabled and the stride number is set as “1”. A data
item is transferred across two iterations efficiently by
writing it to the virtual address “3” and retrieving it
from the virtual address “5” iteratively. Note that ad-
ditional memory locations are sometimes required to
prevent overwriting live variables, such as the virtual
address “4” in this example.
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4.2. Development Software

Figure 10 depicts the software development flow of the
DSP-lite core, and we have developed a complete tool
chain to simulate the algorithmic descriptions and to
compile them automatically from the FP SDFG into
the SFP executables. First, the SDFG simulator is bit-
true and supports both the FP and the SFP arithmetic,
and the designers can develop and verify their DSP
algorithms easily. Note that the FP SDFG can also be
derived from the C/C++ descriptions via the SUIF
compiler [17]. Then, the FP-to-SFP converter trans-
lates the FP SDFG into an SFP one by applying the
PEV analysis and the shift insertion described in Sec-
tion 3. The operations of the SFP SDFG (i.e. additions,
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multiplications, shifts, and I/O) are scheduled with in-
teger linear programming (ILP).

ILP is a formal and comprehensive approach to de-
scribe and solve the scheduling problem. In this paper,
we use periodic scheduling for simplicity, where only
the intra-iteration dependency is considered and the
edges with non-zero weights (i.e. dependency across
iterations) are first removed from the SDFG. The
scheduling ranges of each operation can be determined
using the basic as-soon-as-possible (ASAP) and the as-
late-as-possible (ALAP) scheduling algorithms [14].

Figure 11 shows an example to construct the ILP
model, where all functional units have a single-cycle
latency. Let a Boolean variable xi.j denotes whether a
node i is scheduled into the time j, and the following
three types of constraints must be satisfied [12, 14].

Resource constraints (operations cannot exceed the
resources)
x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1 (for input)
x2.1+ x3.1 ≤ 1; x2.2+ x3.2 ≤ 1; x2.3+ x3.3 ≤ 1 (for adder)
x5.3+ x6.3 ≤ 1; x5.4+ x6.4 ≤ 1; x5.5+ x6.5 ≤ 1 (for output)

Allocation constraints (each node executes only once)
x0.0+ x0.1+ x0.2 = 1
x1.0+ x1.1+ x1.2 = 1
x2.1+ x2.2+ x2.3+ x2.4 = 1
x3.1+ x3.2+ x3.3 = 1
x4.2+ x4.3+ x4.4 = 1
x5.2+ x5.3+ x5.4+ x5.5 = 1
x6.3+ x6.4+ x6.5 = 1

Dependency constraints
x0.0 + 2 x0.1 + 3 x0.2 − 2 x2.1 − 3 x2.2 − 4 x2.3

− 5 x2.4 ≤ −1
x1.0 + 2 x1.1 + 3 x1.2 − 2 x2.1 − 3 x2.2 − 4 x2.3

− 5 x2.4 ≤ −1
x0.0 + 2 x0.1 + 3 x0.2 − 2 x3.1 − 3 x3.2 − 4 x3.3 ≤ −1
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x1.0 + 2 x1.1 + 3 x1.2 − 2 x3.1 − 3 x3.2 − 4 x3.3 ≤ −1
2 x2.1 + 3 x2.2 + 4 x2.3 + 5 x2.4 − 3 x5.2 − 4 x5.3

− 5 x5.4 − 6 x5.5 ≤ −1
2 x3.1 + 3 x3.2 + 4 x3.3 − 3 x4.2 − 4 x4.3 − 5 x4.4 ≤ −1
3 x4.2 + 4 x4.3 + 5 x4.4 − 4 x6.3 − 5 x6.4 − 6x6.5 ≤ −1

As mentioned in Section 4.1, the DSP-lite core uses
the reduced input queues in its SIU, and it may suf-
fer from port conflicts when multiple functional units
simultaneously write their results into the same input
queue. The following are the constraints to prevent
multiple operations that write to an identical queue
from being scheduled into the same time slot.

