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Connecting wave functions at a three-leg junction of one-dimensional channels
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We propose a scheme to connect the wave functions on different one-dimensional branches of a three-leg
junction (Y junction). Our scheme differs from that due to Griffith [Trans. Faraday Soc. 49, 345 (1953)] in the
respect that ours can model the difference in the widths of the quasi-one-dimensional channels in different
systems. We test our scheme by comparing results from a doubly connected one-dimensional system and a
related quasi-one-dimensional system, and we find a good agreement. Therefore our scheme may be useful in
the construction of one-dimensional effective models out of (multiply connected) quasi-one-dimensional

systems.
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I. INTRODUCTION

For a system which comprises quasi-one-dimensional
(Q1D) channels, when only the low-energy regime at near
the first subband bottom is considered, it can usually be mod-
eled by a one-dimensional (1D) system. When the system is
multiply connected and consists of multileg junctions, the
wave functions on the branches are usually connected at the
junctions by the Griffith scheme,'* the Shapiro scheme,>”’
or similar schemes. Since such formulations greatly reduce
the calculational effort of complicated multiply connected
mesoscopic systems, they have been used widely in the lit-
erature. For example, see Refs. 8—19 and the references
therein. However, arguments which lead to these connecting
schemes are kinematical,'~” and it is not clear what kind of
junction in practice they describe. Moreover, a comparison
between the results of these schemes and that of the exact
calculation of Q1D systems has never been done. It is the
purpose of this paper to make a comparison between the
Griffith result, the Q1D result, and the result due to a scheme
we propose in this paper. We find that for clean junctions of
QID channels, the Griffith result is not even qualitatively in
accord with the exact result. The scheme we derive gives a
result that compares much better with the exact result.

At a N-leg junction of 1D channels, the wave function
continuity condition is a requirement that must be respected.
Besides, the Griffith scheme'™* demands that the sum of the
derivatives of the wave functions on the different branches at
the junction is zero, i.e.,

N
> oo, (1)

where the directions of the coordinates are defined either
diverging from or converging to the junction. This is the
simplest way to impose the unitarity condition of no net
current flows into the junction, i.e., =; Re ¢ (=i du;/ dx;)=0.
When there is a magnetic field, the requirement is rephrased
as the sum of the covariant derivatives is zero, i.e.,
S0/ dx,—ieAl);=0, where Al is the component of the vec-
tor potential parallel to branch i at the junction. On the other
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hand, the Shapiro scheme®”’ directly demands that the scat-
tering matrix connecting the in-going and out-going waves at
the junction be unitary, and a general matrix with free pa-
rameters is written down. When the spin degree of freedom
is considered, these schemes are straightforwardly applied to
each spin channel.!>!° These schemes and the like have been
taken for granted and used widely in the literature.

II. FORMULATIONS AND MODELS

We approach the problem from another point of view. For
a QID system with equal-width channels (the “width” is an
ill-defined quantity in snaking channels but nevertheless we
may talk about it when the curvatures are small enough), we
may approximate a three-leg junction (Y junction) and its
branches [e.g., see Fig. 1(a)] by a tight-binding (TB) model
as shown in Fig. 1(b).20

The tight-binding model is described by a second quan-
tized Hamiltonian

H= E C:-hijCj, (2)
ij

where c¢; is the annihilation operator of a spinless particle on
site i, and hy; is a matrix element which is complex in gen-

(@) (b)

FIG. 1. (a) The original Y junction of Q1D channels considered
in this paper, (b) the reformulated Y junction of tight-binding chan-
nels, and (c) the effective Y junction of 1D channels affiliated with
the Griffith or our connection scheme.
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eral. The element Ay; is called a hopping when i# j, and an
onsite potential when i=j. Defining a basis set {|i)} by |i)
=¢]|0), where |0} is the no-particle state, one can write the
time-independent Schrédinger equation H|i)=E|y), where E

is the energy of the particle, into the form

> (hj— Edy) =0, (3)

J

where l_ﬂj =(j| ) is the TB wave function at site j. We define
that the hopping exists only between nearest-neighbor sites,
and is denoted by —¢. The onsite potential at site i is denoted
by Vi+2t.

