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In this paper, we introduce a variant of the relocation problem, which was formulated from a

public house redevelopment project in Boston. In the problem of interest, given some initial

resources in a common pool there is a set of jobs to be processed on a two-machine flowshop.

Each job acquires a specific number of resources to start its processing and will return

a number of resources to the pool at its completion. The resource consumption and resource

recycle processes are performed on machine one and machine two, respectively, in a two-

machine flowshop style. Abiding by the resource constraints, the problem seeks to find a

feasible schedule whose makespan is minimized. In this paper, we first present NP-hardness

proofs for some special cases. Three heuristic algorithms are designed to compose

approximate schedules. Two lower bounds are developed and then used to test the

performance of our proposed heuristics. Numerical results from computational experiments

suggest that the proposed heuristics can produce quality solutions in a reasonable time.

Keywords: Relocation problem; Flowshop; Makespan; NP-hard; Heuristic algorithms; Lower bound

1. Introduction

The study on the relocation problem originated from the

redevelopment of buildings in a housing project in

Boston (Kaplan 1986, PHRG 1986). In the project, a

number of buildings were to be torn down and erected

for regional development. Before the project started, the

authority encountered the situation that temporary

housing units were required by the tenants who would

be evacuated during the rehabilitation process. The

authority needed to determine a minimum budget

required for temporarily housing the evacuated tenants.

Kaplan (1986) first formulated, through an analytical

study, the problem of determining a construction

sequence of the buildings subject to the initial budget

allocated. This problem can also be studied from an

optimization point of view, that is, to determine the

minimum initial budget guaranteeing a feasible redevel-
opment sequence of the buildings. Theoretical signifi-
cance of the relocation problem lies in its mathematical
equivalence to the classical Johnson’s two-machine

flowshop problem of makespan minimization (Johnson
1954, Kaplan and Amir 1988). The financial constraint
problem (Xie 1997) can be also treated as a special case
of the relocation problem. From a practical point of
view, it has implications related to the memory manage-

ment issue in database systems (Amir and Kaplan 1988).
We formally introduce the relocation problem in the

following. A project is initiated to redevelop B buildings
withV0 temporary housing units. At the beginning of this
project, each building i has ni rooms (i¼ 1, . . . ,B). After
reconstruction, each building i can have a capacity of ai
rooms. The new capacity of a building is not necessarily

the same as the original one. For example, if building i
does not exist before the reconstruction project, then its
original capacity ni¼ 0. On the other hand, if building i is
to be demolished, then ai¼ 0. In general, there is no*Corresponding author. Email: bmtlin@mail.nctu.edu.tw
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restricted relation between ai and ni, i.e. ai< ni, ai> ni or
ai¼ ni is allowed. Although ai could be greater, equal or
less than ni, the sum of ab should be greater than the sum
of nb; we denote the restriction as

PB
1 ai �

PB
1 ni. If the

constraint is not specified, some households would
become homeless after the redevelopment project.
From the aspect of scheduling theory, we may say that
the relocation problem is a generalized version of
conventional resource-constrained scheduling problems
(Blazewicz et al. 1986, 1989) in the following sense. There
are V0 units of resources available in a common resource
pool for processing a set of B jobs, each i of which
requires ai units of resources from the pool and returns ai
units to the pool at its completion. The goal seeks to
compose a job sequence such that each job can be
successfully processed, i.e. when a job is scheduled to
start, resources in the pool are sufficient to support its
requirement.
The basic relocation problem centers on the feasibility

issue instead of temporal considerations as most schedul-
ing problems. However, it is mathematically equivalent
to the classical two-machine flowshop scheduling pro-
blem of makespan minimization. In Kaplan’s study
(1986), multiple working crews are assumed, i.e. more
than one buildings could be simultaneously developed if
resources were available, and the objective is to design a
redevelopment schedule of minimum makespan, i.e. the
maximum completion time. He proposed a myopic to
deliver approximate solutions. Amir and Kaplan (1988)
showed that this problem is NP-hard by a reduction from
Partition, which is NP-hard in the ordinary sense. Since
then, the complexity status of the two-machine case had
remained open until Kononov and Lin (2004) confirmed
its strong NP-hardness. For other previous works on the
relocation problem, the reader is referred to Kaplan
(1986), Amir and Kaplan (1988), Kaplan and Berman
(1988), Lin and Tseng (1991, 1992, 1993), Lin and Cheng
(1999).
In this paper, we study a new generalization that