Port constraints
x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1;
(for adder)
x2.2+ x4.2 ≤ 1; x2.3+ x4.3 ≤ 1; x2.4+ x4.4 ≤ 1;
(for output)

We find an optimal operation schedule under the
above constraints with a commercial ILP solver [18].
Lifetime analysis is then performed on the variables
to allocate memory of the SIU. Whenever an input
queue overflows (i.e. no free memory space), additional
load/store operations are inserted to spill the variables
of long lifetimes. Finally, the 64-bit microinstructions
are synthesized based on the memory addresses and
the control signals for the given DSP algorithm.

5. Simulation and Implementation Results

5.1. Comparison of Round-off Error

We have several implementations of the 2-D DCT from
the independent JPEG group (IJG) [10] to evaluate
the effectiveness of our proposed static floating-point
(SFP) arithmetic. Table 2 summarizes the comparisons.
The 2nd and the 3rd columns compare the round-off
error as the PSNR over the single-precision floating-
point (FP) arithmetic. The results are obtained from
simulations on two natural images—Lena and Baboon.
Then, the 4th column shows the number of execution
cycles to perform an 8-by-8 2-D DCT on the SIU-based
DSP datapaths with the baseline SFP units. Assume all
functional units are single-cycle with registered I/O
(i.e. with 2-cycle latency), which implies the FP units
would have much longer cycle time than the integer
and the SFP units.

The first three rows summarize the results for jfd-
ctflt.c, jfdctfst.c, and jfdctint.c, which are respectively
the single-precision FP, the 16-bit, and the 32-bit in-
teger C codes from IJG. The last two rows are for the

Table 2. Comparison of 2D-DCT on various arithmetic units.

PSNR (dB)

Lena Baboon Cycle count

Single-
Precision
FP

– – 624

16-bit Integer 29.4440 29.5183 848

32-bit Integer 33.9867 33.8020 656

16-bit SFP 40.1802 40.0468

24-bit SFP 64.2456 64.1210 656

16-bit and the 24-bit SFP respectively, both of which
are derived from the FP jfdctflt.c via the affine PEV
analysis. The 16-bit SFP even outperforms the hand-
optimized 32-bit integer 2D-DCT from IJG. Note that
the results have been improved by representing the
PEV in the affine form—from 36.0510 to 40.1802 dB
for Lena and from 35.9318 to 40.0468 dB for Ba-
boon. Moreover, the 24-bit SFP has about 64 dB
PSNR, which has the same maximum precision as
the single-precision FP (i.e. with the 23-bit man-
tissa). Note that the four embedded 1-bit shifters in
the SFPU for input alignment or output normalization
significantly reduce the execution cycles from 784 to
656.

5.2. Performance Evaluation

In this subsection, the impacts of SIU architectures on
the performance of DSP-lite are evaluated in terms of
execution cycles of some popular DSP algorithms. All
the functional units of the SFPU in the DSP-lite core
have registered I/O ports. The adder and the shifter
are single-cycle and thus with 2-cycle latency, while
the multiplier is pipelined into two stages and thus has
3-cycle latency. Table 3 summarizes the results ob-
tained with the optimal ILP-based scheduler described
in Section 4.2.

As described in Section 2.2, the full SIU architec-
tures with a complete set of multiplexers have iden-
tical external behaviors, despite whether the queues
are placed at the inputs or the outputs of the functional
units; or whether they are dynamic (i.e. with actual data
movements) or static (i.e. with pointer updates instead),
and their results are summarized in the 2nd column.
Then, the execution cycles for the SIU architectures
with reduced output queues and reduced input queues
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Table 3. Performance evaluation of DSP-lite core.

SIU-based architectures ADI TI

Reduced ADSP-218x C’55

Full Output Q Input Q [11] [19]

Lattice
filter

11 12 12 32 12

Biquad
filter

10 11 16 13 5

Complex
FFT

207 270 268 874 367

2-D DCT 672 784 688 2,452 1,082

Figure 12. Die photo of the DSP-lite core.

are listed in the 3rd and the 4th columns respectively.
Finally, the last two columns give the reference perfor-
mances of two commercial DSP cores [11, 19], both
of which have already been integrated in some dual-

core processor designs. ADI ADSP-218x has similar
computing resources to our DSP-lite core, including
an ALU, a multiply- accumulator (MAC), and a barrel
shifter, while TI C’55 has one more MAC unit. The
cycle counts are all excerpted from their application
notes.

