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ARTICLE INFO ABSTRACT
Keywords: In this paper, we propose a simulation-based evolutionary approach for designing low
Simltllla;ifiﬂ-ba%d evolutionary noise amplifier (LNA) integrated circuits (ICs). Based on a genetic algorithm (GA), the
methodology

Levenberg-Marquardt (LM) method, and a circuit simulator, the simulation-based evolu-
tionary approach is developed for design optimization of LNA circuits. For a given LNA cir-
Levenberg-Marquardt method cuit,'the s.irnulation—based evolutionary approach siml.Jltaneously optimi.zes the felectrical
Computational efficiency specifications, such as Sy, S12, S21, S22, K factor, the noise figure, and the input third-order
Circuit simulation intercept point in the process between simulation and optimization. First of all, the neces-
Design optimization sary parameters of the LNA circuit for circuit simulation are loaded. By solving a set of non-
linear ordinary differential equations, the circuit simulator will then be performed for the
circuit simulation and specification evaluation. Once the specification meets the aforemen-
tioned seven constraints, we output the optimized parameters. Otherwise, we activate the
GA for the global optimization; in the meanwhile, the LM method searches the local optima
according to the results of the GA. We then call circuit simulator to compute and evaluate
newer results until the specification is matched. In numerical experiment, 10 parameters of
the LNA circuit including device configuration and biasing condition are optimized with
respect to the constraints. The design of LNA circuit is with 0.18 pm metal-oxide-silicon
filed effect transistors. Benchmark results also computationally confirm the robustness
and efficiency of the proposed method. This simulation-based evolutionary approach, in
general can be applied to optimal design of other analog and radio frequency circuits.
We believe that this systematical approach will help IC design optimization, and benefit
computer-aided design of wireless communication system-on-a-chip.
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Nonlinear ODEs
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1. Introduction

Low noise amplifier (LNA) circuit plays an important role in radio frequency (RF) circuit design [1-6]. In modern inte-
grated circuit (IC) design flow and chip implementation, designers perform a series of functional examination and analysis
of electrical characteristics of a designed circuit by circuit simulation and electronic computer-aided design (ECAD) software
to match specifications [7,8]. In order to achieve the specification, designers must continuously and repeatedly tune the de-
sign coefficients and perform the circuit simulation to get a set of optimized active device model parameters, passive device
parameters, device size, circuit layout, width of wires, and biasing condition. It is in general requires experienced designers
to accomplish such complicated works. Circuit simulation tool including ECAD software has manually been used in perform-
ing IC designs in the last decades, yet proper usage of optimization techniques will have a positive contribution to the com-
munities of fabrication and design [6,9,10].
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In this paper, based on a genetic algorithm [6,9-14] (GA), the Levenberg-Marquardt [6,10,15-17] (LM) method, and a cir-
cuit simulator [18,19], we propose a simulation-based evolutionary approach for optimal design of LNA circuits. The basic
concept of the simulation-based evolutionary approach has been proposed for model parameter extraction of sub-100 nm
metal-oxide-silicon filed effect transistors (MOSFETs) and optimal characterization of heterojunction bipolar transistor in
our recent works [9,10]. We in this work successfully generalize this approach to IC design optimization; in particular, for
analog and RF circuits. For a given LNA circuit, the simulation-based evolutionary approach simultaneously optimizes the
electrical specifications [1,6] such as Sy1, S12, S21, S22, K factor, the noise figure, and the input third-order intercept point
in the optimization process. First of all, the necessary parameters of the LNA circuit for circuit simulation, such as the mac-
romodel of RF MOSFETs [18] and the netlist of explored LNA circuit are loaded [6,18]. A circuit simulator will then be per-
formed for the circuit simulation and specification evaluation. In the circuit simulation, a set of nonlinear ordinary
differential equations (ODEs) corresponding to the LNA circuit will be solved. Once the specification meets the aforemen-
tioned seven constraints, optimized parameters associated with the specified LNA circuit are then outputted. Otherwise,
we activate the GA for the global optimization; in the meanwhile, the LM method searches the local optima according to
the evolutionary results of the GA. This numerical optimization method does significantly accelerate the evolution process.
We then call circuit simulator to compute and evaluate newer results until the specification is matched. We note that the
well-known circuit simulation tool, HSPICE [18], is successfully integrated in our numerical implementation. To verify the
validity of the proposed methodology for LNA circuits design optimization, more than 10 parameters including capacitance,
inductance, resistance, and biasing conditions are optimized with respect to the aforementioned seven constraints. The de-
sign of LNA circuit is focus on the usage of the 0.18 pm MOSFETSs, but it can be applied to other technology nodes. Benchmark
results including the convergence property and the sensitivity of optimized parameters also computationally confirm the
robustness and efficiency of the proposed simulation-based evolutionary approach. This approach not only works at the lev-
els of device and a single circuit module but also can be applied to other analog and RF circuits; even an electronic system
which is with a small number of transistors. It is because the proposed approach is mainly based upon a simulation-based
technique. Therefore, once the netlist of circuit simulation for any specified circuits is generated the optimization technique
works with the similar operation mechanism.

