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Abstract--This paper concentrates on the fold number detection problem for the shapes with monotonic 
radii. The proposed method is extremely simple. Two monotonicity conditions are derived to ensure that the 
smallest positive integer I making SStr.o~sr2elt°dr dO nonzero is exactly the fold number of the given shape S. 
The fold numbers of regular polygons, roses, bolt nuts, and other kinds of shapes discussed in the present 
paper, can therefore be detected quite easily. Note especially that the proposed method uses no matching 
procedure, a procedure essential in many reported methods. Theoretical properties, mathematical proofs, 
illustrative figures, and experimental results, are all included in this paper. Copyright ,~) 1996 Pattern 
Recognition Society. Published by Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

An important shape feature, which is widely used in 
shape recovery, Ix) shape registration, 12'a) shape storage 
space reduction, 141 etc., is the so-called symmetry prop- 
erty. At least two kinds of symmetry can be identified, 
namely, mirror symmetry 15'61 and rotation symme- 
try. Ivl To make use of the shape symmetry property, it 
is necessary to compute either the number of symmetry 
axes or the number of folds of a given shape. Several 
methods ~5'6's) have been proposed to find the number 
of the symmetry axes of a given mirror symmetric 
shape (i.e., symmetric about certain lines called sym- 
metry axes). On the other hand, the number of folds 
n of a given rotationally symmetric shape can be 
detected by the methods described in References (1), (2) 
and (5). Highnam ~s~ used a string matching technique 
to detect n, whereas Leou and Tsai ~21 counted as n the 
frequency that the boundary of the given rotationally 
symmetric shape runs across a special circle related to 
the given shape. Recently, Lin et al. proposed a simpler 
method in Reference (1) to detect n based on a simple 
mathematical property of rotationally symmetric 
shapes. Note that these methods require the use of 
certain matching techniques: string matching is used in 
Reference (5), whereas shape matching is used in both 
References (1) and (2). L ine t  al. had pointed out in 
Reference (1) that their method has an extra benefit 
that once the fold number is obtained, the shape 
orientation can also be obtained immediately by 
a time-negligible step: a simple call of the arc-tangent 
function followed by an arithmetic division. We there- 
fore concentrate the study on the method of Lin et al., 
and try to discover some more mathematical proper- 

ties of the method. More precisely, we will investigate 
what will happen if the method is applied to a special 
branch of the rotationally symmetric shapes, namely, 
the rotationally symmetric shapes of which the polar 
radii are monotonic in a fold (or in a half-fold if the fold 
itself is also mirror-symmetric). This special branch 
includes regular polygons, bolt nuts, roses and so on. It 
will be proved that many procedures used by Lin et al., 
including the matching procedure, can be discarded. 
As a result, if the image processing environment (also 
called the processing domain) is limited to the collec- 
tion of all regular polygons, bolt nuts, roses and so on, 
then their method, which is already very attractive due 
to its certain properties [see the final section of Refer- 
ence (1)], can be simplified further. 

The remainder of the paper is organized as follows: 
in Section 2, the definitions of rotationally symmetric 
shapes and polar radii function are introduced, and the 
rotation matching procedure of Linet  aL is reviewed. 
The theory needed to simplify the method of Lin et al. 
is introduced in Sections 3 and 4. Experimental results 
are provided in Section 5, and a summary and some 
concluding discussion are given in Section 6. Most of 
the proofs are collected in an appendix to make the 
paper easier to read. 

2~ D E F I N I T I O N S  AND LIN et aL's R O T A T I O N - M A T C H I N G  

TEST 

A shape S is called an n-fold rotationally symmetric 
shape (abbreviated as an n-RSS henceforth) if it is 
identical to itself after being rotated around its cen- 
troid through any multiple of the angle 2~/n for some 
n > 1. For simplicity, assume that no other larger 
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integer n has this property. The goal of fold number 
detection is to find this value n when the given shape 
S has been known to be a rotationally symmetric 
shape. For convenience, the origin of the coordinate 
system is taken to be the centroid of S. Line t  al. used 
trigonometric identities to prove in Reference (1) 
a simple mathematical property. They then used this 
property to design a method for obtaining a value l~, of 
which n is a factor. The exact value of n was then 
detected by a rotation-matching test. When the given 
rotationally symmetric shape meets certain mono- 
tonic conditions, however, it will be shown in the 
present paper that the rotation-matching test is not 
necessary. The value of n can therefore be detected in 
a much simpler way. The following two definitions will 
be used later to derive the monotonic condition just 
mentioned. 

