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Technical note 

Formulations of composite 
parametric cubic curves and 
circle approximations 
Da-Pan Chen 

The parametric cubic curve is a well-developed subject in the 
field of computer-aided design. Yet there are still some 
aspects of its nature that need to be more fully investigated. 
In this paper, formulations of composite PC curves are pre- 
sented in an order of increasing rigorousness and order of 
accuracy. A unique PC curve formulation is developed for the 
practical use in circle approximation. This PC curve has a 
3rd-order accuracy and merits of simplicity and ease of use. 
Copyright 0 1996 Elsevier Science Ltd 
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INTRODUCTION 

Circle approximation is fundamental in the practice of 
computer-aided design. This is due to the fact that, 
besides the straight line, the circle is the most simple 
geometric entity with a well-known algebraic equation 
for its representation. A sound curve approximation 
scheme must be sound in representing the straight line 
and the circle in the first place. Then, the known 
algebraic equation of these simple curves can be used 
to check for the accuracy of the approximation. 

Parametric curves and circle approximation have 
been addressed by many authors. The most systematic 
discussion of parametric curves and their properties 
can be found in the two well-known textbooks, one on 
computational geometry by Faux and Pratt ‘, and the 
other on geometric modelling by Mortenson2. In Faux 
and Pratt, approximations of the straight line and the 
circle are treated as special cases of the BCzier cubic 
curve (Reference 1, p 134). It is mentioned there that, 
for the approximation of a quarter circle, the maximum 
deviation from the mean radius is f 0.03%. In the book 
by Mortenson, the parametric cubic curve (the PC 
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curve) is employed to approximate the general conic 
curve (Reference 2, pp 79-91). Then the conic curve 
approximation is extended to the approximation of 
circular arcs. 

The accuracy study in Mortenson’s circular arc ap- 
proximation is based on two different approximation 
approaches. In the first approach, the mid-point of the 
approximating arc is placed exactly on the true arc. 
This yields an approximating arc with positive radial 
deviation which vanishes at the mid-point and the two 
ends of the arc. In the second approach, the mid-point 
of the approximating arc is placed slightly to the inside 
of the true arc, so that the negative radial deviation 
there is set balanced to the maximum positive deriva- 
tions on the two half segments of the curve. It is 
mentioned that the accuracy of the second approach is 
better with a maximum deviation of f0.02% for the 
quarter circle approximation and +0.0002% for the 
octant circle approximation. 

Other related articles can be found in journal and 
conference proceedings. In Reference 3, Peters con- 
verted circular arcs into parametric cubic curves with 
accuracies of +0.03% for the quarter circle and 
+0.0004% for the octant circle approximation. In Ref- 
erence 4, DeBoor et al. developed an algorithm based 
on the geometric characterization of C2 continuity with 
respect to arc length which approximates circular arcs 
with a 6th-order accuracy. Goldapp’ gave a systematic 
approach in arc approximation by means of cubic poly- 
nomials. Besides the usual approach in which the two 
ends of the approximating curve are coincident with 
those of the arc, Goldapp improved the accuracy of the 
approximation by allowing the ends of the polynomial 
curve to miss those of the arc. 

More related works can be found in the literature. It 
seems that all aforementioned works have one common 
feature. They all concentrate on the way to approxi- 
mate circular arcs with the highest possible accuracy. 
While this has high academic credits, it is not conve- 
nient for the general practice of circle approximation. 
The reason for the inefficiency is due to the ad hoc 
nature of the approach that, for each circular arc of 
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Figure J A sphere model in the framework of G’ circle\ 

different angular width, one has to search for the best 
end-tangent magnitudes for the most accurate fit. In 
the field of computer-aided design, situations may arise 
in which circular arcs of different angular spans are 
required (see, for instance, the sphere model shown in 
Figure I). A simpler method for the construction ot’ 
such general circles and spheres is deemed worthy of 
the effort. 