arises from the practical situations where the resources
of each completed task are available only after a
recycling process that in the mean time needs another
type of working crew. In the sense of house redevelop-
ment, we may say that there is a crew for demolishing
the buildings and a second team for erecting new
buildings from the sites where buildings have been
destroyed. The interest of investigation into this general-
ization lies in another interpretation concerning
resource-constrained project management. Each job of
the set demands resources for processing and releases
some amount of resources. The constraint is that the
resources must be recycled before becoming available to
successor jobs. Therefore, machine one and machine two
in this setting can be referred to as processing machine
and recycle machine, respectively. When the process of

a job is split into two parts on two different machines,
the complexity of the overall decision increases to a
certain degree. A very interesting characteristic behind
the studied problem is that while the relocation problem,
without any temporal constraints, is equivalent to two-
machine flowshop scheduling problem, we now have
another dimension involving a flowshop of two
machines. In other words, two dimensions related two-
machine flowshop are interrelated and considered
simultaneously.

The rest of this paper is organized as follows. In
Section 2, we shall give a formal definition of the two-
machine flowshop relocation problem and an example
to illustrate the definition. In Section 3, we present some
complexity results, including proofs for NP-hardness.
As the problem turns out to be computationally
challenging, we develop in Section 4 heuristic algorithms
and computational experiments. Finally, we give some
concluding remarks in Section 5.

2. Problem statements

In this section, a formal formulation will be defined. The
notation that will be used throughout this paper will also
be introduced.

With a number of initial resources V0 in a common
resource pool, a set of jobs N¼ {1, 2, . . . , n} is to be
processed on a two-machine flowshop. Each job i has
two subtasks where task one and task two must be
processed by machine one and machine two, respec-
tively. The processing times needed are pi and qi. The
processing of the first task of job i will consume ni units
of resources immediately when the processing starts.
That is, the processing can be started only if machine
one is available and there are at least ni units of
resources available in the common resource pool. The
processing of the second subtask cannot commence
unless its first subtask is finished and machine two is
available. At the completion of the second subtask on
machine two, ai units of resources will be produced and
returned to the common pool. The value of ai is not
necessarily equal to that of ni. For an illustration of the
problem definition, we consider the set of three jobs
under V0¼ 5 shown in table 1. Gantt charts and
resource levels of two example schedules S1: 1-2-3 and
S2: 3-2-1 are shown in figure 1. Schedules S1 and S2 are
both feasible, but S1 achieves a better makespan.

Adopting the three-field notation used in Graham
et al. (1979), we denote the problem of concern by
F2RP//Cmax. The first field indicates the problem’s
environment, i.e. a two-machine flowshop for the
relocation problem. The second field denotes specific
conditions on job characteristics, such as all jobs
have the same resource requirement or the same
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processing time. The last field specifies the objective
function that we are seeking to optimize.
For the classical two-machine flowshop problem,

Johnson (1954) proposed an elegant solution algorithm,
which arranges the jobs such that for jobs i and j,

i precedes j if min{pi, qj}�max{pj, qi}. In another
interpretation, the algorithm consists of three steps:
1. Partition the jobs set into Nþ¼ {i | i2N and pi� qi}
and N�¼N�Nþ; 2. Arrange the jobs of Nþ

in non-decreasing order of pi, and arrange the jobs

5

7

4

1

5

6

2

Resource level

time 

M1

M2

Schedule S1 = 1-2-3 Z(S1) = 7

Resource level

time

5

2
3

0

4

1

6

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7

M1

M2

Schedule S2 = 3-2-1 Z(S2) = 9

Figure 1. Example schedules with evolution of resource levels.
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of N� in non-increasing order of qi; and 3. Append the
subsequence of N� into that of Nþ. Regardless of
processing times, the basic relocation problem is to
determine the minimum number of initial resources that
guarantees the existence of a feasible schedule. We call
this basic guarantee for job set N as the minimum
resource requirement of N and denote it by V(N).
Kaplan and Amir (1988) have shown that to find a
schedule achieving V(N), Johnson’s algorithm can be
applied by letting pi¼ ni and qi¼ ai. The above
algorithm has a practical implication because the jobs
that are beneficial in terms of resources (pi� qi or ni� ai)
are of course scheduled first. The two problems are
mathematically equivalent by the fact that the cumu-
lated idle time of a schedule in a two-machine flowshop
problem is equal to the minimum resource requirement
of its corresponding instance in the relocation problem.
Although polynomial time algorithms exist for the two
problems, when we have a two-dimensional flowshop
(one for temporal consideration and the other for
resource constraint), the problem’s structures become
sophisticated and hinder the development of efficient
solution algorithms.