The reasons that DSP-lite has such significant per-
formance improvements over conventional DSP archi-
tectures can be summarized as follows. First, its data-
driven computing engine and code generator are de-
veloped in parallel based on high-level synthesis to
extensively exploit the inherent parallelism of DSP al-
gorithms, and the performance can therefore be very
close to that of customized ASIC designs. Then, the
SIU enables smooth dataflow with its internal crossbar
network and relatively plenty registers (note that the
complexity is much less than that of a plain register
file in the general-purpose processors). Moreover, the
four embedded 1-bit shifters in the SFPU also help
the reduction of the execution cycles. But DSP-lite
does not perform the recursive DSP algorithms as well
because its functional units have registered I/O and
therefore longer latency (both C’55 and ADSP-218x
have zero-latency functional units). However, the clock
speed of DSP-lite is much faster and thus the perfor-
mance is still comparable while measured in the ab-
solute time. By the way, there exist some effective
transformation techniques (e.g. lookahead [12]) that
can reduce the iteration bounds and thus improve the
DSP-lite performance for the algorithms with feedback
loops.

5.3. Implementation and System Integration

DSP-lite is delivered as a synthesizable core. We have
synthesized the design using Synopsys Design Com-
piler with the Artisan 0.18 µm cell library, and placed

ARM core
model

AMBA
wrapper

DSP-lite
core RetrySlave IntMem

MuxS2M MuxS2S

APB_IF

SMI Decoder ResCtrl Arbiter Default
SlaveTIC

AHB

IntCtrl

RemPause

MuxP2B

Timers

APB

ExtRAM

ExtROM

TICBox

Tube

XB

Figure 13. DSP-lite integration example on the ARM 922T platform.
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and routed the net-lists using Cadence SoC Encounter.
Figure 12 shows the layout of the DSP-lite core, of
which the core size is 1.5×1.5 mm2 including the stan-
dard AMBA AHB interface. The chip has been fab-
ricated in the UMC 1P6M CMOS process, and it can
operate at 314.5 MHz while consuming only 52 mW
average power. Figure 13 shows an ARM-922T-based
multimedia platform, and the DSP-lite core is inte-
grated via the AMBA AHB interface. We have con-
structed the simulation environments both in SystemC
and Seamless CVE. The SystemC model for DSP-lite
is cycle-accurate, which significantly accelerates the
time-consuming RTL simulation for task partitioning
between ARM and DSP-lite. A JPEG encoding sys-
tem has been ported on this platform successfully,
where DSP-lite speeds up the 2-D DCT by a fac-
tor of 8.13 while running at the same 100 MHz as
the ARM core. The dual-core platform effectively im-
proves the JPEG encoding on an ARM-alone system
by 41.78%.

6. Conclusions

This paper presents a compact DSP core for multi-
core media SoC. The fully-programmable DSP core
and its automatic code generator have been developed
and tuned in parallel. Software techniques are exten-
sively investigated to reduce the hardware complex-
ity as the principles of VLIW processors. The static
floating-point (SFP) arithmetic is also proposed to em-
ulate expensive floating-point (FP) DSP operations
with the hardware resources similar to those of the
integer arithmetic. In the simulations, the 24-bit SFP
has above 64 dB signal to round-off noise ratio over
the single-precision FP under identical maximum pre-
cision (i.e. 24-bit SFP versus 23-bit mantissa in FP),
and the 16-bit SFP has about 40 dB, which even out-
performs the hand-optimized codes based on the 32-
bit integer arithmetic. The compact DSP core with the
auto-generated codes has about thrice the performance
of the commercial DSP architectures found in the dual-
core multimedia processors. Finally, the compact DSP
core has been implemented and fabricated in the UMC
0.18 µm 1P6M CMOS process. The operating fre-
quency can achieve 314.5 MHz, and the average power
consumption is 52 mW in the meanwhile. The core
size is only 1.5×1.5 mm2 including the 16 KB on-chip
memory.

We are now developing a list-scheduler to avoid the
port conflicts with significantly reduced complexity

than the preliminary ILP-based scheduler described
in this paper. Besides, we are now investigating the
distributed microinstruction memories with the JTAG-
like configuration interface [20] to release some global
routing. Finally, we will study the saturated arithmetic
[21] in the future to further improve the round-off
error of the proposed SFP arithmetic for short data
wordlengths.
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