The magnitude of the hopping —¢ is obtained by the fol-
lowing argument. Let a Q1D channel be approximated by a
finite-difference square grid, with three grid-points across the
channel, one at the center and each edge. Then the distance
between the grid-points will be w/2, where w is the width
of the channel, and the hopping in the finite-difference time-
independent Schrédinger equation?! will be —t=—2#2/
(mw?). We will assume the same hopping in our TB formu-
lation.

Away from the junction, the TB time-independent
Schrodinger equation reads?!

= (o1 — ) + 1 — i) + (Vi—E) =0, (4)

where E is the energy. In the long-wavelength limit it
reduces, as it should, to the 1D second order differential
time-independent Schrodinger equation, —[#2/ (2m)]&§¢(x)
+[V(x)-E]y(x)=0.

At a Y junction, the TB time-independent Schrodinger
equation reads

ot+?

_ _ _ _ - - E-YV, -
(= tho) + (o — o) + (b5 — ) + f‘ﬁo:()’ (5)

where the subscript “0” denotes the site at the junction, and
“1,” “2,” and “3” denote the sites on the branches nearest to
the site at the junction [i.e., in Eq. (3), take i=0, and j=0, 1,
2, and 3]. It is seen that the Griffith scheme formulated in Eq.
(1) is recovered only when E—Vy+t=0 at the junction. It is
reasonable to set E=0 here since we are considering energies
at near the band bottom and E<<t. But one still requires V,
=t to send the last term in Eq. (5) to zero. In other words, the
Griffith connection scheme'~* actually describes a Y junction
of Q1D channels with a repulsive potential with a strength of
the order of #, whereas in this paper we propose a connection
scheme in the long-wavelength limit for a clean Y junction
[i.e., Vy=0 in Eq. (5)] of Q1D channels. At a Y junction of
1D channels [see Fig. 1(c)], we propose

3
I, 2
> 22y o, ©)

=1 0%;

where the directions of the coordinates are defined to be
diverging from the junction. If Eq. (6) is reached by dividing
Eq. (5) by w/2 and letting w—0 (remember that E/¢ and
Vo/t have been set to zero), the factor v will be equal to 1.
Adopting v=1 indeed results in a good enough qualitative
comparison with the Q1D result. But we will see that choos-
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FIG. 2. (Color online) The doubly connected 1D system and the
related Q1D system we consider. (a) The 1D system is a ring (with
arms labeled by 1 and 2) connected to two leads (labeled by 0 and
3). The coodinate system x; is defined for the line segment labeled
by i (i=0, 1, 2, and 3). The arrows denote the positive directions of
the coordinates, the right Y junction is defined at x;=x,=x3=0, and
the left Y junction at xy=0, x;=L;, and x,=L,. (b) The Q1D system
is an annulus with two radially connected leads. Both the annulus
and the leads have the same width.

ing v==1.9 may bring the 1D and Q1D results to a semiquan-
titative agreement, which means that the term has been un-
derestimated. The TB argument serves to bring out the 1/w
dependence of the term, and the fixing of v will be discussed
using concrete examples. The effect of the channel width is
hence included, in contrast to the Griffith scheme (the case of
v=0). The 1/w dependence results in an effect that is more
prominent at smaller channel widths, and this understanding
may also help to relate studies on the quantum graph
theory*’ to the practical experiments. The case of a general
N-leg junction can also be worked out likewise.

In this paper we compare the Griffith and our schemes
with the exact Q1D calculation in a chosen type of system.
We calculate the transmission probability for a 1D ring con-
nected to two leads [see Fig. 2(a)], which is the simplest
multiply connected 1D system, using the Griffith and our
connection schemes at the Y junctions. In addition, we also
calculate the transmission probability for a similar system, an
annulus connected to two QID leads [see Fig. 2(b)], using
the exact mode-matching method. The two three-leg junc-
tions in Fig. 2(b) resemble the one in Fig. 1(a). Note that the
transmission probability is directly related to the experimen-
tally measurable conductance.?! We will sketch how we have
done the calculations, and we refer the readers to the litera-
ture for more details.