Definition 1. 
In the polar coordinate system, the polar radii function 
rmax(0 ) of a shape S is defined by 

rmax(0 ) = max r (1) 
(r,O)~S 

for each 0. 
Note that every (rmax(0), 0) is a point on the boundary 
of S. 

Definition 2. 
A shape S is said to be radially full if for every 0, the 
shape S can contain the whole line segment whose two 
ends are the centroid (i.e., the pole O) and the boundary 
point (rmax(0), 0). 

All shapes sketched in Fig. 2-5, except Fig. 4(e), are 
radially full whereas the shapes sketched in Fig. 1 and 
6 are not. The shape in Fig. 1 (a) is not considered 
radially full because the (dashed) line segment connect- 
ing A and the centroid O is not contained in the shape. 
Note that every (closed) convex set must be radially full 
(just use the fact that the centroid O of a convex set 
must be a point of the set, ~9~ and hence, the line segment 
connecting O and the point [rmax(0), 0) must be in the 
set]; however, a radially full set need not be convex (for 

A 

Fig. 1. A shape which is not radially full. 

example, the shapes in Fig. 2 are radially full, although 
they are not convex). 

For  a given (centralized) shape S, and for any natu- 
ral number l, let x °~ + iy ctl be defined by 

. ( x + i y ) '  
x~'l + iy °~= ~ ~ Ix + ty] ~ dxdy (2) 

(x,y)eS 

= ~ ~ relt°dxdy (3) 
(x,y)~S 

= I  I r2eil°drdO (4) 
(r,O)eS 

where r and 0 are defined by the convention 
re i° = x + iy. In other words, 0 is the polar angle of the 

point (x,y), and r =  I x +  iYl = ~ y 2  is the polar 
radius. Since the shape has been centralized, that is, 
since the coordinate system has been translated so that 
S~tx.r,~sxdxdy=Sj~x,r,~sydxdy=O, the value of 
x cu + iy ° is always zero if l = 1. When l = 1, 2, 3, 4,..., 
the values of x °~ + iy °~ are governed by Theorem 1, as 
given below. (The shape S needs not be radially full in 
this theorem.) 

Theorem I. 
Let S be an n-RSS. If l/n is not an integer, then 
x ~u + iy °~ = O. 

~X 

b 
X C A  

B 

(~) Cb) C~) 

Fig. 2. Three shapes meeting the requirements listed in Theorem 2 and so satisfying 11 = n. 
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//  
(~) (b) 

Fig. 3. Examples of regular polygons; (a) A polygon of 6 sides; 
(b) A polygon of 4 sides. 

To prove this, we may decompose the integration in 
equation (4) as 

2~ 2rt/n 4t~/n 6~/n 2 n  

= Y + S + ~ + +  Y (5) 
0 0 2r~/n 4n/n  2(n 1)n/n 

The fact that (r, 0)~ S, if and only if (r, 0 + 2~/n) E S, can 
then be used to derive ~)ZI~ = en2n/n~ n/n, ~6Zln = eU4~/" 

yo z~/", etc. Equation (5) therefore becomes 

~ r2ei'°[1 + e az./ .  + e "*~/. 
](r,O)eSlO <~ 0 < 2n/n} 

+ ... + e i ,Z . -  2)~/.] drdO. (6) 

The integrand is zero because the sum in the bracket is 
the sum (which is zero) of the n roots of the equation 
z " -  1 =0 .  

Notice that Theorem 1 does not  imply that 
x ~"~ + iy ~") # 0 although n/n = 1 is an integer. In fact, 

(~) (b) 
Fig. 5. Examples of Roses; (a) A 4-leafed rose; (b) A 3-leafed 

rose. 

the author had inspected several examples and found 
that x~")+iy~")#O for some n-RSS, and that, 
x ~"~ + iy ~"j = 0 for some other n-RSS. It is therefore not 
true to say that ll ,  which is defined to be the smallest 
positive value I making x u~ + iy u) non-zero, is the value 
n we want. However, using the fact that n must be 
a factor of I1, together with the definition of n-RSS, 
people may employ a rotat ion-matching test, as used 
by Linet  al., to determine the value ofn. The detail is as 
follows: evaluate x u) + iy "~ for l = 2, then, for l = 3, and 
so on, until x tt~ + iy tt~ 4= 0 occurs. Let the value of /used 
in that iteration be l = 11. Then, as stated above, it is 
not true to say that l~ is the value n we want. However, 
Theorem 1 implies that n must be a factor of this l~. 
(Otherwise, I1/n is not an integer, and hence, 
x "') + iy (t° = 0, which contradicts the definition of l~ ). 