This paperis organized as follows: in Section 2, we introduce the proposed simulation-based optimization technique. In Sec-
tion 3, the numerical experiment for this work is introduced. The achieved simulation results are discussed in Section 4. We also
verify the validity, robustness, and efficiency of the method. Finally, we draw conclusions and suggest some future works.

2. The simulation-based evolutionary approach

It is difficult to find the solution of multidimensional global optimization problems in modern IC design by using either
conventional numerical method or soft computing techniques. Typical genetic searching methods are plagued by problems
such as rapid decrease in the population diversity and disproportionate exploitation and exploration of the solution space
with multiple dimensions. The results are frequent premature convergence and inefficient search. Newton-based numerical
methods find a solution rapidly compared with approaches of GA, but they are still a local method and are often trapped into
local optimum. A basic idea of simulation-based evolutionary approach proposed in this paper mainly takes a GA to perform
global search, and while the evolution seems to be saturated, the LM method is then enhancing the searching behavior to
perform the local search.

For a circuit to be optimized, such as a LNA circuit, we automatically parse and generate the corresponding netlist of the
circuit [19]. The generated script file will be inputted into an adopted circuit simulator for simulation and evaluation of re-
sults, where a set of circuit ODEs are solved. If the results meet the target, we then output the final optimized data. If the dif-
ference of errors between the target and result does not meet the convergence criterion, the established optimization kernel
will enable the circuit parameter extraction in a global sense. The number of circuit parameters to be extracted depends upon
the specification that we want to achieve. For examples, they could include active, passive, design window, and biasing con-
ditions. The optimized results are used for automatically modifying the netlist and the next newer optimization process is
performed. We note that the optimization technique implemented in this work is so-called the simulation-based evolutionary
approach because an adopted circuit simulator is preformed repeatedly to calculate the cost function in the evolution loop.

An architecture of the optimization kernel for the proposed simulation-based evolutionary approach is shown below:

Initialize parameters extraction environment
Initialize GA
while fitness score of the best chromosome > tolerated score
GA searches for better solution
if the evolution seems to be saturated
LM searches for currently local solution
End while

According to the procedure shown above, the GA firstly searches the entire problem space. During this period, the can-
didates that GA searched are passed to certain adopted circuit simulator [18] to retrieve the results of circuit simulation. For
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the specified desired targets, the simulated results are then passed to the evaluation to measure the fitness score. The eval-
uated score is provided for the global optimization of GA. After a rough solution is obtained, the LM method simultaneously
performs local searches and sets the local optimum as the initial values for the GA performing further optimizations. In the
following sub-sections, the computational details of the GA and LM methods are described.

2.1. The proposed genetic algorithm

GA is a global search optimization method based on the mechanics of natural selection and natural genetics. It has
been applied to different domain [6,9-14]. It works with a coded of parameters string called chromosome instead of
the solutions themselves. Each chromosome represents a solution set, and the fitness functions used to measure the sur-
vival scores of all chromosomes in the population. Then the GA will accord its selection scheme to select several chro-
mosomes for copulation, discard unwanted chromosomes, and adopt the crossover scheme to produce the new
generation. Because the new chromosomes are made by better chromosomes, they may have higher probability to
achieve better result. After crossover, one may apply mutation to change some genes in the new chromosomes to achieve
higher diversity. Then the GA will apply fitness function for the new population again and loop this cycle until certain
stop criteria is achieved.

