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Abstract Test wafers are used to measure the process qual-
ity in semiconductor manufacturing. Test wafers are reusable by
recycle cleaning and can be downgraded to the downstream pro-
cesses. Most previous studies on test wafers aimed to reduce
the use of test wafers by making appropriate operational de-
cisions. Yet, the effective improvement of yield in the recycle
process of test wafers is seldom explored. This paper formu-
lates a decision problem and proposes two solution methods for
selecting the yield improvement alternatives in the test wafer re-
cycle processes. The decision problem is to determine the yield
improvement target for each recycle process in order to minimize
the use of test wafers, under a given budget for yield improve-
ment. The two solution methods involve a genetic algorithm and
a marginal allocation algorithm. The two methods yield very
close solutions, but the marginal allocation method is better be-
cause it requires less computation time.

Keywords Control wafers · Monitor wafers · Test wafers ·
Yield improvement

1 Introduction

In semiconductor manufacturing, test wafers are indispensable
materials, used in ensuring the production quality. Test wafers,
also called control wafers or monitor wafers, are used to monitor
the quality of tools and processes. To control a tool/process, test
wafers may be run before or concurrently with product wafers.
Output parameters are then taken from test wafers to make ad-
justments on the tool/process, if necessary.

A semiconductor fab keeps many types of test wafers with
different specifications. Test wafers of a particular specification
are stored in a dedicated buffer, which supplies to one or many
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tools. A test wafer, after being used in a tool, is sent to a clean-
ing recycle process for possible reuse. The recycled test wafers if
meeting the original specification are kept in the present buffer.
Those becoming lower in grade are downgraded to some other
buffers. Test wafers in a buffer can be repeatedly recycled up to
a limited number.

The process flow of using test wafers typically involves the
following five steps: preprocessing, in-use, cleaning recycle,
downgrade, and grinding reclaim. A test wafer for measuring the
quality of an etching process is used to explain these steps. The
preprocessing step is to deposit a film on the wafer. The in-use step
measures the thickness of the film before and after the etching pro-
cess to monitor the process quality. The cleaning recycle step, as
mentioned above, is to remove the film and clean the test wafer
for reuse. The downgrade step is to deliver the test wafer to lower-
grade buffers. The downgrade relationship among the test buffers
is a directed graph (Fig. 1). The grinding reclaim step is to grind
off some 20–30 µm silicon materials from the test wafer for reuse;
a reclaimed test wafer is functionally like a brand-new one.

Much literature on test wafers has been published. Wong
and Hood [13] studied the impact on cycle time and throughput
caused by increasing the number of process monitoring, which
consequently increases the demand of test wafers. Wu [14] ex-
amined the dispatching policy of test wafers and product wafers
in the preprocessing stage. Popovich et al. [9] developed an auto-
mated ordering process to maximize the reuse of test wafers.
Chu [4] investigated the policy for setting safety stock level in
each test wafer buffer. Watanabe et al. [11] proposed a procedure
to increase the use ratio of reclaimed test wafers. Another ad-
dresses the downgrade decision problem; that is, how many test
wafers should be delivered to each of its descendant buffers from
a particular buffer. Some studies [1, 3, 6] developed the down-
grade decision methods by considering the instantaneous work
in process (WIP) level and demand of test wafers. Lu [8] ana-
lyzed the cost structure of test wafers and solved the problem
by considering the long-term demand and supply of each buffer.
In summary, most previous studies focused on the improvement
of operation policies for test wafers, under a given set of sys-
tem parameters. Yet, very few examine the improvement of these
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Fig. 1. Downgrade relationships among test buffers

system parameters, such as yield rates of recycle processes, for
reducing the use of test wafers.

This paper studies how to establish an effective yield im-
provement plan for cleaning recycle processes. The decision
problem is to determine the target yield rate of each buffer so
that the use of brand-new test wafers can be minimized under
a given budget for yield improvement. We adopt the downgrade
decision model developed by Lu [8] to determine the usage of
brand-new wafers for a particular set of recycling yield rates.
Changing the set of yield rates will change the usage of brand-
new test wafers. Two solution methods are developed to find a set
of yield rates in order to minimize the usage of brand-new test
wafers. These two solution methods involve a genetic algorithm
(GA) and a marginal allocation algorithm.

