
The Visual Computer (1998) 14:455±470
� Springer-Verlag 1998 455

Adaptive polygonization
of geometrically
constrained surfaces

Jung-Hong Chuang1,
Christoph M. Hoffmann2,
Kun-Ming Ko1,
Wei-Chung Hwang1

1 Department of Computer Science
and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan,
Republic of China
2 Department of Computer Science, Purdue University,
West Lafayette, IN 47907, USA

Many surfaces in geometric and solid
modeling, including offsets and blends,
are naturally defined from given surfaces
subject to geometric constraints. Surfaces
that are geometrically constrained can be
uniformly defined as the projection of
two-dimensional manifolds (2-surfaces) in
n-dimensional space, where n>3. This def-
inition can be used for given surfaces that
are implicit or parametric. This paper pre-
sents a robust, adaptive polygonization al-
gorithm for evaluating and visualizing geo-
metrically constrained surfaces. Let F be
the constrained surface, a 2-surface in n-
space, and let p(F) be its projection into
the subspace spanned by the first three co-
ordinates. Our polygonization algorithm
computes p(F). The method works directly
with the n-space representation, but per-
forms all major computations in 3-space.
Techniques for triangulation, polygon dec-
imation, and local refinement are also pre-
sented.

Key words: Constrained surfaces ± Exact
representation ± Polygonization ± Render-
ing

1 Introduction

Implicit surfaces have recently become more im-
portant in geometric and solid modeling. In part,
implicit surfaces have specific advantages over
the traditional parametric surfaces. For example,
many complex objects can be modeled more easily
with implicit surfaces, and certain geometric oper-
ations, e.g., the membership classification prob-
lem, can be handled straightforwardly when im-
plicit surface representations are available. More-
over, a number of sophisticated techniques that
use implicit surfaces have been proposed, e.g.,
the substitution blending surfaces of Hoffmann
and Hopcroft (1987).
While many surfaces as parametric or implicit sur-
faces can be formulated easily in 3-D space, cer-
tain surfaces including offsets, equidistant surfac-
es, and spherical blends cannot. Due to the occur
of high algebraic degrees, the representation and
generation of such surfaces can lead to great com-
putational complexity and numerical instability
and may require expensive symbolic manipula-
tions. As an alternative, the dimensionality para-
digm (Hoffmann 1990) provides a way to represent
such surfaces in a higher-dimensional space with
more variables, but simpler equations. In the di-
mensionality paradigm, complex constrained sur-
faces are defined as the natural projection of 2-sur-
faces in higher-dimensional space. With this repre-
sentation, complex symbolic computations and nu-
merically delicate operations can often be avoided,
so that practical implementations can be realized.
In computer graphics, many surface-rendering al-
gorithms rely on polygonal approximations of a
surface. A polygonal approximation allows one
to take advantage of hardware capabilities and re-
duces the cost of expensive ray casting in the ren-
dering process. However, while the polygonization
of parametric surfaces has been extensively studied
and utilized as a tool for the evaluation of surface
intersections (Barnhill et al. 1987; Lane and
Riesenfeld 1980) and for rendering, it seems that
much less attention has been paid to the polygon-
ization of implicitly defined surfaces in the litera-
ture. Bloomenthal (1988) proposes an algorithm
for computing the polygonization of an implicit
surface based on space subdivision using octrees.
Hall and Warren (1990) propose a method based
on the subdivision of tetrahedra. Allgower and
Gnutzmann (1987, 1991) present a simplicial con-
tinuation algorithm for obtaining a polygonization
to a component of a 2-surface in Rn, where n³3.

Correspondence to: J.-H. Chuang

456

All three methods fundamentally rely on vertex
evaluation. Rheinboldt (1987) presents an algo-
rithm that maps a triangulation of Rp to a p-mani-
fold, where p³1, and hence induces a triangulation
on the p-manifold. Lorensen and Cline (1987) and
Wyvill et al. (1986) propose methods that use ver-
tex evaluation to derive isosurfaces from volume
data or from spatial scalar field data. An extensive
review of surface polygonization algorithms ac-
cording to topological issues can be found in Ning
and Bloomenthal (1993).
To polygonize geometrically constrained surfaces,
algorithms using space subdivision or simplicial
continuation can be generalized to compute the po-
lygonal approximation of a 2-surface in high-di-
mensional space. However, as the dimension of
ambient space increases, the complexity of com-
puting the polygonization increases exponentially.
Moreover, the projection of a polygonization from
n-space to 3-space can be extremely complicated
when n is large. To reduce the complexity sharply,
we propose an algorithm that works with the n-
space representation directly, but performs all ma-
jor computations in 3-space, thus realizing huge
computational savings. Our algorithm marches
across the constrained surface in 3-space, using a
grid to detect whether a particular volume of space
has already been explored. It utilizes local para-
metric approximations derived from the n-space
representation to guide the surface expansion and
to coordinate the 3-space exploration with the n-
space parameters defining the surface.
In Sect. 2, we briefly review the dimensionality
paradigm and polygonization techniques for im-
plicit surfaces. In Sect. 3, the proposed polygon-
ization algorithm is described. In Sect. 4, we de-
scribe the decimation and the refinement process-
es. Section 5 addresses implementation issues
and gives some examples. Section 6 adds some
concluding remarks.