In a 1D model as shown in Fig. 2(a), the wave function on
each line segment at a given positive energy E is a superpo-
sition of forward and backward traveling waves, i.e.,

i(x;) =Ae™i+ Be™™i, i=0,1,2, and 3, (7)

where k=+2mE/#f and m is the effective mass of the par-
ticle. The wavelength X is given by N=2m/k. The x, ; , 3 are
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the coordinates on the line segments correspondingly, and
the coordinates have positive directions as that defined in
Fig. 2. We define x;=x,=x3=0 at the right junction, and x,
=0, xy=L,, x,=L, at the left junction, where L;, are the
lengths of the arms between the junctions [see Fig. 2(a)]. The
A; (B,) is the coefficient of a forward (backward) traveling
wave. Since we consider particles incident from the left, we
set Ap=1 and B;=0. Then the continuity requirement

olx,=0= v -1, = ¥alt, (®)
and
$1|x1=0 = ¢2|x2=0 = w3|x3=0’ (9)
and the Griffith unitarity imposition [following Eq. (1)]
Jd J J
Iy I MWl o (0
(9X0 x=0 axl x=L, (9X2 Xy=L,
and
J J J
I 43 4 =0 (11)
X ly=0 0% ly=0  0%3 1m0

constitute an equation set which contains six equations with
the six unknowns {B;A;,B|;A,,B,;A3} which have been
defined in Eq. (7). Hence the transmission amplitude A3 can
be solved, and the transmission probability T=|A;> be
found. We may also replace the Griffith unitarity condition
by our unitarity condition [following Eq. (6)]

Ity Y 42 2v
e R 2w Tyl =0
axO Xg=0 dx L lx=L, &)Cz Xy=L, w X=0

(12)

and
| || |
3 — Y,

axl x,;=0 (9)62 Xy=0 (9)63 x3=0 w x3=0

(13)

and the transmission probability also can be solved. We will
discuss the fixing of v later in this paper.

Besides the mentioned 1D model, we also solve a related
QID model in a way as that of Xia and Li in Ref. 22. Con-
sider an annulus with an inner and an outer radii of R
—-w/2 and R+w/2, respectively, and two leads of width w
radially connected to it as shown in Fig. 2(b). The wave
function is governed by the two-dimensional (2D) differen-
tial time-independent Schrédinger equation. In a lead it can
be expanded in terms of transverse modes (subbands) and
longitudinal forward and backward modes, i.e., jeq(X,y)
=3V (a;e™*+be~**)sin(Imy/w), where x and y are respec-
tively the longitudinal and transverse coordinates for the
lead. The k; and [ are related by kj+(lm/w)*=2mE/h?,
where E is the energy (positive) of the particle, and k; can be
real or imaginary. In the annulus the wave function can be
expanded by radial and angular modes, i.e., Yunus(?> )
=3 pikr)e™®, where a radial mode is given by ¢(kr)
=cJ (kr)+d;Y (kr), and k=V2mE/f. The r and 6 are the
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radial and angular coordinates, respectively; and the J; and Y,
are the Bessel functions of the first and second kinds, respec-
tively We demand ¢l|r:R—w/2=O for any 0’ lv[/annulus|r:R+w/2=0
when @ is away from the leads, but ¥,uuslrerew2=Yicad
when @ is in the range of a lead. Also, the radial derivative
OYannunes/ Or 1s equated with the longitudinal derivative
Iieaq! dx when they meet at the outer arc of the annulus. The
difference between the straight transverse cuts of the leads
and the outer arcs of the annulus is neglected. The wave
functions in the leads and the annulus are hence matched.
Expanding the wave functions in different regions with suf-
ficient numbers of modes,?* one gets a set of equations relat-
ing the coefficients of the modes in different regions. With a
given energy E and specified in-going subbands, one can
obtain the transmission probabilities in the out-going sub-
bands.

In the QID case, we will consider that the particle is
incident from one lead, and its energy is below the second
subband and hence the particle propagates only within the
first subband. The resulting transmission probability is to be
compared with that in the 1D case. We will use the more
convenient longitudinal wave number k= \2m(E—E{"™)/h
instead of the energy E, where EJ™ is the energy of the
nodeless ground state of the isolated annulus in an individual
case.?* Defining a longitudinal wavelength \; by \,=2mw/k,
implies that the long-wavelength limit we consider is at
>w. Here we define the arm lengths by L, ,=R¢, ,, where
6, , are the angles shown in Fig. 2(b).