In this article, the approximation of a circle IS to he 
considered as the construction of composite PC splines 
with various compositions in curve segment lengths. 
Different methods of determining magnitudes of end- 
tangent vectors are demonstrated together with a com- 
parison of the approximation accuracy of the different 
approaches. Finally, as a result of the investigation of 
geometric continuity employed in the approximation of 
the circle, a unique formulation for the determination 
of end-tangent magnitudes is derived. This formulation 
of end-tangent vectors for the construction of the para- 
metric circle and sphere is believed to be most ap- 
propriate for the practice of computer-aided design. 

Before going into the details of circle approximation. 
we lay down some fundamentals for the construction of 
PC curves and composite PC splines. 

FUNDAMENTALS OF PC CURVES 

In the practice of computer-aided design, a parametric 
cubic curve can be represented in matrix form as 

= WI [Cl LB1 (1) 

Here, p(u) denotes a vector-valued function of the 
parameter u and P’(u) denotes derivative of p(u) with 
respect to the parameter. In the above formulation of 
the PC curve, the expressions in the boundary condi- 
tion matrix [B] imply that we take the value u = 0 at 
the starting point and the value u = 1 at the ending 
point of the curve. This is the PC curve with normal- 
ized parameters commonly used in the field of com- 
puter-aided design. 

There is one other, not so commonly used, form of 
the PC curve in which the parameter is taken as the arc 
length. Denoting the arc length by I, the same curve as 

Figure 2 Reparametrization of a PC‘ CUNC 

tormulated in Equation 1 can be reparametrized Csee 
Reference 2, pp 53-56) and written as 

9(h) 
ij(t,) 

q(t) = [l t t’ t.‘] [Cl A 
dt,) 

$t,) 

(2) 

where, bx the deQnition o,f a unit tangent vector, 4 = 
dq/dt = T and, T, and T, denote the unit tangent 
vectors at the start- and the end-point of the curve. 
This PC curve and the related notions are as shown in 
F@re 2. Notice that the end-tangent vectors are unit 
vectors only when the parameter is taken as the arc 
length. Here, for the construction of a single PC curve 
segment, the choice of the parameter is irrelevant to 
the result. For the construction of composite PC curves, 
it becomes more significant when data points are un- 
evenly spaced. This will be further illustrated in the 
following sections. 

CONSTRUCTION OF COMPOSITE PC 
CURVE 

A general cubic spline curve consists of many cubic 
curve segments joined end-to-end satisfying certain 
continuity conditions at the joints. A common difficulty 
encountered in the construction of such composite 
curves is the appropriate assignment of parameter val- 
ues to the joints, or the so-called data points, of the 
spline curve. In general practice, the number of and 
the locations of the joints in a composite curve are 
essentially determined by the curve designer by experi- 
ence. The exact path of the resulting spline curve is not 
known before the computation of all unknown nodal 

Figure 3 Notations of a composite PC spline 
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tangent vectors but, the computation of the unknowns 
tangent vectors requires the joint parameter values a 
prioti (Reference 1, p 176). There are two generally 
adopted solutions to this computational dilemma. 

Composite splines with normalized 
parametrization 

The first solution of the aforementioned computational 
dilemma is the use of normalized parametrization. 
Continuing from last section, the kth curve segment in 
a general composite spline consisting of n curve seg- 
ments as shown in Figure 3, with k = 1,. . . , n and n + 1 
data points, with i = 0, 1,. . . , n, can be expressed as 

P,(U) = [U] [Cl [e._, pi P;_, p:lT (3) 

Here, Pi and e! stand for the position and the first 
parametric derivative vectors of the ith data point and, 
the superscript T denotes a transpose. In more detail, 
we have 

P,(U) = (1 - 3u2 + 2U3)Pi_, + (322 - 2U3)p, 

+ (U - 2u2 + U3)Pi_ 1 + ( -u2 + U3)PI , (4) 

For a smooth joining between the curve segments, 
the following 2nd-order parametric continuity CC* cont- 
inuity) conditions are applied: 

i$l) = P;+,(o) (5) 

P;(l) = FL+ r(O) (6) 