In this work, the problem is defined as follows:

f(spa Vinaﬁ) = Oresultv (])

where the function f can be regarded as a circuit simulator which solves a system of circuit nonlinear ODEs, the Sp, is a netlist
required by the circuit simulator, the V;;, is input bias, and the  is the parameters needs to be extracted. By feeding the three
components into f, a series of result under different frequencies is generated in Oyesui, SUch as Sy1, S12, S21, S22, . .. The GA has
to optimize the p under several S, and Vj,.

The typical GA has basic five genetic operators to perform the solution evolvement. It includes the gene encoding, the
fitness evaluation, the chromosome selection, the sexual crossover, and the gene mutation. In the following, we describe
each operator step by step.

2.1.1. Gene encoding

The gene encoding method strongly depends on the problem to be optimized. Encoding operator is the procedure that
encodes the solution of the problem into the coded string format, and others genetic operators operate on the coded string
directly instead of the solution itself. The design of gene encoding strategy strongly depends on the properties of the prob-
lem. There are 10 parameters in the LNA circuit. In the proposed GA for the simulation-based evolutionary algorithm, we
transform these continuous floating-point numbers into discrete steps through step function as shown in the Eq. (2) instead
of real numbers, and we encode the discrete steps as genes on chromosomes. The discrete steps show the strongly combi-
natorial properties, and we have found this representation has better results in crossover:

Pmax - Pmin

Pyatye = Prnin + oo - min
vatue = Fmin 2o s olution

(2)

2.1.2. Fitness evaluation

The fitness evaluation evaluates the fitness score for each chromosome in the population. The fitness score can be seen as
the accommodation status of each chromosome in current environment, and it is also an important reference for the selec-
tion procedure to judge the suitability of each chromosome. We consider the fitness function:

F= Y (W(sim—spe)), 3)

all target

where the sim and the spe indicate the simulated result and target specification, respectively. The W is a weight function,
when the sim is not matched with the spe, the weight increase to emphasize this problem.

2.1.3. Selection

After obtaining the fitness score of each chromosome, the selection method selects the better chromosomes by the spe-
cific schemes, such as the roulette wheel selection, the tournament selection, and the ranking selection, and different selec-
tion schemes may lead to the different convergence behavior. In this work, the tournament selection method is applied. The
pseudocode of a tournament selection is shown below:

Set the number of contest up according to the selection rate
for each contest

Randomly pick 2 competitors

Select the competitor with better fitness score
End for
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2.1.4. Crossover

Crossover combines the features of two parent chromosomes to form two similar off-springs by swapping corresponding
segment of the parents. It is intuitive that the crossover operator is exchanging information between different potential solu-
tions. We take a uniform crossover scheme in our developed GA; and based on our simulation experience, it is more effective
than single and two-point cuts crossover schemes [9,10]. A pseudocode is shown below:

Randomly selects 2 parent
for each category of parameters of the new chromosome
Randomly pick a parent and named it as p
Parameters in this category of the chromosome
=parameters in this category of p
End for

2.1.5. Mutation

Mutation arbitrarily changes one or more genes of a selected chromosome by a random variation with a probability factor
so called the mutation rate. The mutation procedure may cause the entity unable to accommodate with the environment;
however, a successful mutation may lead the evolutionary trend to achieve the better situation. A pseudoprocedure for each
step in GA is described as:

GeneEncoding through Eq. (2)
do
Chromosomes selection
Offsprings reproduce
Genes mutation
Fitness evaluation
if BestChromosome.error < Threshold
then IfAchieveGoal = true
else IfAchieveGoal = false
while IfAchieveGoal is false