2 Constrained surfaces and surface
polygonizations

2.1 The dimensionality paradigm

Many surfaces in geometric and solid modeling,
including offsetting and blending surfaces, are de-
fined from given surfaces subject to certain geo-

metric constraints. This definition describes the
surface in natural, intuitive geometric terms. How-
ever, the representations of such surfaces in 3-
space often do not belong to the class of surfaces
from which they are derived, and thus should be
approximated. For example, the offset of a BØzier
surface is not, in general, a BØzier surface.
Special classes of constrained surfaces have been
studied before; for example, offset surfaces in Ros-
signac and Reguichen (1986), and blending surfac-
es in Filip (1989). Hoffmann (1990) proposes the
dimensionality paradigm as a straightforward, ex-
act, and uniform method for representing these
and other surfaces defined by constraints. In the di-
mensionality paradigm, the defining constraints
are translated into equations and the surface of in-
terest is the natural projection of a 2-surface de-
fined in higher-dimensional space. For example,
the offset of f(u, v, w)=0 with radius r is the natural
projection into (x, y, z)-space of the 2-surface de-
fined as follows:

(x�u)2+(y�v)2+(z�w)2�r2=0 (1)

f(u, v, w)=0 (2)

�fv(x�u)+fu(y�v)=0 (3)

�fw(y�v)+fv(z�w)=0, (4)

where Eq. 1 represents the sphere centered on the
surface point (u, v, w) with radius r, and Eqs. 3
and 4 constraines points on the sphere to the offset
of f=0.
A solution point (x, y, z, u, v, w) of the system indi-
cates that (u, v, w) is the foot point, or projection,
of (x, y, z) on f=0. The r-offset of f=0 is the natural
projection of the zero set into (x, y, z)-space. In
general form, a constrained surface can be repre-
sented as the natural projection of the zero set of
the following system of nonlinear equations into
the subspace spanned by three variables:

f1 x1; . . . ; xn� � � 0
f2 x1; . . . ; xn� � � 0

..

.

fm x1; . . . ; xn� � � 0:

�5�

The zero set F of the system of Eq. 5 is assumed to
be locally a smooth 2-manifold in Rn, so m is ordi-
narily equal to n�2. However, as discussed by

457

Hoffmann and Vermeer (1991), in certain cases
m>n�2 is desirable for the system of Eq. 5 to ex-
clude degeneracies. Several uniform methods for
interrogating constrained surfaces have been giv-
en.
Bajaj et al. (1988) describe a uniform method for
evaluating the intersection curve of such surfaces,
and Chuang and Hoffmann (1992) present a uni-
form method for determining the surface curvature
at a given point. The dimensionality paradigm has
also been used to represent exactly the spine curve
of spherical blends that is subject to intricate geo-
metric constraints (Chuang et al. 1995; Chuang
and Hwang 1997).

2.2 Surface polygonization methods

For implicit algebraic surfaces, Bloomenthal
(1988) proposes a polygonization algorithm that
uses an octree to decompose the space surrounding
the surface. At the corners of each cube, the im-
plicit function is sampled, and surface points on
the edges are calculated by binary sectioning along
an edge whose vertices are evaluated with opposite
signs. The polygon labeling is done by proceeding
towards the positive corner and clockwise about
the face to the right until the next surface vertex
is reached. For the adaptive subdivision, the crack
between the face of two cubes with different levels
of subdivision is closed by continuing polygon la-
beling on the faces of the cube with a higher level
of subdivision.
Rheinboldt's (1987) moving frame method pro-
ceeds by triangulating the tangent space at a sur-
face point, and transferring the triangulation to
the surface with Newton iteration. Each vertex
of the triangulation, after projection to a point
on the surface, becomes the center of a new trian-
gulation of its tangent space. The algorithm re-
solves any overlap locally, but cannot do so glob-
ally.
Allgower's method (1991) is based on a triangula-
tion of ambient space. At each vertex of a simplex,
the implicit surface function is evaluated, and a
linear approximation is constructed from the vec-
tor of component function values. Next, the faces
through which the linear approximant passes are
deduced. Finally, with this information, adjacent
simplices are considered in the same way. Note
that the number of simplices in an elementary vol-

ume grows exponentially with the number of vari-
ables.
Hall and Warren (1990) construct an adaptive
polygonization by recursive subdivision of space
bounded by a tetrahedron. A tetrahedron is subdi-
vided into four tetrahedra and an octahedron by
slicing off each corner of the original tetrahedron,
and then the octahedron is split further into eight
similar tetrahedra. Maintaining a honeycomb, the
surface vertices are easily labeled to form a poly-
gon.
The vertex-evaluation-based techniques can be ap-
plied to derive isosurfaces of volume data or scalar
field data (Lorensen and Cline 1987; Wyvill et al.
1986). The marching cube method proposed by
Lorensen and Cline (1987) has been recognized
as an effective and simple method for isosurface
extraction; nevertheless, this method has three no-
table problems. First of all, the marching cube
method explores all cells, including those contain-
ing no surface of interest (Wilhelms and Van Gel-
der 1992). Second, the marching cube method can
generate an excessive number of triangles (Hoppe
et al. 1993; Müller and Stark 1993; Schroeder et al.
1992). Finally, this method may produce surfaces
with holes, because of ambiguity that may be
found on the common faces of adjacent cubes
(Neilson and Hamann 1991; Wilhelms and Van
Gelder 1990).