--k- .,b 
(a) (b) (~) 

(d) 

x + 0  

A2=(r2'n) ...-'"~' ~ 2n 

0 ~ ' " ~ ' ~  ....  " ~ l = ( r l ,  O) 
(~) 

Fig. 4. Examples of regular stars; (a) and (b) two 5-leafed regular stars; (c) and (d) two 4-leafed regular stars; (e) 
the half-fold AOA1Az used in the proof of Corollary 2. 
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(~) (b) (~) 

(d) (e) 

Fig. 6. Examples of shapes satisfying l~ = n but not radially full. These shapes are identical to the shapes 
sketched in Fig. 2(b), 3(a), 3(b), 4(a) and 4(c), except that they have holes which are circular disks centered at 

the centroids of the shapes. 

Let {pl}[= 1 be the set of all positive factors of 11 with 

l l  = P l  > P2 > "'" > Pl  = 1, (7)  

then n ~ {Pi }~E ~. Consequently, the definition of n-RSS 
given at the beginning of the last section implies that 
n is the greatest Pi in {Pi }/i-11 satisfying the requirement 
that the shape S be identical to itself if the shape is 
rotated through an angle of 2rc/p~. We may therefore 
try to rotate the shape through an angle of 2rc/p~ and 
check whether the rotated shape matches the original 
shape. If it does not, we use the second choice, 2~z/p 2, 
and repeat the rotation-matching procedure until 
a match is obtained. The value of n is the first p~ that 
yields an identical match. In summary, n can be detec- 
ted based on a trial-and-error system using a finite 
sequence of rotat ion-matching tests. An algorithm that 
includes the rotat ion-matching tests can be found in 
Reference (1). In the following sections, we derive some 
conditions in which the rotation -matching tests are no 
longer needed. 

3. SUFFICIENT CONDITIONS TO GUARANTEE THAT 
x{R~ + iy<'~ # O 

In this section we derive conditions to guarantee 
that the x<")+ iy {~J defined in equation (2) becomes 
non-zero if the given shape has n folds. When such 
conditions are satisfied, there is no need to do any 
rotat ion-matching test to get the value n, because 11, 
which is defined above to be the smallest positive 

integer 1 making x I° + iy I~} ~ 0, is just the value n we 
want. (That x° ' l+ iyt")~ 0 can cause 11 = n, may be 
proven as follows: Theorem 1 implies that all of the 
numbers l making x ttl + iy Ctl ~ 0 must belong to the set 
{n ,2n ,3n , . . .  }. Hence, l I ~> n. On the other hand, if 
x ~'~ + iy ~'J ~ O, then n is one of the numbers I making 
x ~0 + iy ~t) :~ O, which, by the definition of / l ,  means that 
n >~ 11. Together with the inequality 11 ~> n, we have 
11 = n.) 

Lemma 1 below will be used later to prove The- 
orems 2 and 3. As stated earlier in Section 1, the proofs 
are all collected in the appendix to make the paper 
easier to read. 

Lemma 1. 
Let 

E = { (r, O)6S, 0 <~ 0 < 2n/n} (8) 

be a fold of a radially full n~RSS S. If rmax(0 ) of S is 
monotone  in 0 when 0 is in the interval [0, 2n/n), then 

S S r 2 s i n n 0 ~ 0 .  (9) 

Theorem 2. 
If an n-RSS S is 

(i) radially full, and 
(ii) for some angle/3, the boundary  points (rmax(0), 0) of 
S has the property that the function rmax(0 ) is mono-  
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tone in 0 when 0 is in the interval [fl, f l +  2g/n), 
then x ~") + ifl ") ~ O. 