2.2. The adopted Levenberg-Marquardt method

The LM method is a quasi-Newton method to accelerate the Gauss-Newton method [6,10,15-17]. The Gauss-Newton
method is the basic algorithm for solving the nonlinear optimization problem. Due to the nonlinear property of the problem,
a gradient for each variable can be obtained. It starts from an initial guess, and follows the direction of the normal of the
gradient to find the optimal solution. Therefore, the initial guess must be chosen carefully, or the solution may fell into a
local optima. Unlike the Gauss—Newton method has the fixed steps toward the solution, LM optimization method detects
that some regions with monotonic variation property can be speed up by increasing the step size. On the other hand, when
the optimization process encounters a sensitive region, the step should be shorten to avoid skipping the optimum. The pro-
cedure of the LM method is shown below:

“won

Given: a, I, I5, where “a” is parameters set, “I¥” is the optimization target, and “I5” is the initial guess of the solution.

M_E 2
x(a) =Y (@) , where ¢ is the mean of the measured data.
2.=0.0001.
Compute o = oy;(1 + 2), o = o (k)
while not converge
Solve linear matrix problem: ,
M 2 2 _ o
211 %0 = B where o = 5240 B = — 54
if y*(a+0a)> y*(a),
+1 2-(a+éa)—y*(a)
;.ﬂ' _2;.ﬂ+ a ‘;2 (17
else if y“(a+ da) < x“(a),
;n+1 "

+1 o+l
a™' =a"+ éa,

End while

3. Application to LNA circuit design

The explored LNA circuit, shown in Fig. 1, focuses on the working frequencies ranging from 2.11 to 2.17 GHz. The LNA
circuit is with two cascaded MOSFETs. We note that the Lj,.q and Rjp,q are the nonlinear functions in our LNA circuit [6].
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Fig. 1. The explored LNA circuit in our numerical experiment.

The choke inductor L¢oke working at high frequency is assumed to be fixed at 1 pH. G, is an external signal couple capacitor
which is fixed at 20 pF. According to the KCL conservation law [3-6], a set of ODEs can be formulated for the LNA circuit,
shown in Fig. 1:

dVer —Va) 1 [ d(Va—Vp)
Cmatchl dl’ = Lmatchl / VAdt + Cln Ta (4)
1 1
L— /(VB — VGl)dt = L— /(VG1 — VBl)dt +Ig, (5)
bond choke
and
Conatch2 d(Ve2 — Viz) + 1 /(VDD — Vpp)dt + Voo — V2 _ Ipy. (6)
dt Lload Rload

The unknowns to be solved in Eqs. (4)-(6) are Va, Vg1, and Vp,. We note that the Ig and Ip, are current models [6]. To solve
the system of nonlinear ODEs, the simulation program with integrated circuit emphasis (SPICE) is applied. The corresponding
netlist for the circuit simulation of the LNA circuit is shown below:

CCIN N_10 N_9 20P

CCMATCH1 N_10 IN 610F

CCMATCH2 N_5 OUT 1.7P

CCMATCH3 GND_L OUT 4.5P

LLBOND N_9 N_6 1N

LLCHOKE VB1 N_6 1U

LLDEG N_8 GND_L 1N

LLLOAD VDD_L N_5 2.8N

LLMATCH1 N_10 GND_L 4.6N

XM1 N_7 N_6 N_8 GND_L NMOS_RFW5 LR=0.24U NR=64
XM2 N_5 VB2 N_7 GND_L NMOS_RFW5 LR=0.24U NR=64
RRLOAD VDD_L N_5 1K

we note that the format and grammar of the netlist can be found in [19].
S-parameters (Si1, S12, S21, and S,,) will aid in the stability analysis of the LNA circuit. The S-parameters are defined as
follows:
Vi V3 V] vy
S11:_]7 521:_2~, =1 =2 (7)
%24 %24
where the V; and V; are the output waveforms from the port 1 and the port 2, and V{ and V; are the input waveforms from
the port 1 and the port 2, respectively. For the stability analysis of S-parameters, the Rollett stability factor (K) is numerically

calculated. An intermediate quantity called delta (4) should be calculated first to simplify the final equation for the K factor:
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A =511 x S22 —Sn ><5127 (8)
then