The remainder of this paper is organized as follows. Sect. 2
reviews the downgrade decision model developed by Lu [8].
Sect. 3 describes the problem of planning the yield improvement
of the cleaning recycle. Sect. 4 presents the two solution methods
as well as the experiment results. Experiment results are pre-
sented in Sect. 5 and concluding remarks in Sect. 6.

2 Downgrade decision model

2.1 Cost analysis

The cost of test wafers in a fab involves three major items: (1) the
cost of machine idleness due to lack of test wafers, (2) the usage

cost of test wafers, and (2) the storage cost of test wafer (WIP)
in shop floor. By interviewing several 8 inch fab sites in industry,
Lu [8] estimates that the storage cost of test wafers is about 2.4%
of the usage cost; and is at most 5% of the machine idleness cost.

From the cost analysis, the safety stock level of test wafers
can be assumed to be high enough to always fulfill the time vary-
ing demand. Based on such an assumption, Lu [8] modeled the
downgrade decision as a static decision problem. That is, the in-
put and output average daily flow rates of each test wafer buffer
should be balanced.

2.2 Downgrade decision problem

In a typical fab, the downgrade relationship among test wafer
buffers is a directed graph. Referring to Fig. 1, the directed graph
involves four types of buffers. Working buffers (c1 − c6) directly
supply test wafers to tools. The releasing buffer (c0) releases
brand-new or reclaimed test wafers to working buffers. The re-
claiming buffer (c7) reclaims test wafers, and sends them to
either the releasing buffer or the scrapping buffer. The scrapping
buffer (c8) scraps the test wafers that cannot be reclaimed further.

A working buffer stores m categories of test wafers, where
m denotes the maximum number of cleaning recycles. Category
i(1 ≤ i ≤ m) represents test wafers that have received cleaning
recycle i times. A test wafer in category i, after receiving one
more cleaning recycle, becomes one in category i +1. Any test
wafer in a particular working buffer, whatever category it be-
longs to, is regarded as the same in specification. Each cleaning
recycle in a certain buffer has a distinct yield rate. Figure 2 shows
various categories of test wafers in a working buffer.

The downgrade decision problem is to determine the daily
flow rate of test wafers to be downgraded among buffers in order
to minimize the usage of brand-new test wafers.

2.3 Notations

Let the downgrade path between the reclaiming buffer and
the releasing buffer be called the feedback path. By eliminat-
ing the feedback path, the directed graph becomes one with-
out a loop, which can be denoted by G = (V, E) where V =
{c0, c1, . . . , cr , cr+1} is a finite set of buffers and E is a set of
arcs. An arc represents an ordered pair of two buffers. A path
from ci to cj exists if one can traverse from ci to cj through pass-
ing k arcs (k ≥ 1). If there is a path from ci to cj , then ci is
said to be an ancestor of cj , and cj is said to be a descendant of
ci . Additionally including the feedback path, the overall down-
grade relationships can be denoted by S = (G, f), where f is the
arc cr → c0. Referring to S = (G, f), the following notations are
used to formulate the downgrade decision problem.

Designations and sets.

ci Designation of test buffer i; 0 � i � r + 1, c0 is the re-
leasing buffer, cr is the reclaiming buffer, cr+1 is the
scrapping buffer, and ci (1 � i � r − 1) is a working
buffer.
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Fig. 2. A working buffer stores several categories of test wafers

P(i) The set of ancestor buffers of ci in diagraph G, exclud-
ing c0, i.e. c0 /∈ P(i).

S(i) The set of descendant buffers for ci in diagraph G.

Parameters.

Di Average daily demand of test wafers in ci , 1� i � r −1.
m(i) Maximum number of cleaning recycle in ci , 1� i � r −

1.
r [k]

i The yield of kth cleaning recycle in ci , 1� k �m(i)
n Maximum number of grinding reclaim in cr

h[k] The yield of kth grinding reclaim in cr , 1� k � n.

Variables.

Oij Daily quantity of test wafers downgraded from ci to cj in
diagraph G.

Ni Daily quantity of brand-new test wafers downgraded to
ci from c0, 1� i � r −1.

N Daily quantity of brand-new test wafers downgraded

from c0; N =
r−1∑

i=1
Ni .

Yi Daily quantity of reclaimed test wafers downgraded to ci

from c0.
Z[k] Daily quantity of test wafers, with k times of reclaim,

sent to c0 from cr .
Z Daily quantity of reclaimed test wafers sent to c0 from

cr , Z =
n∑

k=1
Z[k].