Note that the requirement (ii) above means that 
there exists a fold in which the polar radii function 
rmax(0 ) is monotone.  (A fold is defined to be the portion 
of S bounded by any two rays that span an angle of 
2~/n.) Here, {(r, 0)~Slfl ~ 0 < fl + 2~/n} is the fold 
under discussion. Also note that the monotonici ty 
required above can either be strict monotonici ty or 
weak monotonicity.  (Strict increase means that 
rmax(O2))'rmax(O1) whenever 02 >01; weak increase 
means that rm, x(02) >>. rma~(01) whenever 02 > 01 . Strict 
or weak decrease can be defined likewise.) If the mono-  
tonicity is weak, however; it is assumed that rmax(0) is 
not of a single value when 0 is in the open interval 
(fl, fl + 2n/n). [That is to say, there exist in (fl, fl + 2n/n) 
at least two points v and w such that rmax(V ) 4: rm,,(W).] 

AS an illustration of the use of Theorem 2, all shap¢s 
sketched in Fig. 2 meet the requirements of Theorem 2, 
and hence, satisfy 11 = n. In Fig. 2(a), the curved 
boundary  in the first quadrant  is the curve 
{(rmax(0), 0)10 ~< 0 < ~Z/2} with rmax(0 ) = COS0 which 
meets the monotonici ty property of rmax(0 ) stated in 
Theorem 2. In Fig.2(b), it has been assumed that 
/ O C A  >/~/2 and / O A B  ~> ~/2 where O is the cen- 
troid. By the law that the larger angle is opposite to the 
larger side in every triangle, we claim that rmax(O) is 
decreasing as the boundary  point (rmax(0),0) moves 

along line segment ~ from B through A, and then 

moves along line segment A~7 from A through C. In 
Fig. 2(c), rmax(0 ) = 1 when 0 ~< 0 < n/4, and rmax(0 ) = 0 
when ~z/4 ~< 0 < 7r/2. The monotone  property is there- 
fore in the weak sense. 

4. WHEN THE RSS IS ALSO MIRROR SYMMETRIC 

If an n-RSS S contains a fold which is mirror sym- 
metric about  a ray 0 = fl, then the monotone property 
of the rmax(0 ) used in Theorem 2 can be modified to be 
monotone in one half of a fold, instead of being mono-  
tone throughout the whole fold. This leads to the 
theorem below. As in Theorem 2, the monotonici ty can 
be either strict or weak. 

Theorem 3. 
If an n-RSS S is 

(i) radially full, 
(ii) for some angle fl, the boundary  points (rmax(0), 0) 

of S has the property that the function rm,x(0) is 
monotone  in 0 when 0 is in the interval 
[fl, fl + n/n), and 

(iii) the fold {(r, O)~S[ O~ [fl - ~z/n, fl + n/n] } itself is 
mirror symmetric about  the ray 0 = fl, 

then x ~"~ + iy ~"~ ¢ 0 

Notice that the interval in Condit ion (ii) here is only 
one half of the interval mentioned in Condit ion (ii) of 
Theorem 2. Several direct applications of Theorem 
3 are described as corollaries below. 

Corollary 1. 
For  every regular polygon of n sides (see Fig. 3), we 
have x ~"J + iy ~"~ ~ O. 

Definition 3. 
Let Ox,r l , r z  represent three constants, and let 
rl > r2 > 0. An n-leafed regular star (n/> 3) is a radially 
full n-RSS with 2n corners {Aj}~-" 1, and whose bound- 

ary is the union of 2n line segments { ~ } ~ - - "  1 where 
A1 = Azn+ 1, and the polar coordinate of each corner 
Aj  is (r l, 01 + (] -- 1) z~/n) o r (r 2,01 + (J - -  1) re~n), acco rd- 
ing to whether the va lue j  is odd or even. 

[Two 5-leafed regular stars and two 4-leafed regular 
stars are sketched in Fig. 4(a) through 4(d).] 

Corollary 2. 
If S is an n-leafed star, then x ~") + iy ~"~ # O. 

The n-leafed rose is a kind of shape often encoun- 
tered in mathematics field [for example, see Reference 
(10)]. The definition of an n-leafed rose depends on 
whether n is even or odd. A 4-leafed rose and a 3-leafed 
rose are sketched in Fig. 5. 

Definition 4. 
Let n,a, 0o be three given constants with n even and 
a > 0. Then an n-leafed rose is an n-RSS, of which the 
first fold is defined as the area enclosed by the curve 
{(rmax(0), O)[rmax(O ) = as in~(  O -- 0o), 0 o <~ 0 < 0 o + 27t/n}. 
The other n -  1 folds are defined by a sequence of 
rotations of this fold through angles of multiples of 
27t/n. 