3 Adaptive polygonization
of constrained surfaces

For curves such as surface intersections, it is easy
to derive a marching scheme that produces a po-
lygonal approximation of the intersection curve.
In order to obtain a similar scheme for evaluating
surfaces, we need a device that orients the explora-
tion in space and prevents inadvertently exploring
the same neighborhood several times. The simpli-
cial continuation of Allgower (1991) and the mov-
ing-frame method of Rheinboldt (1987) are of this
type and based on the following idea. Given a
manifold F defined by the system of Eq. 5 and
on it a point p=(p1, p2,¼, pn), construct a polygo-
nal approximation of F , beginning at p and ex-
panding in all directions.
In the case of constrained surfaces defined by the
dimensionality paradigm, the surface that is ulti-

458

mately of interest is the projection p(F) in the
(x1, x2, x3)-subspace. Since this surface is in a
three-dimensional space, it is advantageous to con-
struct the polygonal approximation only for the
projection p(F), and we do this by tracing the sur-
face in the 3-space with help of a grid to detect
whether a volume of space has already been ex-
plored. For each grid cube that the surface passes,
a polygon is determined to approximate the surface
within the cube. We describe the basic surface-
tracing scheme.
Let F be a 2-surface in Rn defined by the system
of Eq. 5, p(F) its projection into (x1, x2, x3)-space.
Given a regular point p in Rn, and a cube C in
(x1, x2, x3)-space with one of its edges, say e, con-
taining p(p). The basic surface-tracing procedure
starts from p(p) on e as follows:

1. At p(p), construct a local parametric approxim-
ant F(s, t) of F at p.

2. Determine where the projected approximant
p(F(s, t)) intersects the edges of the cubes shar-
ing e, and refine these intersections to p(F) on
edges of these cubes.

3. Select another new intersection via a tracing
scheme and repeat steps 1 and 2.

4. Derive the polygonal approximation of p(F) by
labeling the surface intersections on edges of
each transversal cube.

3.1 Local parametric approximation

The local parametric approximation F(s, t)=(f1(s, t),
f2(s, t),¼, fn(s, t)) plays an essential role here
since the corresponding points in Rn can be recov-
ered via the coordinate functions of F(s, t) once
the intersections of p(F(s, t)) with grid edges are
found in R3. Moreover, having these points in
Rn, intersections of p(F) and a cube's edge can
be refined with the system of Eq. 5 together with
equations for the edge. That is, with the local para-
metric approximation, we are able to trace p(F) in
3-space, even though the surface is formally de-
fined in Rn. This is the major advantage of the
method since the dimension of the grid space does
not depend on the number of variables used to de-
fine F . In contrast, the methods of Allgower
(1991) and Rheinboldt (1987) necessarily perform
poorly when the dimension n is large. For n>5,
those algorithms are too slow in practice.

For a given system of Eq. 5 and a point p on it, we
seek a parametrically described solution

F(s, t)=(f1(s, t), f2(s, t),¼, fn(s, t)), with

F(0, 0)=p. (6)

in the vicinity of p. The solution in Eq. 6 is basical-
ly a local parametrization of the surface represent-
ed by Eq. 5 at point p in which the first three coor-
dinate functions x1=f1(s, t), x2=f2(s, t), and x3=f3
(s, t) define a local parametrization of the project-
ed surface p(F) at p(p) in (x1, x2, x3)-space. When
the hypersurfaces fi intersect transversally and are
not singular in the vicinity of p, the surface F is
nonsingular at p and the parametrically defined so-
lution of Eq. 6 exists.
The parametric approximant F(s, t) can be of de-
gree one, two, or more. However, there is a trade-
off between the degree of the approximant, the
cube size, and the difficulty of determining the
cube size and the surface-edge intersections in step
2. With increasing degree of approximant a coarser
mesh can be tolerated, so that fewer approximant
calculations are needed. However, determining a
good cube size and the intersections with the edges
of the current cube becomes more difficult. To bal-
ance these factors, in this paper we use a linear
parametric approximant and an adaptive spatial
subdivision. A large cube size can be given initial-
ly, followed by adaptive subdivisions whenever
the refinement fails or the shape geometry or to-
pology within the cube is too complicated.
For the degree one local parametrization of p(F),
we find two linearly independent vectors that span
the tangent space of F at p. That is, the approxim-
ant F(s, t) is obtained by solving

Ñfi(p)´t=0, i=1, 2,¼, n�2, (7)

in which the solution set is of dimension two and
has two linearly independent basis vectors t1 and
t2, provided that p is nonsingular. Since
t1 � @F

@s 0; 0� � and t2 � @F
@s 0; 0� �; the linear approx-

imant F(s, t) can be obtained easily.

3.2 Adaptive spatial subdivision

As noted before, adaptive spatial subdivision is in-
corporated into our surface-tracing method. This

459

means that a large cube can be given initially, and
the algorithm will determine adaptively how to
subdivide it when a refinement fails or if the geom-
etry or topology of the surface is too complicated
within the cube.
To respond to a complicate surface topology with-
in a cube, we check the following conditions:

1. There is at most one intersection with each edge
of the cube.

2. There is at most one line segment on each face
of the cube.

3. There is at most one polygon in each cube.

Violating any of these conditions in a cube would
result in failures when labeling the surface-edge

intersections for forming a polygon, and hence
would require further subdivision on the cube. Ex-
amples of successful polygon labeling are shown
in Fig. 1, and some failures are shown in Fig. 2.
Moreover, the surface geometry approximated by a
polygon within a cube must be sufficiently planar.
If not, further subdivisions are required. This con-
dition is checked by computing the normal differ-
ences at adjacent polygon vertices after a polygon
has been labeled successfully.
An adaptive spatial subdivision leads to a simpler
and more robust structure for surface tracing.
Therefore, surfaces that have complicated posi-
tional relations with the cubes or have higher cur-
vature can be handled efficiently and robustly.