X[k]
i Daily quantity of test wafers in ci with kth cleaning re-

cycle.

2.4 Model

Lu [8] formulates an LP model for the downgrading decision as
follows. The model assumes that the input flow rate should equal
the output flow rate for each buffer. Otherwise, the WIP level of
each buffer may increase to infinity.

Min
r−1∑

i=1

Ni

s. t.

N + Z =
r−1∑

j=1

Nj +
r−1∑

j=1

Yj (1)

Nj +Yj +
∑

i∈P( j)

Oij = X[0]
j 1 ≤ j ≤ r −1 (2)

X[k]
j = r [k]

j · X[k−1]
j 1 ≤ j ≤ r −1 (3)

m( j)∑

k=0

X[k]
j = Dj 1 ≤ j ≤ r −1 (4)

∑

j∈s(i)

Oij = X[0]
0 1 ≤ j ≤ r −1 (5)

∑

j∈P(r)

Ojr =
n∑

k=1

Z[k] + Or,r+1 1 ≤ j ≤ r −1 (6)

Z[1] = h[1] · N (7)

Z[k] = h[k] · Z[k−1] (8)

Or,r+1 = N (9)

Ni ≥ 0; Zi ≥ 0; Yi ≥ 0; Oij ≥ 0 (10)

The objective function is to minimize the daily usage of brand-
new test wafers. Constraint (1) denotes the flow balance relation-
ship in buffer c0. Constraints (2) indicate the inputs to a working
buffer. Constraints (3) describe the yield relationship of a clean-
ing recycle in a working buffer. Constraints (4) denote that the
demand in a working buffer ci is supplied by several categories
of test wafers. Constraints (5) indicate the output of a working
buffer. The left-hand side describes where the output test wafers
are downgraded. The right-hand side denotes the sources of the
output.

Constraint (6) denotes the flow balance relationship of the
reclaiming buffer cr . The inputs are from all working buffers,
represented in the left-hand side. The output involves two types
of reclaimed test wafers, either within specification for reuse or
out-of-specification for scrapping. Constraints (7) and (8) repre-
sent the yield relationships of grinding reclaim. Constraint (9)
denotes that flow balance of the whole fab; that is, all the brand-
new buffers finally have to go to the scrapping buffer cr+1. Con-
straints (10) denote that all variables are non-negative.
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3 Problem of planning yield targets

The decision problem of planning the recycle yield rate for each
working buffer is discussed below. The cleaning recycle of test
wafers is usually executed in a wet etch process. That is, putting
test wafers in chemical solution for some time to clean the sur-
face of test wafers. By changing recipes and process parame-
ters, such as solution concentration or the time of bathing, the
yield rate of recycle would change. Engineers need to experi-
ment for the yield improvement. According to engineers’ experi-
ences, the higher is the target yield improvement, the more is the
number of experiments and consequently the higher is the cost
incurred.

To explain the yield planning problem, the following nota-
tions as well as those presented in Sect. 2 are referred.

Notations
R = [R1, R2, . . . , Rr−1]: the current yield vector of the fab,

where Ri = [r [1]
i , r [2]

i , . . . , r [m(i)]
i ]: denotes the current yields at

buffer ci and r [k]
i is the yield of the kth recycle.

R̃ = [R̃1, R̃2, . . . , R̃r−1]: a new yield vector of the fab,
where R̃i = [r̃ [1]

i , r̃ [2]
i , . . . , r̃ [m(i)]

i ] denotes the new yields at
buffer ci and r̃ [k]

i is the new yield of the kth recycle.
X = [X1, X2, . . . , Xr−1]: a yield improvement plan, where

Xi = R̃i − Ri = [x[1]
i , x[2]

i , . . . , x[m(i)]
i ] denotes the yield im-

provement targets at buffer ci , and x[k]
i = r̃ [k]

i − r [k]
i denotes the

yield improvement target of the kth recycle.
C(x[k]

i ): the cost incurred for the yield improvement in the
kth recycle at buffer ci .

C(X) =
r−1∑

i=1

m(i)∑

l=1
C(x[k]

i ): the cost incurred for a yield im-

provement plan X.
B: the budget for improving the recycle yield of working

buffers.
The LP model presented in Sect. 2 can be alternatively in-

terpreted as N = L(R). That is, given a yield vector R, the LP
model L can compute the minimum daily usage of brand-new
test wafers N . The problem of planning yield improvement tar-
gets can thus be formulated as follows.