Definition 5. 
Let n,a,00 be three given constants with n odd and 
a > 0. Then an n-leafed rose is an n-RSS, of which the 
first fold is defined as the area enclosed by the curve 
{ (rmax(0), 0) 10 o ~ 0 < 0 o + 2~z/n}, and where 

f a s inn (O - 0o), if 0 o ~< 0 < 0 o + 7r/n; 
rmax(0) = (0,  if 0 o + 7r/n <~ 0 < 0 o + 2rt/n. 

The other n - 1 folds are defined by a rotation of this 
fold through angles of multiples of 2~z/n. 

Because sin(t) is an increasing function of t when 
tE (0, ~z/2), we can obtain Corollary 3 below. The details 
of the proof are omitted for brevity's sake. 

Corollary 3. 
x ~") + iy ~") ~= 0 for every n-leafed rose. 

In the theorems and corollaries above, we have 
assumed that the shape is radially full. This require- 
ment can be modified slightly, however, if the radially 
full shape is punched such that the new shape contains 
a hole that is a circular disk centered at the centroid of 
the original shape. An example of this is a bolt nut, 
which is the region whose exterior boundary  is a regu- 
lar polygon, and whose interior boundary  is a circular 
disk [see Fig. 6(b) and (c) for illustrations]. The proof 
for this modified version is identical to the original 
proofs of Theorems 2 and 3 and is hence omitted. 

Also note, that, based on the proofs given in the 
appendix [see (A4) and (A9)], the monotone  condit ion 
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(ii) in both Theorems 2 and 3 can be weaken somewhat. 
More precisely, the (ii) in Theorem 2 can be replaced by 
either (iia) or (iib); whereas the (ii) in Theorem 3 can be 
replaced by either (iicI or (iid). They are stated below: 

(iia) For  some angle fl, the boundary  points (rma~(0), 0) 

of S has the proper ty  that  rmax(0 )/> rmax(0 + n/n) 
for all 0 in the interval [fl, fl + n/n), a n d "  > "  holds 
on at least a subinterval of I-//, fl + n/n). 

(iib) (Replace the "/>" and " > "  of (iia) by "~<" and 
" < " ,  respectively.) 

(iic) Fo r  some angle fl, the boundary  points (rm~(0), 0) 
of S has the proper ty  that  rmax( fl + n/2n -- O) >~ 
rma x (fl + n/2n + O) for all 0 in the interval (0, n/2n), 
and " > "  holds on at least a subinterval of 
(0, n/2n). 

(iid) (Replace the "/>" and " > "  of (iic) by "~<" and 
" < " ,  respectively.) 

Note  that  the wordy condit ions (iia)-(iid) are easier to 
use, whereas the compact  condit ion (ii) is easier to state 
and memorize (because people are more familiar with 
the tacit meaning of the conventional  term "mono-  
tone"). 

5. E X P E R I M E N T A T I O N  

In practice, the x °) + iy ~') defined in equation (2) is 
evaluated using 

• [" xt,+iyk )t (10) 
IXk + 'Yk \ l~k + iYkl 

k = l  

where K is the number  of sampled points contained in 
the shape. Because sampling and rounding errors may 
both exist, the 11 mentioned in sections above should 
be detected using a more practical rule. In other words, 
instead of identifying Ii as the smallest positive integer 
that  satisfies x °') + iy Im :A O, we identify 11 as the small- 
est positive integer making 

[xlm+ iy~'O[ >> MAX ~[x° ' - l~  + iym-~[ 
K ) K ' 

' x° '+l) i iY° '+~) '  } .  (11) 

The reason why we divide the values of x °) + iy °) by 
K is stated in Reference (1). 

The author  has performed several experiments using 
some shapes stated in Theorem 2. The author  has also 
performed a sequence of experiments to detect the fold 
number  n, with n ranges from 3 through 10, for roses, 
regular polygons, regular stars, and bolt  nuts. The 
experimental results show that the obtained value of 
11 is the expected value ofn. For  example, when a 4-side 
regular polygon formed of K = 45369 sampled points 
is used in the experiment, the values of 
{lx(°+iy"~l/45369}~= ~ obtained by a SUN-ELC 
workstat ion are all less than 10- ~ s, the only exception 
being when l =  4, which yields a much bigger value, 
namely, Ix~41 + iy~4")l/45369 = 17.49089901• The poly- 
gon is therefore concluded to be four sided without 
doing any rotat ion or matching process. Some other 
experimental results are listed in Fig. 7. All shapes used 