3. Complexity results

As we mentioned in the previous section, like Johnson’s
problem and the financial constraint problem, the
feasibility issue of the relocation problem can be
resolved in polynomial time by a simple ordering
procedure. However, the complexity of the relocation
problem arises when the demolishing time and recon-
struction time are taken into consideration. In this
section, we present the complexity results of the problem
and some special cases.
First, we present a strong NP-hardness proof of the

problem under study through a polynomial time
reduction from the 3-Partition problem, which is
known as strongly NP-hard (Garey and Johnson 1979).

3-Partition: Given an integer B and a set A of
3n positive integers x1, x2, . . . , x3n, B/4< xi<B/2,
1� i� 3n, such that

P3n
i¼1 xi ¼ nB, is there a partition

A1,A2, . . . ,An of the set A such that j
P

xl2Al
xi ¼ B,

1� l� n?

Theorem 1: The special case F 2RP//Cmax is strongly
NP-hard, even if all jobs have the same processing time on
machine one.

Proof: We use F 2RP/pi¼ p/Cmax to denote the condi-
tions specified in the theorem. It is not hard to see that
the decision version of the special case F2RP/pi¼ p/Cmax

is in NP. Next, we perform a polynomial-time reduction
from 3-Partition. For a given instance of 3-Partition,
we construct a corresponding set of 4n jobs for the
F 2RP/pi¼ p/Cmax problem as follows:

Ordinary jobs : pi ¼ B, qi ¼ B� xi, ni ¼ 0,

and ai ¼ xi, 1 � i � 3n;

Enforcer jobs : pi ¼ B, qi ¼ 2B, ni ¼ B,

and ai ¼ 0, 3nþ 1 � i � 4n;

Let the number of initial resources V0¼B. We claim
that there is a partition as specified in 3-Partition if and
only if there is a feasible schedule whose makespan is no
greater than (4nþ 1)B. Because the sum of processing
times on machine two of all jobs is 4nB, only those
schedules whose total idle time is equal to or less than B
will be considered in the following proof.

If there is a desired partition A1, A2, . . . ,An of the set
A in 3-Partition, then we schedule the enforcer job
3nþ 1 first. The jobs corresponding to the three
elements of A1 follow. The second enforcer job 3nþ 2
is then scheduled. Successively, the jobs corresponding
to the three elements of A2 are scheduled. Continuing
the dispatching, we can work out a schedule that has
only an idle time of B before the first job on machine
two, i.e. a makespan of (4nþ 1)B.

Assume that there is a schedule for the F2RP/
pi¼ p/Cmax problem whose makespan is no greater
than (4nþ 1)B. As all jobs have the same processing
time B on machine one, an idle time of B before the first
job on machine two is inevitable. This fact implies that
no further idle time is allowed in the schedule. If an
ordinary job is scheduled first, then there will be non-
zero idle time before the second job on machine two.
Therefore, some enforcer job, say 3nþ 1, must be
assigned to the first position. At the completion, the
resource level reduces to zero, which constrains that only
ordinary jobs can be scheduled next. Let us focus on the
jobs, say j1, j2, . . . , jk, scheduled between the first and the
second enforcer jobs. To accumulate sufficient resources
for the processing of the second enforcer job, the
inequality xj1 þ xj2 þ � � � þ xjk � B must hold. On the
other hand, if xj1 þ xj2 þ � � � þ xjk > B, then the differ-
ence between the completion times of job jk on machine
one and machine two will be less than B. It readily
implies a non-zero idle time before the second enforcer
job on machine two, a contradiction. Therefore, we have
xj1 þ xj2 þ � � � þ xjk ¼ B: The fact that B/4< xi<B/2

Table 1. Example set of three jobs.

Jobs pi qi ni ai

1 1 1 3 5

2 1 2 3 4
3 3 2 3 1
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for any xi forces the number of ordinary jobs between the
two enforcer jobs to be exactly three. We let the three
ordinary jobs form subset A1. Continuing this process,
we can similarly find subsets A2, . . . ,An and then
conclude the theorem. œ

By symmetry, we can also learn from this theorem that
the special cases (1) all jobs have the same qi; (2) all jobs
have the same ni; and (3) all jobs have the same ai are all
strongly NP-hard. The complexity results imply that
the F2RP//Cmax problem exhibits sophisticated struc-
tures and is computationally intractable. In other
words, it is very unlikely to develop polynomial or
pseudo-polynomial time algorithms for deriving optimal
solutions.