MaxL(R)− L(R̃)

X = R̃ − R

C(X) ≤ B

The decision variables are represented by a yield improve-
ment plan X. The objective function is to maximize the saving in
the usage of brand-new test wafers, under a given budge B.

4 Solution methods

Two solution methods have been developed for solving the yield
planning problem. One is a genetic algorithm and the other is
a marginal allocation algorithm.

4.1 Genetic algorithm

Genetic algorithm (GA) techniques, widely applied in various
areas, are a random-search method for locating efficiently a near-
optimal solution in the enormous space [2, 5, 7]. A GA is an it-
erative procedure that maintains a constant-sized population P(t)
of candidate solutions (called chromosomes). During each itera-
tion step t, called a generation, new chromosomes are created by
invoking some genetic operators. Each existing and newly gen-
erated chromosome is evaluated to determine its fitness value,
which denotes how good the solution is. Based on these evalua-
tions, a set of chromosomes are chosen by a selection procedure
to form the new population P(t +1). The procedure is iteratively
performed until the termination conditions are met.

The proposed GA for solving the yield planning problem is
presented below.

A chromosome and initial population. A chromosome, a yield
improvement plan, is denoted by X = [X1, X2, . . . , Xr−1] con-
sisting of r −1 strings, where a string Xi = [x[1]

i , x[2]
i , . . . , x[m(i)]

i ]
contains m(i) positive numbers. Let UB(x[k]

i ) represents the up-
per bound of x[k]

i and the interval [0, UB(x[k]
i )] be divided into n

segments, where n = round-up

(
UB(x[k]

i )

d

)

. Each of the first n −1

segments has a distance d, and the distance of the last segment
is UB(x[k]

i )− (n −1)d. The value of x[k]
i is chosen from the set

of the n +1 end points, denoted by S(x[k]
i ). Let Np be the total

number of chromosomes in the population P(t). The initial popu-
lation P(0) is created by randomly generating Np chromosomes.

B fitness function. The fitness function of X is defined as follows,
where the first term denotes the objective function.

F(X) = [ f(R)− f(R̃)]−Y [C(X)− B],
where

Y = 0 if C(X) ≤ B

= M else, where M is a very large positive number

The second term is a penalty function [10], which leads to
a small fitness value if the solution violates the budget constraint.
A chromosome with a small fitness value is less likely to survive
during the evolution of the population and tends to finally be ex-
cluded from the population. The penalty design is to keep “good
genes” in the population. For a budget violation chromosome,
particular segments of its genes may exactly match a part of the
optimum solution. Possibly carrying good genes, violation chro-
mosomes shall not be forcibly excluded from each population.

C crossover and mutation operators. The proposed GA defines
two genetic operators, crossover and mutation, to create new
chromosomes. The crossover operator is designed to create Np ×
Pcr new chromosomes in each generation, where Pcr is a pre-
defined crossover probability. This operator is applied by first
randomly choosing Np × Pcr chromosomes from P(t) and ran-
domly grouping them into (Np × Pcr)/2 pairs. For each pair of
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chromosomes, a position in a chromosome (called the crossover
point) is randomly chosen, and the segments to the right of the
crossover point exchanged.

The mutation operator is designed to create Np × Pmu new
chromosomes from P(t), where Pmu is a predefined probability
of mutation. This operator is applied by first randomly select-
ing Np × Pmu chromosomes from P(t). For each chosen chro-
mosome, a gene x[k]

i is randomly selected and is subsequently
replaced by a number randomly chosen from the set S(x[k]

i ).

D selection strategy. The chromosomes in population P(t) and
the newly created chromosomes are put in a pool, called S,
where the number of chromosomes is h = Np · (1+ Pcr + Pmu).
Np chromosomes are to be selected from S to the population
P(t +1), by the rank-space method [12] for preventing the ge-
netic search from becoming trapped at a local optimum solution.
The procedure of the rank-space method is presented below.

Step 1 Sort in descending order the chromosomes in S ac-
cording to their fitness values. Let Z1, Z2, . . . , Zh be
the sorted result. Such a ranking of Zi , termed quality-
ranking, is represented by Rq(Zi).

Step 2 Move the best quality-ranking chromosome from S to
P(t +1).