1 The computed values Ix tz) + iy°)l/K 

2 0.00000000 0.04412934 0.03696307 0.00000000 
3 0.00000000 0.01115491 0.07068337 0.00000000 
4 (37.27632301) 0.00650382 0.18736826 (36.2230002) 
5 0.00000000 0.00656115 (46.4089416) 0.00000000 
6 (8.0679111) 0.25721887 
7 0.00336123 

SHAPE Fig 2(b) Fig. 3(a) Fio. 4(b) Fig. ~c) 
(a 4-fold windmill) (a 6-side polygon) (a 5-1ea~d star) (a 4-1ea~d star) 
(K = 13181 points) (K = 58394 points) (K = 13545 points) (K = 25307 points) 

l The computed values Ix "~ + iyml/K 

2 0.00792683 0.42327463 0.00000000 0.62949276 
3 0.08226388 (48.980283) 0.00000000 0.15918286 
4 (33.59730941) 0.52830236 (39.258304) 0.10564380 
5 0.104877459 0.00000000 0.09614510 
6 (11•50829694) 
7 0•05603174 

SHAPE Fig 5(a) Fig. 5(b) Fig. 6(a) Fig. 6(d) 
(a 4-1ea~d rose) (a 3-1ea~d rose) (a 4-RSS) (a 6-side bolt nut) 

(K= 15707 points) (K = 8040 points) (K= 12516 points) (K = 40937 points) 

Fig. 7. The computed values of Ixm+ iy°~l/K}~l'=+11 for some shapes sketched in the previous figures. 
As usual, K denotes the number of the sampled points in the shape• For each shape, the reader can see that 
the l corresponding to the first "pulse" value (the enclosed entry) really gives the expected fold number 

of the shape. 
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in the experiment were computer-generated, i.e., they 
were generated by simulation. Each shape, together 
with the (white) background, formed an m × m black- 
and-white image with m ranging from 150 to 300. 
Among the m 2 sampled points, only K points belonged 
to the shape (and the remaining m2-K points belonged 
to the background). Therefore, K~<m 2 and 
22500 ~< m 2 ~< 90000. The actual values of K were in- 
dicated in Fig. 7. 

6. SUMMARY AND CONCLUDING DISCUSSION 

It is proved in this paper that the fold number n of 
certain kinds of shapes, including roses, bolt nuts and 
regular polygons, can be identified as the smallest 
natural number I making x " ) + i y  °) non zero. The 
matching process, which is used in many reported 
methods, is not used at all in the proposed computing 
scheme. Hence, detecting fold numbers for these kinds 
of shapes is much easier. Note  that the proposed 
algorithm stops at the iteration corresponding to fold 
number n. [Or, if sampling error is considered, stops at 
the (n + 1)-th iteration, as is shown in Fig. 7.] Some 
other reported methods that try to avoid matching 
process have to do many iterations after the n-th 
iteration. Usually, 3n or more iterations are used in 
these methods [see the last paragraph of Section 5 in 
Reference (1)]. Therefore, these methods are not as fast 
as the method proposed here. 

In Reference (1), Lin et al. proved that the shape 
orientation can be obtained without further computa-  
tion whenever the value n of the fold number is ob- 
tained using their computing scheme (in their words, 
"the orientation of the given rotationally symmetric 
shape is a by-product of the fold number detection 
method"). Since the computing scheme presented here 
is just a simplified version of their scheme (we just 
bypass the non-necessary rotat ion-matching test used 
in Reference (1) when the shapes are regular polygons, 
bolt nuts, etc.), the shape orientation can also be 
obtained immediately without further computation.  In 
fact, once the value n is obtained, we just define the 
shape orientation to be the half-line ejected from the 
centroid and with the directional angle 1In angle 
(x(")+ iy~"~). Therefore, shape orientation, together 
with fold number n, can both be detected quickly for 
regular polygons, bolt nuts, roses, etc. 
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er NSC80-0408-E-009-26. The author also thanks the referee 
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APPENDIX 

Proof of Lemma 1 
Without the loss of generality, we prove the case that rm~(O ) is 
decreasing. Decompose E into two disjoint half-folds 
E = E ' ~ E "  where E'={(r,O)ESIO<~ O<n/n} and E'={(r ,  
O)~SIn/n <<. 0 < 27r/n}, respectively. Because S is radially full, the 
term in the right hand side of equation (9) can be expressed as 

2n/n r~,,(O) 2n/. 