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

(5 vertices)

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

(6 vertices)

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

(3 vertices)

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

(4 vertices)

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

(4 vertices)

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

(6 vertices)

case 1 : two intersections on an edge

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

case 2 : two line segments on a face

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCC
CCCC
CCCC
CCCC

CCCC
CCCC
CCCC

CCCC
CCCC
CCCC
CCCC

case 3 : two polygons on a cube

CD

A

BE

π(ΦA)π(ΦB)π(ΦC)

π(F)

Fig. 1. Successful cases of the polygon labeling

Fig. 2. Failures in polygon labeling

Fig. 3. Unnecessary subdivision caused by poor positional relationship

1

2

3

460

However, subdivision is not inexpensive, and
therefore subdivision is delayed until necessary.
The intersection of p(F(s, t)) with an edge e is as-
sumed to be refined to a surface point on e. This
simplifies choosing edges in the algorithm. If the
intersection refinement fails, then the cube must
be subdivided. As shown in Fig. 3, in the tracing
of the surface from point A to point D, p(F) does
not intersect the edge that is intersected by
p(F(s, t)). This indicates a curvature greater than
can be accommodated by the current cube size. Af-
ter the first subdivision, tracing from B to D, we
encounter the same problem, although locally the
shape of p(F) appears to be sufficiently planar.
Thus, a second subdivision is needed. Thereafter,
tracing can progress to D successfully. Note that
more subdivisions are needed when D is close to
an edge's end point.
Subdivision cannot guarantee a successful point re-
finement in every case. A strategy we have found
to be effective for avoiding unnecessary subdivi-
sion is to delay the subdivision and try to refine
the intersection point from adjacent cubes. For ex-
ample, D can be traced from E as shown in Fig. 3.
Thus, cube subdivision due to the failure of point
refinement or polygon labeling can be delayed un-
til every refinement originating from each adjacent
cube fails.

3.3 Refinement of approximation points

Let P1(x1, x2, x3)=0 and P2(x1, x2, x3)=0 be the two
face planes of a cube C whose intersection con-
tains the cube edge e. A surface point (x1, x2, x3)
of p(F) on e, if there is one, together with other
variables, including its foot point(s) on the basis
surface(s), x4,¼, xn satisfies the following system
of n equations in n variables:

f1 x1; x2; . . . ; xn� � � 0
f2 x1; x2; . . . ; xn� � � 0

..

.

fnÿ2 x1; x2; . . . ; xn� � � 0
P1 x1; x2; x3� � � 0
P2 x1; x2; x3� � � 0:

�8�

We compute the intersection point of p(F) on
edge e by applying a Newton iteration to Eq. 8 us-
ing the intersections of p(F(s, t)) with e as an ini-

tial point. That is, when p(F(s0, t0)) is a point on
edge e of C, a Newton iteration is applied to
Eq. 8 with F(s0, t0)ÎRn as an initial point. The nat-
ural projection of the refined point p to (x1, x2, x3)-
space, say p(p), is the refined surface point of p(F)
on edge e.

3.4 Polygon labeling and normal
computations

The access of edges and cubes is a fundamental
operation of the algorithm. To facilitate implemen-
tation, we need a way to index the corners and edg-
es of a cube. Assuming the cube is in the first oc-
tant with one of its corners the origin, the vertices
are indexed as shown in Fig. 4.
We enumerate edges of the same direction clock-
wise toward the positive axis. Edges in different
directions are enumerated sequentially in the order
of the x1, x2, and x3 axes. The indexing of edges is
shown in Fig. 4. With this indexing schema, the re-
lationships between edges and vertices, and the
subcubes can be derived easily, and operations
such as polygon labeling can be facilitated.

Polygon labeling. After the intersections of p(F)
with edges of a cube have been found, we must
check to see whether our assumptions are valid
and that there are enough intersection points to
form a polygon. This check is done by polygon la-
beling. In Bloomenthal (1988), Lorensen and Cline
(1987), and Wyvill and McPheeters (1986), the
polygon are labeled according to the vertex evalu-
ation of the implicit surface function, volume data,
or scalar field data. However, such vertex evalua-
tion cannot be performed on surfaces defined in
high-dimensional space: the values are vectors,
not real numbers. Thus, we develop a polygon la-
beling strategy based on marching. We begin with
an edge on which we have found a surface inter-
section, and then move from one face to another.
For such an edge, there are two faces in the two la-
beling directions, described as right spin and left
spin. In each direction, there are three candidate
edges that might contain the next point. For an
edge parallel to axis xi, viewing into the positive
direction of axis xi, the right-spin labeling visits
faces clockwise and the left-spin, counterclock-
wise. These candidate edges are listed in Table 1
for both labeling directions. We may start labeling

461

1

0

2

4

3

5

6

7

x1x3

x2

x1x3

x2

0

1

2

3

4

5

6

7
8

9

10

11

x1
x3

x2

3

5

9

10

11

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

0

1

2

4

6

78

x1
x3

x2

3

5

9

10

11

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

0

1

2

4

6

78

right−spin labelinga left−spin labelingb

x1
x3

x2

0

2

3

5

6

7
8

9

10

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

1
4

11

Fig. 4. Indexing of corners and edges

Fig. 5a, b. Polygon labeling in only one direction: a right-spin labeling; b left-spin labeling. The solid arrows represent
connections for the right-spin system and the dashed arrows represent connections for the left-spin system