S = S −{Z1};
P(t +1) ← Z1;
Y1 = Z1; /∗ rename the chromosome selected

for P(t +1) ∗/

N = 1; /∗ count the chromosome number

in P(t +1) ∗/

Step 3 For each chromosome Zi in S, compute the diversity in-
dex D(Zi).

D(Zi) =
N∑

k=1

1
|Zi −Yk| ; /∗ Yk is a chromosome

in P(t +1) ∗/

Step 4 Sort in ascending order the chromosomes in S accord-
ing to D(Zi). Such a ranking of Zi , termed diversity-
ranking, is represented by Rd(Zi).

Step 5 Compute the sum of quality-ranking and diversity-
ranking of Zi in S.

T(Zi) = Rq(Zi)+ Rd(Zi)

Step 6 Sort in ascending order the chromosomes in S accord-
ing to T(Zi). Such a ranking of Zi , termed combined-
ranking, is represented by Rc(Zi).

Step 7 For each chromosome in S, compute the probability of
putting Zi in P(t +1).

r = Rc(Zi)

Prob(Zi ) = p · (1− p)r−1; /* p is a predefined probabil-
ity, typically set to 0.667*/.

Step 8 Generate a random number and determine which chro-
mosome in S is selected. Let Zm be the selected chromo-
some.

S = S −{Zm}; /∗ Move Zm from S to P(t +1) ∗/

P(t +1) ← Zm;
Ym = Zm; /∗ rename the chromosome

selected for P(t +1) ∗/

N = N +1; /∗ update the chromosome

number in P(t +1) ∗/

Step 9 Termination check

If N < Npthen go to Step 3

Else Stop

E terminating conditions. Population P(t) is iteratively updated
until a particular chromosome keeps the best solution for over
NG generations or NE generation has been created.

4.2 Marginal allocation algorithm

The proposed marginal allocation algorithm is an analytical
method. The idea of this algorithm is to compute the cost and
benefit caused by one unit yield improvement for each recycle at
each buffer. Then, select the one, which is the most beneficial and
meets the budget constraint, to update the yield parameters. The
process is repeated until the cost incurred is over the budget. The
procedure of this algorithm is presented below.

Step 0 Initialization and function definition

X = [0, 0, . . ., 0]; i.e., x[k]
i = 0,

for 1 ≤ i ≤ r −1; 1 ≤ k ≤ m(i)

Ek
i : a unit vector by replacing the value

of x[k]
i in X by 1

k = Up_Arg(R̃k
i ) /∗ define function Up_Arg() ∗/

i = Low_Arg(R̃k
i ) /∗ define function Low_Arg() ∗/

Step 1 Compute the benefit of increasing yield by one unit of d.

R̃k
i = R + (X +d · Ek

i ); for1 ≤ i ≤ r −1; 1 ≤ k ≤ m(i)

Step 2 Select the most beneficial alternative.

p = Up_Arg(Max
i,k

(R̃k
i ));

for 1 ≤ i ≤ r −1; 1 ≤ k ≤ m(i)

q = Low_Arg(Max
i,k

(R̃k
i ));

for 1 ≤ i ≤ r −1; 1 ≤ k ≤ m(i)
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Step 4 Check if the cost is within the budget.

If C(X +d · E p
q ) > B

then return X; Stop

Else X = X +d · E p
q /∗ update the yield

improvement plan X ∗/

Go to Step 1

5 Experiment results

Experiments for justifying the two solution methods are executed
by using a simplified fab involving six working buffers as shown
in Fig. 1. The daily demand of test wafers and the current yield
rate of each recycle at each working buffer are listed in Table 1.
Assume UB(x[k]

i ) = 9% for 1 ≤ i ≤ r −1 and 1 ≤ k ≤ m(i). The
cost function for improving the yield of the kth recycle at each
buffer is the same, i.e., C(x[k]

i ) = C(x[k]
j ) for i �= j , as shown

in Table 2. The budget for yield improvement is B = $50, 000
and the unit yield increment is d = 1%. The current daily us-
age rate of brand-new test wafers, computed by the LP model,
is L(R) = 1188.79. Table 3 shows the cost and benefit of the
solution obtained by applying the marginal allocation method,
where L(R̃) = 1036.76. Notice that buffers c1, c2, and c6 are not
suggested to improve the yield at the present budget. This im-
plies that their local improvements have very few or no impact
on the global improvement. Buffer c5 has the highest priority
for yield improving. Such a yield target planning can effectively
guide engineers to prioritize their jobs in order to maximize their
contributions.