4. Heuristic algorithms and computational

experiments

4.1. Heuristic algorithms

As the generic F 2RP//Cmax is strongly NP-hard, it is
very unlikely to develop polynomial time algorithms for
producing optimal solutions. Seeking near-optimal
approximate solutions in a reasonable time therefore is
a viable alternative for decision makers. In this section,
we will design three heuristic algorithms and study their
effectiveness.
The first algorithm constructs a feasible schedule in a

greedy fashion. That is, the algorithm picks up the most
beneficial job, in terms of makespan, from the unsched-
uled ones. If the decision does not violate the feasibility
constraints, then the selected job is appended to the
partial schedule. The feasibility testing consists of two
issues: the current resource level is sufficient for the job
under consideration, and the resource level after pro-
cessing the job under consideration is sufficient for all of
the other remaining jobs. The selection process iterates
until the set of unscheduled jobs is emptied. Note that
before the algorithm starts, a feasibility test is conducted.
Therefore, we assume the initial resources are sufficient
for the overall processing. The outline of the algorithm,
denoted as Algorithm H1, is given as below.

Algorithm H1:

Step 1: Order the jobs by Johnson’s algorithm using pi
and qi;

Step 2: Schedule S¼�;
Step 3: For k¼ 1 to n do

3.1: Select from N the first job, say i, satisfying
(1) ni�Vk�1 and (2) (Vk�1þ ai� ni)�
V(N� {i}).

3.2: Set S[k]¼ job i; Vk¼Vk-1þ ai� ni;
3.3: Set N¼N� {i};

Step 4: Report schedule S and Z(S), and stop.

The second heuristic H2 is similar to the first one except
that the jobs are initially arranged in non-decreasing
order of piþ qi. Heuristics H1 and H2 both produce

approximate schedules in a constructive way so as to
ensure the whole process can guarantee feasibility. The
third heuristic is simply focused on feasibility and
provides an initial schedule in which jobs are arranged
by using Amir and Kaplan’s algorithm with parameters

ai and ni. This approach is called heuristic H3.
To enhance the performance of the proposed algo-

rithms, a 2-OPT procedure is applied when an approx-
imate is produced. Given a feasible solution, the 2-OPT
procedure considers all pairs of jobs that will not cause
infeasibility if their positions in the solutions are
exchanged. The job-pair that can reduce the makespan
most is selected and a new solution is obtained by

switching the positions of the two jobs. The process
iterates until no further improvement is attainable. For
convenience, stage one (constructing a feasible schedule)
and stage two (improving the solution) together is called
algorithm Hi, i¼ 1, 2 or 3.

4.2. Lower bounds

Before we proceed to the development of computational
experiments, we introduce some lower bounds on the

optimal solutions. For decision makers, lower bounds
on the solutions of a combinatorial optimization
problem not only provide a way to underestimating
the final outcome, but also serve as an alternative
gauge to measure the quality of approximate solutions.
For a given job instance, define two subsets

N1 ¼ fijni � V0, i 2 Ng,

and

N2 ¼ ijni � V0 þ
X

j2Nnfig

ðaj � njÞ, i 2 N

( )
:

Subset N1 contains the jobs that can be scheduled at

the first position. Subset N2 is similarly defined based
on the last position. Then, two lower bounds are
accordingly defined as

LB1 ¼ min
i2N1

fpig þ
X
j2N

qj,

and

LB2 ¼ min
i2N2

fqig þ
X
j2N

pj:

The first bound comes from the fact that an idle time
before the first job to be processed on the second
machine is inevitable. The second bound is defined as
the total processing length on machine one plus the last
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operation on machine two. Combining the two lower
bounds, we can define an aggregate lower bound as:

LB ¼ maxfLB1,LB2g:

The lower bound will be used to evaluate approximate
solutions derived from heuristic or meta-heuristic
methods.

4.3. Computational evaluation

To examine the efficiency and effectiveness of the
proposed heuristic algorithms, we designed and
conducted a series of computational experiments with
randomly generated test instances. The platform of the
experiments is a personal computer with an i586 CPU of
1.01GHz running Microsoft Windows XP Version 2002.
The programs were coded in Cþþ. Values of resource-
related parameters ni and ai were randomly drawn from
the uniform interval [1, 100]. Values of the processing
lengths of the jobs on the two machines were randomly
generated from the setting pi2 [1, 100] and qi2 [1, 100].
The intervals used in the instance generation scheme
were commonly adopted in the scheduling literature
concerning flowshop problems. In our experimental
setting, two specific dimensions are considered to reflect
the problem scale and level of resource availability.