_ 1442 = [Suf — ISl

K . 9
2X|S]]|*|S]2| ( )

To evaluate the noise performance of a low noise amplifier, by the definition of noise factor F, the equation for noise figure
(NF) is given by

Signal . . .
SNRi, Noise, Noise;, + Noise Noise
NF = 10log(F) = 101log <SNR0M> =10log < Sl > =10log <eramp> =10log (1 +W;":’>7 (10)

Noiseout

where SNR;, is the signal-to-noise ratio at the input and SNR, is the signal-to-noise ratio at the output. Noise;, is the noise
from the previous stage, Noise,, is the noise at the output which consists of the noise from amplifier (Noise,mp) plus the
noise from Noisej,.

The definition of the third-order input intermodulation distortion (IIP3) is the input power in dBm where the fundamen-
tal output power and the third-order intermodulation output power are the same.

4. Results and discussion

By calculating several interested specifications, we firstly verify the feasibility of the proposed method. Fig. 2 shows the
initial state (dash-dot) and an optimized result (line) of S;; parameter. The acceptable result is when S;; < —10 dB within the
working frequency range. It is clearly that Fig. 2 states that the result has achieved to this goal. We note that the amplitude of
the input sinusoidal signal within the working frequency range is with 1.0V, V3; =0.75V, and Vj, = 2.7 V, shown in Fig. 1.
Fig. 3 shows the initial state and an optimized result of S;; parameter. The acceptable result is when S;; < —25 dB within
the working frequency range, where Fig. 3 clearly confirms the achieved results with much more improvements than the
original one. Fig. 4 shows a comparison between the initial state and an optimized result of S;; parameter, where a larger
S,1 is expected in the optimization process. Typically, we do not define an engineering specification for S,; in this testing
case. However, a large value of S,; is good for optimal design of LNA circuits. Compared with the initial data, the obtained
optimized result is improved. This phenomenon is due to a compromise among all physical constraints so that all character-
istics can meet their targets at the same time. However, it can be further improved by performing more evolution genera-
tions. Fig. 5 shows the initial state and an optimized result of S,, parameter. The goal is the same with the parameter S, i.e.,
the result is acceptable if S;; < —10 dB within the working frequency range. Very good result, —20 dB is achieved when we
refer to the setting of standard goal. Once the S parameters are optimized, with Eq. (9), we also calculate the K factor accord-
ingly [1].

Fig. 6 shows a comparison between the initial state and an optimized result of the noise figure. The desired specification
of the noise figure is that NF < 2 within the working frequency range. Both the initial state and an optimized result meet the
target, but the obtained optimized result is a little bit shifted away due to the same reason of a global compromise among all
electrical characteristics. Fig. 7 indicates the initial state and an optimized result of the input third-order intercept point. For
the optimization criterion of 1IP3, we do hope that the amplitude of output >—20 dB and is as large as possible. As shown in
Fig. 7, the optimized IIP3 = —26. Table 1 shows the optimized parameters of the investigated experiment and the Table 2
shows the corresponding optimized characteristics for the experiment. Results shown in both tables confirm the validity
of the method.
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Fig. 2. The initial state (dash-dot) and an optimized result (line) for the parameter of Si;.



Y. Li/Applied Mathematics and Computation 209 (2009) 57-67 63

36
39 |- ]
—~ /./..’/.
o] —
AL e
o
45
W

-48
2.10 2.12 2.14 2.16 2.18
Frequency (GHz)
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Fig. 4. The initial state (dash-dot) and an optimized result (line) for the parameter of S;.
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Fig. 5. The initial state (dash-dot) and an optimized result (line) for the parameter of Sy,.