~ r2sinnOdrdO = ~½ra,~(O)sinnOdO 
o o o 

n/n 2n/n 

= I ~r3ma~( O)sinnOdO+ ~ ~r3,,( O)sinnOdO" 
0 n/n 

(A1) 

Notice that 

2n/n 2a/n 

½r3ax(O)sinnOdO = - ~ ~r3~(O)sinn(O- n/n)dO 
n/n x/n 

= - j" ~r~ma~(0+ n/~Isin~0d0 
0 

(A2) 

where (A2) is derived by introducing a new variable 0 = 0 
-n/n. On the other hand, ~/"½r~x(O+ n/n) sinq0d0 and 
~/"~r3a~(O + n/n)sinnOdO are the same amount expressed in 
distinct notations; therefore, equation (A2) implies that 

2n/n n/n 

~r3m,~(O)sinnOdO = - ~ ½r3m~x(O + n/n)sinnOdO. 
~/n 0 

(A3) 

As a result, equation (A2) can be reduced to 

2n/n r.,,(O) 

~ r2sinnOdrdO 
o o 

~/n nln 

= ~ ~r~(O)sinnOdO- ~ ½r3~(O + n/n)sinnOdO 
o o 

n/n 

= ~ ~(r~a,(0)- r3~(O + 7r/n))sinnOdO 
o 

> 0. (A4) 

In the derivation of equation (A4), we have used the fact that 
r~(O) > rma~(O + n/n), for all 0E [0, n/n), if the decrease prop- 
erty of rm~ x is strict. [] 

Remark. (Weak monotonicity case). 

If the decrease property of r,,ax is in the weak sense, however, 
the proof of Inequality (A4) is a little longer. In this case, we 
only have to prove that rmax(0 ) > rmax(0 + n/n) on a (small) 
subinterval of (0, 7t/n). Because we had stated in the text that 
there exists at least a pair v, w in the interval (0, 2n/n) such that 
rmax(t) ) 5 ~ rmax(W), we may then assume that 0 < v < ~v < 2n/n 
and r,ax(v ) > rmax(W ). There are three possible cases for the 
locations of u and v, namely, v<w<~n/n; n/n<<.v<w; 
v < n/n < w. If v < w <~ n/n, then 

r m a x ( O ) ~ r m a x ( V ) > r m a x ( W ) ~ r m a x ( ~ ) ~ r m a x ( O + ~ )  

for all 0e(0, v). 

Equation (A4) is therefore obtained again. If n/n <~ v < w, 
a similar argument will work. If v < n/n < w, we may still 
proceed as follows. Use rma~(v)>~rmax(n/n)>~rm~(w ) and 
rma~(V ) > rmax(W ) to conclude that either rmax(V) > rm~x(n/n ) or 
rmx(n/n) > rmax(W ). If rmax(V ) > rmax(n/n), then rmax(0 ) ~> rma x 
(v)>rm,~(n/n)>~rm~(O+n/n) for all O~(O,v). If rmax(n/n) 
> r,,a~(w), an analogous argument will work. 

[] 

Proof of Theorem 2. 
Whether x tt) + iy °) is zero or not has nothing to do with the 
phases of the given shape S. We therefore only have to prove 
the theorem for the case fl = 0. Substituting l = n into Equa- 
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tion (4), we have 

2n rmdO) 2n 

x(")+iy (")= ~ ~ r2ei"°drdO = ~ ½rama~(O)ei"°dO 
o o o 

2n/n 4x/n 6Tt/n 2~t 

"'" [~rm~x(O)e ]dO 
0 2n/n 4n/n 2(n - 11~/n 

2x/n 2~t/n 
I 1 3 inO 1 3 ~rmax(O)e dO + f 3rmax(0 + 2 ~ / n )  ei"l°+2"/"}dO 
o o 

2rt/n 

+ I 13 4n/n)ei.(o+,~/.~dO grmax(0 + + ... 
o 

2n/n 
=n ~ x 3 i.o (A5) ~rm~x(O)e dO 

o 

2n/n 
['2n/n + i ! l r 3 a x ( 0 ) s i n n 0 d 0  ) .  !  <.(O)cosnOdO 

(A6) 

The derivation of equation (A5) uses the fact that both rma~(0 ) 
and e ~"° are cyclic with period 2n/n. Note that equation (A6) 
then implies that it is sufficient to show that f2~/.t,3 tm J O 3 rrnax ~v] 

f2~/n fr~,(Olr2 sinnOdO#O; or equivalently, to show that jo jo 
sinnOdrdO ~ O. However, this is exactly the statement claim- 
ed by Lemma 1. [] 

Proof of Theorem 3. 
We only have to prove the theorem for the case f l=0 .  
Equation (A6) then implies that we only have to show that 
~2~/"ramax(O)cosnOdO is non-zero. The remaining proof is 
divided into two parts: Parts I and II. 