1. The problem size n varies from 50 up to 500 with
an increment of 50.

2. As the degree of availability of resources plays a key
role in the feasibility issue, the problem-solving
sessions is differentiated by letting V0¼ 1.2�V(N)
and 1.4�V(N). That is, the number of initial
resources is either 120% or 140% of the minimum
resource requirement that ensures the existence
of a feasible schedule.

For every combination of the above-mentioned dimen-
sions, we generated thirty instance sets and take the

average of their output. All of the three proposed
heuristic algorithms H1, H2, and H3 were evaluated. We
kept track of the average error ratios of the derived
solutions. Because it is very unlikely to attain optimal
solution values in a reasonable time, the relative error
ratios are defined by (ZHi�LB)/LB * 100%, where ZHi,
i¼ 1, 2, or 3, is a solution value achieved by Algorithm
Hi, and LB is the lower bound presented in the previous
subsection. As the heuristic algorithms run quite fast,
we also consider an aggregate heuristic, called Hmin, that
reports the value of min{ZH1, ZH2, ZH3}.

Tables 2 and 3 summarize the numerical results of our
experiments for the two settings classified in the two
dimensions, respectively. In the tables, parameter � is
the factor defining the availability level of initial
resources. In table 2, the entries in each column denote
the average values taken over each thirty instances. The
columns include average values achieved by the three
heuristics, the aggregate heuristic and the lower bound.
The columns entitled Max_Err, Avg_Err and Std_Err
contain the maximum error, the average error and the
standard deviation of errors reported by Hmin from each
thirty instances for each problem size. The statistics
clearly evince that the average errors of the solutions
reported by the aggregate Hmin is almost negligible
except for some problem scale which indicates an
average error of about 0.32%. Furthermore, the worst
or maximum error ever attained is only about 3.5%,
while most of the maximum errors are below 1%. The
deviations are rather minor, suggesting the stability of
the achieved solution quality. As a general observation,
all heuristic algorithms can provide solutions of better
qualities for large-scale problems.

The relative performances of three heuristics are
compared using the number of times the heuristics
performed best out of each thirty instances. The results
are summarized in table 4. Heuristic H1 clearly out-
performs the other two in the sense that it produced
the best solutions in at least twenty-one of the

Table 2. Solution values and relative errors of different heuristics with �¼ 1.2.

n H1 H2 H3 Hmin Lower bound

Max_Err

(%)

Avg_Err

(%)

Std_Err

(%)

50 2701.93 2704.70 2704.57 2698.97 2691.23 3.50 0.28 0.67
100 2520.40 5252.87 5249.63 5247.37 5230.50 2.54 0.32 0.59
150 7737.97 7741.23 7737.03 7734.53 7723.80 0.78 0.14 0.22

200 10282.27 10284.90 10285.07 10281.63 10272.93 0.66 0.08 0.17
250 12864.87 12866.70 12863.23 12861.53 12852.67 0.69 0.07 0.14
300 15547.40 15549.53 15546.97 15543.79 15533.03 0.37 0.07 0.12
350 18014.47 18017.37 18013.53 18010.37 18004.90 0.25 0.03 0.07

400 20431.63 20431.57 20432.3 20428.63 20425.03 0.21 0.02 0.05
450 22960.43 22961.33 22963.60 22958.47 22953.63 0.23 0.02 0.04
500 25595.03 25598.97 25598.70 25594.10 25586.57 0.21 0.03 0.06
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thirty replicates. The observation suggests that Johnson’s
sequence is still a promising starting point for searching
for quality approximate solutions.

5. Concluding remarks

This paper has addressed a hybrid generalization,

F2RP//Cmax, of the relocation problem and two-
machine flowshop problem. While the generalized
problem reflects a practical resource-constrained opera-

tions management environment, it also theoretically
shapes a two-dimensional flowshop framework. In this
paper, we have established the computational intract-

ability of F2RP//Cmax, even if some specific restrictions
are given. We have also developed three heuristic
algorithms to produce approximate solutions in an

acceptable time. Three lower bounds on the makespan
have been developed. Through computational experi-
ments, we have learned that the proposed algorithm is

effective in composing quality solutions with small error
ratios from lower bounds.

As aforementioned, the relocation problem exhibits
theoretical as well as practical interest. However, the
relocation problem did not receive considerable atten-
tion in the past decades. Recently, some researchers in
the area of resource-constrained project management
and scheduling recognized the challenging research
issues brought forth by the relocation problems. As a
sequel, incorporating different measures and different
machine environments could move the study in a worthy
direction.
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