The GA is coded in C++ which calls the downgrade deci-
sion LP model implemented in CPLEX. The parameters of GA
are set as follows: Pcr = 0.8, Pmu = 0.05, Np = 100, NG = 500,
and NE = 10, 000. Table 4 shows the results of 20 experiment

Table 1. Daily demand and current recycle yields at working buffer cj

c1 c2 c3 c4 c5 c6
Dj 3665 2538 2226 2336 6110 1448

r[1]
i 90% 90% 90% 90% 90% 90%

r[2]
i 80% 80% 80% 80%- 80% 80%

r[3]
i 70% 70% 70% 70% 70% 70%

r[4]
i 60% 60% 60% 60% 60% 60%

Table 2. Cost function of yield improvement for kth recycle at each buffer

Variable definition Cost function

y = x[1]
i C(y) = 100+450y +30y2

y = x[2]
i C(y) = 100+500y +35y2

y = x[3]
i C(y) = 100+550y +40y2

y = x[4]
i C(y) = 100+600y +45y2

Table 3. Solution obtained by marginal allocation method

Chromosome C(X) L(R)− L(R̃)

0000|0000|9800|9900|9991|0000 $49,985 152.03

Table 4. Solutions obtained by 20 runs of GA

Chromosome C(X) L(R)− L(R̃)

0000|0000|9700|8810|9985|0000 $49,845 150.588
0000|0000|9900|9740|9980|0000 $49,925 150.924
0000|0000|9730|9800|9991|0000 $49,975 151.937
0000|0000|9901|8900|8991|0000 $49,905 147.39
0000|0000|9900|9910|9963|0000 $49,880 149.779
0000|0000|9620|7850|9982|0000 $49,765 149.506
0000|0000|9500|9761|9990|0000 $49,840 150.115
0000|0000|9530|9900|9920|0000 $49,965 151.739
0000|0000|9820|9500|9994|0000 $49,860 151.529
0000|0000|9900|9900|9891|0000 $49,985 149.927
0000|0000|9700|9900|9992|0000 $49, 695 151.832
0000|0000|7700|9600|9997|0000 $49,785 149.66
0000|0000|9700|9813|8991|0000 $49,900 147.046
0000|0000|9700|9900|9992|0000 $49,695 151.832
0000|0000|9900|8741|9980|0000 $49,710 149.566
0000|0000|9900|7800|9993|0000 $49,685 150.48
0000|0000|9760|9700|8990|0000 $49,975 147.513
0000|0000|9900|9910|9980|0000 $49,795 150.981
0000|0000|9700|9940|9980|0000 $49,925 151.046
0000|0000|9700|9680|9970|0000 $49,820 148.348

runs. These 20 different yield improvement plans are quite close
in the C(X) and L(R)− L(R̃). The mean of L(R)− L(R̃) is
150.09 and the standard deviation is 1.526.

The results obtained by the marginal allocation method are
slightly better than those obtained by GA. Also, the computa-
tion time per run for GA takes about 30 min. while that for
the marginal allocation method takes only 10 s. A typical fab
may include more than 100 working buffers, which implies that
a chromosome may involve 400 genes. Accordingly, the com-
putation time of the GA method may increase substantially. The
marginal allocation method seems better in solving the addressed
problem in the real world.

6 Concluding remarks

This research formulates and solves a problem for planning the
yield targets of test wafer recycle processes. Test wafers are used
for monitoring tool or process quality in semiconductor manu-
facturing. Test wafers after use are often recycled for possible
reuse. A test wafer allows a limited number of recycles. The cost
and benefit for improving the yield rate in each recycle at each
buffer may be different. The addressed problem is to determine
the allocation of yield improvement targets in order to maximize
the benefit under a given budget.

An LP model is used to evaluate the benefit of a yield improve-
ment plan, by computing the minimum daily usage of brand-new
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test wafers. Based on the benefit evaluation module, two methods
for finding an optimum yield improvement plan are proposed. One
is the genetic algorithm and the other is the marginal allocation al-
gorithm. The solution obtained by the marginal allocation method
is slightly better, which also takes much less time in computa-
tion. This fast computation feature becomes much more important
when the problem size substantially increases.

The solution of the addressed problem can effectively guide
engineers to prioritize the jobs of yield improving in order to
maximize their contributions. Inappropriate priority settings may
increase the yield of a particular buffer but have very little or no
impact on saving brand-new test wafers.
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