Part I. (Showing that f2"/"r3.x(O)cosnOdO= 2~7)/"r3.~(0) 
cosnOdO.) 
First note that 

2n/n 7tin 2nln o 
s cos.OdO = s + s : s + 
0 0 n/n 0 - n/n 

Since rmax(O)=rmax(--O ) we have ~°~,.r3ax(O ) cosnOdO 
= t °_,r/nr3ax(- 0)cosn(-- 0id0 = i°/, [r3m~x(U) cosnu3 [ -  du] = 
I~/"r3~(u)cosnu du where u = - 0. Equation (18) can thus be 

n/. 3 written as ~2"/"r3~(O)cosnOdO= ~o rm.~(0)cosnOdO+~/" 
r3,x (U)cosnudu = 2 I~/"r3a~(O)cosnOdO. 

Part II. (Showing that S~/" r3ax(O)cos nO dO ~ 0.) 
We first introduce a new variable 2 = n/2n = 0 to derive 

7t12n nl2n 

r3.~(O)cosnOdO = ~ (r3~(O))[sinn(n/2n-O)]dO 
o o 

= i r3.x(n/2n- 2)[sinn()0)](- d2) 
n/2n 

n/2n 

= I r3m~(~/2n-2)[sinn2]d2" 
o 

We then introduce another variable 0 = 0 - rc/2n to derive 

~ r~x(O)cosnOdO= I (r~a~(O))[- s inn(O- n/2n)]dO 
n/2n ~/2n 

n/2n 
3 = -- ~ rm~(n/2n + O)sinnOdO. 

o 

Therefore, 

n/n 

r3ax(O)cosnOdO 
o 

(A8) 

n/2n n/n 

= I r3ax( O ) c O s n O d O +  f r3.~(O) c ° s n O d O  
0 n/2n 

n/2n n/2n 

= I r3m,~(rr/2n- 2)s inn2d2-  ~ r~,,lTt/2n + O)sinnOdO 
o o 

n/2n 

I (r3~x(n/2n -- O) -- r3a~(rt/2n + O))sinnOdO 
o 

> 0 (A9) 

because sinn0 is positive and r3ax(n/2n - O) > r3a~(n/2n + O) 
when 0 < 0 <  rt/2n. Here, we had assumed that rm, x(0) is 
strictly decreasing. However, equation (A9) is still greater 
than zero ifrm, x(0) is weakly decreasing and non-constant on 
the interval (0, n/2n). The proof is the same as those given in 
the proof of Lemma 1, and is hence omitted. [] 

Proof of Corollary I. 
Let O be the centroid of the polygon S. Let C be the middle 
point of a polygon edge ~l-B. Condition (iii) is guaranteed 
because the fold AAOB is mirror symmetric about the line 
segment O-C. The monotone property (ii) is obvious as the 
boundary point (rmax(0),0) moves along the line segment 71Z7 
from corner A to C. [] 

Proof of Corollary 2[see Fig. 4(e)]. 
First, note that every regular star is both radially full and 
mirror-symmetric. Then look at the half-fold AOAIA 2 with 
O=(0,0),  Al=(r l , 01 )=( r l , 0 ) ,  and A2=(r2,0x +n/n)= 
(r2, n/n). Let H e ~ 2  be such that O~2 bisects the angle 
L A I O A  2. Since r I > r2, we have / O A 2 A  l > /_OA 1A 2. As 
a result, / O H A ~ >  /_OHA 2 can be derived using 
/_OA2A 1+ /_A2OH> /_OA1A2 + /_AIOH. Therefore, 
ra,~(n/2n - O) > r3,x (n/2n + O) when 0 < 0 < r~/2n. Equation 
(A9) is therefore strictly positive. The proof of Theorem 3 
[from the very beginning of that proof to equation (A9)] can 
then be used. [] 
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