III. COMPARISON BETWEEN RESULTS

Figure 3 shows the transmission probabilities obtained by
different schemes, for the case of symmetrical arms in the
ring (L;=L,=L). We have considered broad [Fig. 3(a)] and
narrow [Fig. 3(b)] channels, and in both cases we have pre-
sented the result of the QID calculation, the result of the
Griffith scheme, and the results of our scheme (with v=1 and
1.9). The Griffith result is seen to differ very much from the
Q1D result in all cases. The v=1 scheme qualitatively cap-
tures the trend of change in the Q1D result when the channel
width is changed, while the v=1.9 scheme captures the Q1D
result most satisfactorily.

Besides the Griffith result, it is seen that all results in Fig.
3 show Breit-Wigner (BW) resonance peaks.”> These BW
peaks become sharper and shift toward the left when the
channels narrow down, i.e., w/R— 0 [compare Figs. 3(a) and
3(b)]. Those peaks are due to the quasibound levels in the
arms, and they are seen to be always blueshifted?® from the
exact levels. In the 1D case, the exact levels are at 2L/\
= kL/ m=integer. The quasibound levels and the blueshift are
results of the presence of an attractive potential at a Y
junction.?” While the attractive potential in our scheme is
manifest [see Eq. (6)], the potential at a Y junction of Q1D
channels is not so obvious, but can have an intuitive under-
standing as follows. Since a particle feels less confined at
near a junction, the “band-bottom” at the vicinity of a junc-
tion is effectively lower, and therefore the region acts as an
attraction center. This potential becomes stronger when the
channels become narrower, and that leads to the sharper and
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FIG. 3. (Color online) The transmission probability 7 is plotted
versus the dimensionless longitudinal wave numbers (2L/\; in the
case of Q1D channels, and 2L/\ in the case of 1D channels), for the
case of Ly=L,=L. The Q1D results (solid lines), 1D results due to
our scheme [dashed (v=1.9) and dash-dotted (»=1) lines], and 1D
results due to the Griffith scheme (dotted lines) are shown. T is
plotted for the cases of broad and narrow Q1D channels, (a) R/w
=3.5 and (b) R/w=9.5. Note that the Griffith result is independent
of the channel widths. In the narrow channel case (b), the difference
between the Q1D and v=1.9 results is indiscernible in the scale of
this graph.

less blueshifted BW peaks [compare Figs. 3(a) and 3(b)].
The growth of the potential at narrowing channels can be
understood as a result of the departure from the case of very
broad channels (i.e., w~R), in which the system has no dif-
ference in the “band-bottom” everywhere.

While the result from the Griffith scheme is independent
of the channel width and disagrees with the Q1D result, our
scheme captures the trend of change in the transmission
probability when the channel width is varied. Therefore, our
scheme has correctly included the attractive nature of the
clean Y junction of QID channels, though the strength has
been underestimated (i.e., v=1.9 is prefered to v=1). The
misjudgment of an appropriate value for the parameter v is
due to the fact that the details of the shape of the Y junctions
of Q1D channels and the actual dimensionality of the chan-
nels are relevant. For instance, our simple TB argument
which leads to Egs. (5) and (6) does not show the difference
between junctions with different relative directions of
branching channels, and also does not distinguish a three-
dimensional (3D) cylinder from a 2D strip as a Q1D channel.
But in reality, the appropriate parameter v’s in those different
cases may likely be different. In the 2D cases we have just
seen in Fig. 3, the same kind of Y junction has been in-
volved, and the effective potential in our scheme is charac-
terized by an almost constant v in both the broad [Fig. 3(a)]
and narrow [Fig. 3(b)] channel cases.

Therefore, though the parameter v cannot be derived ana-
lytically, it can be readily fixed for a particular kind of junc-
tion by comparing the 1D result with the Q1D result. What
we have done in Fig. 3 has been a comparison which in-
volves a tedious calculation. Actually, other simpler compari-
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FIG. 4. (Color online) The transmission probability 7 is plotted
versus the dimensionless longitudinal wave numbers [(L;+L,)/\
in the case of Q1D channels, and (L;+L,)/\ in the case of 1D
channels], for the case of asymmetrical arm lengths. The Q1D re-
sults (solid lines), 1D results due to our scheme [dashed (v=1.9)
and dash-dotted (v=1) lines], and 1D results due to the Griffith
scheme (dotted lines) are shown. T is plotted for the cases of broad
and narrow Q1D channels, with small and appreciable differences
in the arm lengths. T is plotted for (a) R/w=3.5, L,/L;=0.9, (b)
R/w=9.5, L,/L;=0.9, (c) R/w=3.5, L,/L,=0.7, and (d) R/w=9.5,
L,/L;=0.7. Note that the Griffith result is independent of the chan-
nel widths. In the narrow channel cases [(b) and (d)], the differences
between the Q1D and v=1.9 results are indiscernible in the scale of
this graph.