Fig. 6. Polygon labeling in both directions

Fig. 7a, b. Improved approximation due to difference checking on normals

4

5a 5b

6 7a 7b

462

in either direction. If the search of next intersection
point reaches the starting point and our assump-
tions are not violated, then a polygon has been la-
beled successfully.
The procedure-based methods used by Blooment-
hal (1988) and Wyvil and McPheeters (1986) di-
rect the polygon labeling in only one way. With
the table-driven labeling, only one table, either
right spin or left spin, suffices for most cases.
Two tables, however, might be needed for some
of the cases shown below. Figure 5 shows exam-
ples of successful polygon labeling and the se-
quence in which the polygon vertices are discov-
ered, for both directions. When the candidate edge
in the third row of each table is chosen, special care
must be exercised in the search of the next point
since the current labeling direction may fail to
identify a correct face. As shown in Fig. 6, we be-
gin with edge 6, and connect to edge 9 by the right-
spin direction. According to the right-spin system,
the edge next to edge 9 is again edge 6, but we
should visit edge 3 instead. To cope with this case,
we switch the direction to the left-spin system in
search of the edge next to edge 9. We continue us-
ing the left-spin system until an edge in the third
row of the table for the left-spin system is selected.
Recall that we delay subdivision due to refinement
failures for efficiency reasons, as described in
Sect. 3.2. It is possible to label successfully poly-
gons that approximate surface portions of high cur-
vature and thereby lose some details of the surface.
Such cases can be detected by checking the normal
differences at polygon vertices. If the normals at
two adjacent vertices differ more than a user-de-
fined angle q, then the cube is subdivided. Figure
7a shows the result without difference checking
on normals, and Figure 7b depicts the result with

normal-difference checking after a successful la-
beling. Note that the details of the surface are bet-
ter preserved and that a better approximation is ob-
tained.

Determining surface normals. When shading a
polygon, we usually need the surface normals at
the vertices. The normal at a surface point
p(F(s, t)) can be computed as the cross product
of the two tangent vectors ¶p(F(s, t))/¶s and
¶p(F(s, t))/¶t, where F(s, t) is the local parametric
approximation. Unfortunately, this approach can-
not be used because the values of s and t are un-
known at the refined surface point p(p). Instead,
the geometric relation between surface points and
their foot points can be used to compute surface
normals for geometrically constrained surfaces.
For the offset surfaces, the normal at the offset
point P is along the vector FP

�!
, where F is the foot

point of P. For Voronoi (equidistant) surfaces, the
normal at the surface point P is along the vector
FG
�!

(or GF
�!

), where F and G are the two foot
points. For radius blending surfaces, the normal
at the surface point P is along the vector CP

�!
,

where C is the center of the blending sphere. For
normals so derived, we need to determine their ori-
entation for a correct surface shading. The direc-
tions of surface normals must be consistent with
all adjacent polygons. Suppose points A and B
are connected by an edge and the direction of nor-
mal NA at A has been fixed. If the user-defined nor-
mal-difference angle q is small enough, we can
take the normal NA as the reference normal and de-
termine the direction of normal NB at point B; see
Fig. 8a. Otherwise, we determine the direction of
NB with the direction of NR as the reference nor-
mal, where NR � BA

�!�NT and NT �NA� BA
�!

:
See also Fig. 8b.

3.5 Surface clipping for radius blends

Radius blends are popular because they have an in-
tuitive geometric description. Nevertheless, the
mathematical details have some subtle difficulties.
A radius blend can be conceptually described as
the envelope of a rolling sphere centering on a
spine curve that lies on a surface bisecting two
base surfaces f and g. The sphere at each point
on the spine curve has radius the distance of the
point from the base surfaces. The bisecting or equi-

Table 1. Edge reference table for polygon labeling

Row Edge

0 1 2 3 4 5 6 7 8 9 10 11

Right-spin table
1 1 2 3 0 5 6 7 4 9 10 11 8
2 4 11 6 9 8 3 10 1 0 7 2 5
3 7 10 5 8 11 2 9 0 3 6 1 4

Left-Spin Table
1 3 0 1 2 7 4 5 6 11 8 9 10
2 8 7 10 5 0 11 2 9 4 3 6 1
3 9 4 11 6 1 8 3 10 5 0 7 2

463

distant surface of f and g is the intersection of off-
sets with varying radius from each base surface in
which the radius is itself a variable. The radius of
the rolling sphere can be constant or variable
along the spine curve. The spine curve of a con-

stant-radius blend is the intersection of two offset
surfaces with the same fixed offset while the spine
curve of a variable-radius blend can be obtained by
intersecting the equidistant surface with a refer-
ence surface (Hoffmann 1990) or be constrained

spine curve

(a) Spherical blend

contributing circle

(b) Circular blend

contributing circle

spine curve

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

F

G

C

M S

P

P’

Fig. 8a, b. Determining normal directions

Fig. 9a, b. Contributing circle for the variable-radius blend: a spherical blend; b circular blend

Fig. 10. Clipping the radius blend

Fig. 11. Tiny triangles (marked by dashed circles) in the nonuniform polygonization

8a 8b

9a 9b

10 11

A

B

NB

NA

A

B

NB

NA

NR

NT

−NB

464

on the equidistant surface with certain geometry
constraints (Chuang and Hwang 1997; Chuang et
al. 1995).
Consider the spine curve defined by a reference sur-
face h. The variable-radius blend of f and g is rep-
resented by the following 11 equations with 13 vari-
ables x, y, z, u, v, w, u1, v1, w1, u2, v2, w2, and r:

�uÿ u1�2��vÿ v1�2��wÿw1�2ÿ r2 � 0 �9�
f �u1;v1;w1� � 0 �10�

ÿfv1 xÿ u1� �� fu1 yÿ v1� � � 0 �11�
ÿfw1 yÿ v1� �� fv1 zÿw1� � � 0 �12�

uÿ u2� �2� vÿ v2� �2� wÿw2� �2ÿr2 � 0 �13�
g u2;v2;w2� � � 0 �14�

ÿgv2 xÿ u2� �� gu2 yÿ v2� � � 0 �15�
ÿgw2 yÿ v2� �� gv2 zÿw2� � � 0 �16�

h u;v;w� � � 0 �17�
Sd : �xÿ u�2��yÿ v�2��zÿw�2ÿ r2 � 0 �18�

@Sd

@u
;
@Sd

@v
;
@Sd

@w

� �
� Nh�NB� � � 0; �19�

where Nh is the normal of h at (u, v, w) and NB is the
normal of the bisecting surface of f and g at (u, v, w).
The cross product Nh�NB gives the tangent direction
of the spine curve at (u, v, w). Equations 9±12 and
13±16 represent the offsets of f=0 and g=0, respec-
tively, with an unknown radius r. Since r itself is a
variable, the intersection of r-offsets of f=0 and g=0
represents points equidistant to f=0 and g=0. Equa-
tion 17 represents a reference surface whose inter-
section with the equidistant surface forms a spine
curve for the variable-radius blend between f=0
and g=0. Equation 18 represents the sphere Sd cen-
tered on the spine curve, and Eq. 19 constrains
points on Sd to the envelope of the rolling spheres.
The envelope of the rolling spheres is the projection
of the solution set to the (x, y, z)-space. Each solu-
tion point of the system represents a spine point, foot
points of the spine point on each of the base surfac-
es, and other auxiliary parameters.
On each rolling sphere, only a circle contributes to
the envelope. The plane containing the circle must
be perpendicular to the tangent of the spine curve
at the center of the sphere, and must contain the

foot points (Fig. 9). Moreover, with a radius blend
the surface area of interest is bounded by contact
curves on the base surfaces with which the rolling
sphere maintains contact. That is, on each contrib-
uting circle only a segment bounded by the foot
points is of interest. We introduce a mechanism
that translates the bound on the circular segment
into an equation.
Assume that points F and G are the foot points of
the center C of the sphere on base surfaces f and g,
respectively, and that M is the midpoint of FG: Let
S(x, y, z)=0 be the plane passing through F and G
and normal to the vector MC

��!
; as depicted in

Fig. 10. The plane S separates the circle into two
segments, one contains a point P on the blend
and the other contains a point P0 that is not on
the blending surface. Assuming for simplicity that
the segment of interest does not exceed a half cir-
cle, the segment of interest can be constrained by

S(x, y, z) S(u, v, w)=a, (20)

where a is a negative number.
To derive the trimmed polygonal mesh for a radius
blend, we first augment to the system of Eqs. 9±19
with Eq. 20, where a is an auxiliary variable. Dur-
ing the polygonization process we reject polygons
that have vertices with nonnegative a. We clip ev-
ery polygon that has vertices with both negative
and nonnegative a. Finally, we label polygons with
negative a as before. To clip a polygon, we label the
polygon as usual, but derive the boundary points
whenever a pair of vertices with both negative
and nonnegative a is detected. That is, beginning
with a vertex P0 with a negative a, we do the label-
ing as usual until a vertex Pi, i>0, with a nonnega-
tive a is reached. Instead of labeling Pi we derive
boundary point P�i and regard it as the vertex next
to Pi�1. Then the labeling proceeds, but without con-
necting edges, until a vertex Pj, j>i, with a negative
a is found. We derive the boundary point P�j and
connect it to P�i : To finish the polygon labeling,
the labeling proceeds as usual until P0 is reached.

4 Decimation and refinement
of the polygonal mesh

In Sect. 3, we have presented our algorithm for the
adaptive polygonization of geometrically con-

465

strained surfaces. Using the algorithm, we are able
to obtain the polygonal meshes of constrained sur-
faces, including offset, Voronoi, and blending sur-
faces. A finer polygonization can be obtained by
using tighter normal-difference values for polygon
labeling or by using smaller grid size. However,
the cost of surface tracing with spatial subdivision
grows rapidly if these parameters become too tight.
Moreover, the polygonization can be nonuniform
due to poor positional relations between surface
and the space grids. As shown in Fig. 11, such poor
positional relations may result in tiny triangles. A
more cost effective approach is to first obtain a
crude but acceptable polygonal approximation
and then apply decimation, retriangulation, and
surface refinement to derive a very good quality
polygonization of the original surface. The frame-
work is as follows:
1. Compute a crude but acceptable polygonal

mesh for the given constrained surface.
2. Triangulate the polygonal mesh.

3. Decimate the triangular meshes by eliminating
negligible points and retriangulating the result-
ing polygons.

4. Refine locally the decimated triangular meshes.

Steps 3 and 4 are repeated until no new negligible
points are found or no polygon requires local re-
finement.

4.1 Triangulating a polygon

We can triangulate a polygon by repeatedly adding
the shortest diagonal between vertices as a splitting
edge, until there are only triangles. An example is
shown in Fig. 12: The diagonal P2P6 is connected
first, and then P3P5 followed by P2P5:
When there are concave vertices, we must make
sure that an interior diagonal is selected. (Note that
we have nonplanar polygons, so the definition of
convex and concave vertex includes consideration

P1

P2 P3

P4

P5P6

P1

P2

P3

P5

P6

P4

NP1

NP4

(A) (B)

a b c

Fig. 12a, b. Triangulation of polygons: a convex; b concave

Fig. 13a±c. Vertices that should be removed

Fig. 14. Retriangulation after a vertex is removed

12a 12b

13a 13b 13c 14

466

of the surface normal at the vertex.) In Fig. 12b,
the shortest diagonal P3P5 creates the inadmissible
triangle P3P4P5. To triangulate a concave polygon,
we first find a concave vertex Pi that is adjacent to
a convex vertex Pi�1. Then we connect Pi with a
vertex Pj, j¹i, where the angle between the surface
normal at Pi and the cross product

ÿ
PjPi
��!�Piÿ1Pi

���!�
is an acute angle and the diagonal PiPj is shortest.
For the example shown in Fig. 12b, vertex P4 is a
concave vertex. Here, we connect the shortest val-
id diagonal P4P2; and then P4P1 followed by P4P6:

4.2 Decimating the triangular meshes

A polygonal mesh can be reduced by removing
negligible vertices or edges (Schroeder et al.
1992). That is, a polygonal vertex is removed if

it is (1) too close to an adjacent vertex, (2) too
close to an edge, or (3) too close to a plane
(Fig. 13). When a vertex v is removed, we elimi-
nate the edges incident to v and then triangulate
the resulting polygon; see the example shown in
Fig. 14. The vertex removal is repeated until no
vertex can be removed for the given distance toler-
ances.
The elimination of vertices on the surface bound-
ary is special because it could significantly change
the boundary. We can preserve all the boundary

A

B

M

NB

NA

NA+NB

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

N1

N2

P1 P2 a b c

Original polygonal mesh
(164 polygons).

a Triangular mesh
(339 triangles).

b

Triangular mesh after
decimation (145 triangles).

c Triangular mesh after
refinement (604 triangles).

d

Fig. 15. Refining an edge

Fig. 16a±c. Refining a triangle

Fig. 17a±d. Decimation, triangulation,
and local refinement

15
16a 16b

cFig. 18. The offset surface and Voronoi surface. a the offset
surface of a bicubic parametric surface; b the Voronoi surface of
an ellipsoid and a bicubic surface

Fig. 19a±d. The variable-radius blend of an ellipsoid and a bi-
cubic surface

16c

17a 17b

17c 17d

467

18a 18b

19a 19b

19c 19d

468

vertices or only those vertices at which the incident
edges form an acute angle. Polygons obtained by
decimation can be retriangulated with the method
previously described or with the loop-splitting pro-
cedure in Schroeder (1992).

4.3 Local refinement of triangular meshes

To obtain a better approximation, we next refine
triangle meshes locally according to some user-de-
fined criteria. For each edge of a triangle, we refine
the edge if the surface normals at edge's endpoints
differ more than a given tolerance d. See Fig. 15
for the quantities involved in edge refinement.
Let line L be the line passing through the midpoint
M of edge BA and oriented in the direction
(NA+NB). Point M is refined to the surface p(F)
along L with the system of Eq. 8, where the planes
P1 and P2 contain L. The plane normals N1 and N2

are N1 � NA�NB� �� BA
�!

and N2=(NA+NB)�N1
(Fig. 15). After edge refinement, a triangle can
be replaced by two, three, or four triangles, as
shown in Fig. 16. Figure 17 illustrates decimation,
triangulation, and local refinement applied to the
polygonal mesh of a variable-radius blend. Notice
that the boundary of the radius blend is refined
with a stricter tolerance and thus has greater preci-
sion.

5 Implementation and examples

The proposed algorithm has been implemented in
C++ on a SGI Indigo2 High Impact with a MIPS
R4400 CPU and 64 MB RAM. Many examples
have been tested. Figure 18a shows the offset
surface of a bicubic parametric surface, and
Fig. 18b depicts the Voronoi surface of an ellip-
soid and a bicubic surface. Figure 19a and b shows
the variable-radius blend of an ellipsoid and a
bicubic surface without surface clipping. Figure
19c and d shows the images with surface clipping.
Figure 20a and b shows the polygonal mesh and its
shading image of implicit surface (200 x2+y2+200
z2�1)*(x2+(y�2.5)2+z2�1)�1=0. The thin pin of
this surface is finely polygonized with our adaptive
spatial subdivision. Table 2 shows the timing data,
then the polygon number and the triangle number
after the polygonization and decimation, respec-

Fig. 20a, b. The implicit surface (200 x2+y2+200 z2�1)*(x2+(y�2.5)2+z2�1)�1=0: a polygonal mesh; b shaded image

Table 2. Execution time and mesh size

Example Mesh generation Decimation

Time
in seconds

Polygon
number

Time
in seconds

Triangle
number

Offset 15.04 201 1.61 146
Voronoi 92.85 293 0.64 159
Blend 518.27 685 364.73 1479

469

tively. We note that with decimation and local re-
finement as postprocessing, the cube size for poly-
gonization can be larger initially. Hence the expen-
sive polygonization can be supplemented by the
cheaper decimation and refinement.

6 Summary and conclusions

The appeal of geometrically constrained surfaces
is their ability to represent, uniformly, surfaces
that are defined from given surfaces subject to
certain conditions. The given surfaces could be
implicit, parametric, or again constrained surfac-
es. Polygonizing such surfaces is essential to
working with them in an interactive design envi-
ronment.
We have presented an algorithm that computes a
polygonal mesh approximating a geometrically
constrained surface F defined in Rn, n³3, but per-
forms all major computations in 3-space by tracing
its projection p(F) with help of a grid of cubes.
The approach is made possible by local parametric
approximations of F . The approximations estab-
lish the connection between the surface points in
n-space and their projections into 3-space.
An adaptive spatial subdivision scheme has been
proposed that, driven by a few user-supplied pa-
rameters, can refine the surface approximation
completely automatically in a large initial domain.
Polygon mesh refinement takes place adaptively
whenever the intersection point refinement fails
or when the surface geometry or topology within
a cube is too complicated. Thus the user need
not know, a priori, where the surface is smooth
and where it has areas of great detail.
Moreover, we have developed decimation and lo-
cal refinement heuristics for postprocessing.
These heuristics can speed up surface approxima-
tion because they do not require a grid that is uni-
formly of small cube size, even in areas of low
surface complexity. Thus, the need of deriving a
finer polygonal mesh solely with grid subdivision
is avoided. The method has been implemented
and is capable of evaluating and rendering some
of the most difficult surfaces arising in geometric
modeling.