Inspecting the sensitivities of extracted parameters is an important work in IC design and performance analysis. The sen-
sitivity examination of circuit parameters can point out which parameters affect behavior of the performance the most and
which ones barely make effect. This experiment is designed as follow. The proposed simulation-based evolutionary approach
optimizes single parameters category meanwhile locks other parameters. The LNA circuit parameters to be optimized are
classified into three categories illustrated in Table 3. As shown in Fig. 8, it reveals that the geometry parameters would make
the most improvement, while the input and output categories makes little improvement after 120 generations. This phe-
nomenon indicates that the geometry of the active devices is more difficult to be optimized than passive device parameters.
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Table 1
A list of the optimized parameters for the testing experiment
Element Unit Range Result
Cratcht fF 300-800 512.132
Cratch2 pF 1-10 4.6104
Crnatch3 pF 1-10 45511
Lbond nH 1-10 1.0782
Lgeg nH 0.1-5 1.145
Linatcn nH 1-10 6.202
Rioad Q 1.5-5.5 35
Lioad H 1.5-5.5 3.5
Vi1 \% 0.5-1.5 0.75
Va2 \Y 0.5-5 2.7
Table 2
The final achieved result
Specification Target Result
S <-10dB —14.1dB
S <-10dB -22.6dB
S12 <-25dB —39.3dB
So1 As large as possible 12.7 dB
K <1 10.7
NF <2 0.979
1pP3 <-10 -13
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Table 3
Three categories of the circuit parameter of the LNA circuit
Category Parameters
Geometry Ly, Wy, Ly, and W,
lnput Cmatchl' Lmatchl- Lbondv Lchoke- Cinv Ldegv Vi1, and Vb2
OUtDUt Lloadr Rloadv Cmatcth and Cmatch3
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—v— Output
, 035
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Number of generation

Fig. 8. A verification of the sensitivity analysis for the three cataloged parameters.
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Population size: 100
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Fig. 9. The fitness score versus the number of generations with respect to different population sizes.

By considering the experiment, Fig. 9 shows a comparison of the score convergence behavior among population sizes,
where the mutation rate is fixed at 0.5. The fitness score versus the number of generation suggests that the score conver-
gence behavior does not have a satisfied result if the population size is too small. According to our experience, the population
size = 50 is good for the optimal design of LNA circuit.

In addition, Fig. 10 shows the fitness score convergence behavior for the circuit optimization with different mutation rate,
where the population size = 50. The results suggest that the mutation = 0.5 keeps the population diversity and finally has
better evolutionary results.

Finally, the computational efficiency of the proposed simulation-based evolutionary approach is investigated. Fig. 11
shows the score convergence behavior comparison of the standard GA and the simulation-based evolutionary approach.
The setting is with the population size = 50 and mutation = 0.5. As shown in this figure, the proposed methodology is supe-
rior to the pure GA after 60 generations. The proposed method shows no significant advantage at the beginning because the
LM method has not been triggered yet. Once the LM method is activated, based on the result of GA to perform local optimi-
zation, the GA follows the local optima obtained by the LM method to keep evolving. Under this mechanism, our simulation-
based evolutionary approach shows better trend of convergence and the robustness of our proposed methodology hence is
held. We note that the LM method encounters divergent results when the optimization problem is solved.
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Fig. 11. The fitness score versus the number of generations for the pure GA and the proposed simulation-based evolutionary approach.

5. Conclusions

In this paper, a simulation-based evolutionary approach for optimal design of LNA circuit has been reported. Based on the
GA, the LM, and a well-known circuit simulator, the engineering optimization problem has successfully been solved accord-
ing to the simulation-based evolutionary approach. Electrical characteristics of the explored LNA circuit considered in the
optimization process are Sy1, S12, S21, S22, K factor, the noise figure, and the input third-order intercept point. Testing exam-
ples of LNA circuits with the 0.18 pm MOSFETs have been examined to show the validity, efficiency, and robustness of the
method. To explore the realistic feasibility of optimized designs of the LNA circuit, we are currently fabricating and testing
the functionality of the corresponding IC chips. We note that this simulation-based evolutionary approach can also be ap-
plied to optimal design of other circuit modules with more advanced technology nodes. Developed algorithms that based
on this simulation-based evolutionary approach can be directly incorporated into any existed electronic computer-aided de-
sign software which benefits the communities of design and fabrication. Currently, we apply the method to optimal design of
operation amplifier and phase-locked loop circuits, and pattern optimization of antenna problems. Furthermore, to enhance
the efficiency, distributed computing technique will be considered [20].
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