sons also work. For instance, one may consider the bound
state at the junction due to the attraction.?? On one hand, for
a junction of three 1D channels, with the channels extended
to infinity like what we depict in Fig. 1(c), the negatively
valued bound state energy E can be readily found by using
Pi=e i, where i=1,2,3, k=v-2mE/f, and Eq. (6). The
energy E is found to be lower than zero by an amount of
2212/ (9mw?). On the other hand, the bound state at a
T-shaped junction of three Q1D channels, with the channels
extended to infinity like what we depict in Fig. 1(a), was
studied by Schult et al.?® The energy of the state was numeri-
cally found to be lower than the first subband bottom by an
amount of 0.197%4%/(2mw?).?° Equating the two energies in
the 1D and Q1D cases, one gets ¥==2.05, which is about the
number we use in Fig. 3, and as we will see, that in Fig. 4.

Figure 4 shows the transmission probabilities for the case
of asymmetrical arm lengths. It is seen that in all cases,
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broad channels [Figs. 4(a) and 4(c)] and narrow channels
[Figs. 4(b) and 4(d)], small difference in arm lengths [Figs.
4(a) and 4(b)] and appreciable difference in arm lengths
[Figs. 4(c) and 4(d)], there are good comparisons between
the results due to our »=1.9 scheme and the Q1D calcula-
tion. All the essential features, such as the relative positions
of the BW and Fano profiles?® in the Q1D results, are nicely
reproduced. Note that the number 1.9 agrees with the one
used in Fig. 3.

For the 1D models, including Griffith’s and ours, the per-
fectly zero transmission dips of the Fano profiles are located
exactly at the eigenenergies of an isolated ring*® with a cir-
cumference of L;+L,. In the 1D case, these eigenenergies
are exactly at (L;+L,)/N=k(L;+L,)/(27)=integer. In the
QID cases shown in Figs. 3 and 4, the eigenenergies are
numerically found to be at the (L;+L,)/\;’s deviated by not
more than 0.5% from the integers on the horizontal axes. For
the Q1D model, we find that those zero transmission dips
may coincide with the eigenenergies of an isolated annulus
only in the long-wavelength limit. As in the case of sym-
metrical arms, the Griffith result disagrees with the Q1D re-
sult, and our simple TB argument which leads to Egs. (5) and
(6) has underestimated the strength of the effective potential
at the junction, i.e., v=1.9 is preferred to v=1.

IV. CONCLUDING REMARKS

It is seen that in all the above cases the results from the
Griffith scheme are not in congruence with the Q1D results.
The Griffith result is regardless of the channel width,
whereas the Q1D result shows a strong dependence on that.
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Our model gives a result in much better agreement with the
Q1D result. The trend of change in the transmission prob-
ability and the relative positions of the resonance profiles are
impressively reproduced. In view of these calculations, it is
clear that the Griffith scheme which is frequently adopted in
the literature, does not describe a clean junction of Q1D
channels and is definitely not for the 1D limit of the Q1D
models. In the small width limit, a Y junction of Q1D chan-
nels is a strong scatterer, and that makes the QID system
studied in this paper not at all an “open” system. Speaking
reversely, adding a repulsive potential to a Y junction of Q1D
channels may weaken the scattering effect and enhance the
transmission through the junction at low energies, and away
from the levels. When a strong magnetic field is present, our
model may not apply since the field creates an additional
asymmetric transverse confinement.

In conclusion, we have proposed a connection scheme
with a parameter v at a Y junction of 1D channels. The
parameter v can be most easily fixed by comparing the en-
ergy of the bound state at a Y junction of Q1D channels to
the energy of the bound state at a ¥ junction of 1D channels
due to Eq. (6). The scheme reflects the presence of an effec-
tively attractive potential at a clean Y junction of Q1D chan-
nels. The disregard of this potential in the Griffith scheme
makes its result compare poorly with the exact Q1D result.
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