Acknowledgements. The work of J.-H. Chuang, K.-M. Ko and
W.-C. Hwang was supported by the National Science Council
(NSC) of the Republic of China under Grants NSC 81-0408-
E-009-533 and NSC 85-22/3-E-009-118.

References

Allgower EL, Gnutzmann S (1987) An algorithm for piecewise
linear approximation of implicitly defined two-dimensional
surfaces. SIAM J Numer Anal 24:452±469

Allgower EL, Gnutzmann S (1991) Simplicial pivoting for mesh
generation of implicitly defined surfaces. Comput Aided
Geom Des 8:305±325

Bajaj CL, Hoffmann CM, Lynch RE, Hopcroft JEH (1988)
Tracing surface intersections. Comput Aided Geom Des
5:285±307

Barnhill RE, Farin G, Piper BR (1987) Surface/surface intersec-
tion. Comput Aided Geom Des 4:3±16

Bloomenthal J (1988) Polygonization of implicit surfaces. Com-
put Aided Geom Des 5:341±355

Chuang JH, Hoffmann CM (1992) Curvature computations on
surfaces in n-space. Math Modelling Numer Anal 26:95±
112

Chuang JH, Hwang WC (1997) Variable-radius blending by
constrained spine generation. Visual Comput 13:316±329

Chuang JH, Lin CH, Hwang WC (1995) Variable-radius blend-
ing of parametric surfaces. Visual Comput 11:513±525

Filip DJ (1989) Blending parametric surfaces. ACM Trans
Graph 8:164±173

Hall M, Warren J (1990) Adaptive polygonization of implicitly
defined surfaces. IEEE Comput Graph Appl 10:33±42

Hoffmann CM (1990) A dimensionality paradigm for surface in-
terrogations. Comput Aided Geom Des 7:517±532

Hoffmann CM, Hopcroft JEH (1987) The potential method for
blending surfaces and corners. In: Farin G (ed) Geometric
modeling: algorithms and new trends. SIAM, Philadelphia,
USA, pp 347±365

Hoffmann CM, Vermeer PJ (1991) Eliminating extraneous solu-
tions in curve and surface operations. Int J Comput Geom
Appl 1:47±66

Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W
(1993) Mesh optimization. Proceedings of ACM SIG-
GRAPH'93, Anaheim, CA, USA, pp 19±26

Lane JM, Riesenfeld RF (1980) A theoretical development for
the computer generation and display of piecewise polynomi-
al surfaces. IEEE Trans Patt Anal Mach Int 2:35±46

Lorensen WE, Cline HE (1987) Marching cubes: a high resolu-
tion 3D surface construction algorithm. Comput Graph
21:163±169

Müller H, Stark M (1993) Adaptive generation of surfaces in
volume data. Visual Comput 9:182±199

Neilson GM, Hamann B (1991) The asymptotic decider: resolv-
ing the ambiguity in marching cubes. In: Nielson GM,
Rosenblum L (eds) Proceedings of Visualization '91. IEEE
Computer Society Press, Washington, pp 83±90

Ning P, Bloomenthal J (1993) An evaluation of implicit surface
tilers. IEEE Comput Graph Appl 13:33±41

Rheinboldt WC (1987) On a moving-frame algorithm and the
triangulation of equilibrium manifolds. In: Kupper T, Seydel
R, Troger H (eds) Bifurcation: analysis, algorithms, applica-
tions, Brikhauser, Basel, pp 256±267

Rossignac JR, Requicha AAG (1986) Offsetting operations in
solid modeling. Comput Aided Geom Des 3:129±148

Schroeder WJ, Zarge JA, Lorensen WE (1992) Decimation of
triangle meshes. Comput Graph (Proceedings of Siggraph),
26:65±70

Wilhelms J, Van Gelder A (1990) Topological considerations in
isosurface generation. Comput Graph 24:79±86

470

Wilhelms J, Van Gelder A (1992) Octrees for faster isosurface
generation. ACM Trans Graph 11:201±227

Wyvill G, McPheeters C, Wyvill B (1986) Data structure for
soft objects. Visual Comput 2:227±234

JUNG-HONG CHUANG is an
Associate Professor of Computer
Science and Information Engi-
neering at National Chiao Trung
University, Taiwan, ROC. His
research interests include geo-
metric and solid modeling, com-
puter graphics, and visualization.
Dr. Chuang received his BS de-
gree in Applied Mathematics
from National Chiao Tung Uni-
versity, Taiwan, in 1978, and
MS and PhD degrees in Comput-
er Science from Purdue Univer-
sity in 1987 and 1990, respec-
tively.

CHRISTOPH M. HOFFMANN is Professor of Computer
Science at Purdue University in the US. His research focuses
on geometric and solid modeling and its many applications in
design for manufacturing. He investigates high-level design re-
presentations and their compilation to CAD systems. This work
includes research on feature-based, constraint-based generative
design, and the frameworks and concepts needed to effectively
implement such design paradigms, as well as on distributed
CAD architectures and techniques to integrate CAD systems
with downstream software and processes.

KUN-MING KO is currently a
Senior Engineer at Taiwan
Semiconductor Manufacturing
Company (TSMC), Taiwan,
ROC. His research interests in-
clude geometric modeling and
computer network. Mr. Ko re-
ceived his BS and MS degrees
in Computer Science and Infor-
mation Engineering from Nation-
al Chiao Tung University in 1990
and 1992, respectively.

WEI-CHUNG HWANG is a
PhD student in the Department
of Computer Science and Infor-
mation Engineering at National
Chiao Tung University, Taiwan,
ROC. His research interests in-
clude geometric modeling and
computer graphics. Mr. Hwang
received his BS and MS degrees
in Computer Science and Infor-
mation Engineering from Na-
tional Chiao Tung University in
1990 and 1992, respectively.