Here, the prime notation (‘1 denotes a derivative with 
respect to the parameter U. Substituting Equation 4 
into Equation 6 leads to the following recursive equa- 
tion for the computation of nodal tangent vectors: 

-1 -1 -1 P)_l +4pj +pj+, = 3(p,+, -&,) j=l,...,n-1 

(7) 

Notice that the above continuity conditions are to be 
applied at the n - 1 internal joints and there are a total 
of n + 1 nodal tangent vectors to be determined. Two 
more tangent vector equations are needed and they can 
be picked up by selecting one of the following sets of 
end-point conditions: 

(i) Fixed ends, whereof we have, with C, and C, 
predetermined constants 

P,, = C, and PA = C, (8) 

(ii) Free ends, whereof we have 

Pi = 0 and P: = 0 (9) 

(iii) Cyclic ends, whereof we have 

For the completeness of the formulation and the 
purpose of illustration, we choose to use the cyclic-end 
conditions (10) which are for the case of circle con- 
struction. Together with the recursive Equation 7, we 
have for the computation of nodal tangent vectors, 
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(11) 

Equations 11 indicate that for the construction of an 
enclosed composite spline one needs only to provide 
data point positions in an appropriately cyclic pattern. 
This formulation saves the trouble of assigning 
parameter values of the knots by adopting a uniform 
parameter range of zero to unity for each curve seg- 
ment. While this feature may seem to be a merit of the 
formulation, undesirable effects may arise when data 
points are uncarefully arranged. An implication of the 
normalized parametrization is that all curve segments 
in the composite spline should have equal length or the 
data points should be evenly spaced. In the actual 
practice of curve and surface design, the requirement 
of evenly spaced data points may be excessively restric- 
tive. 

Composite splines with arc length as 
parameter 

A second solution to the aforementioned computatio- 
nal dilemma is to strive for the curve length of the 
segments in the spline. As mentioned earlier, no curve 
length can be determined before the computation of 
nodal tangent vectors, and the computation of nodal 
tangent vectors requires appropriate length values at 
the nodes in the spline. A practical approach will be to 
start the computation with a rough estimate of the 
curve lengths and to arrive at more accurate curve 
lengths with appropriate iterations. The best estimate 
of curve length is the associated chord length of the 
curve segment. Therefore, with the assumption that the 
curve lengths of the segments are known, we have, for 
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the typical kth segment in the spline as shown in 
Figure 3, 

(12) 

Here, the parameter t is taken as the arc length, and tI 
stands for the arc length of the kth curve segment. 
And, the dot notation c.1 denotes a derivative with 
respect to parameter t. A more detailed derivation 
which leads to Equation 12 can be found in Reference 
7, pp 253-255. 

For a smooth joining between two such curve seg- 
ments, the kth segment and the (k + 1)th segment, the 
first and the second parametric derivative continuity 
CC2 continuity) conditions now become 

GJt,) = 6k+,(o) 

and 

(13) 

II 

PJt,)=F~+,(o) (14) 

And, the recursive equations which relate the inter- 
nal joint tangents and the node point positions become 

Composite splines with G’ continuity 

From the definition of unit tangent vector of a para- 
metric curve, one can see that the two parametric 
derivative boundary conditions on the right-hand side 
of Equation 12 are actually the unit tangent vectors at 
the two ends of the kth curve segment or, since the 
parameter t is taken as the curve length in the present 
formulation 

and 

(18a) 

(18b) 

Rearranging terms in Equation 12 and replacing t/t, 
by u, (again 0 2 u I l), we have 

P,(U) = P, ,(I - 3u2 + 2u-‘I+ P,(3U’- 2U3) 

+tk~,~,(U-22u~+u’)+tk~,(-U1+U) 

(19) 

A comparison between the two parametric cubic 
curve representations of Equations 4 and 19 reveals 
that they are form identical, since 

(15) 

It can be seen that Equations 15 are identical to 
Equation 7 when tk = tk+ , = 1. Also, these equations 
reveal the fact that the determination of the unknown 
internal joint tangent vectors requires the segment 
curve lengths a ptioti. On the other hand, the following 
integral formula for the computation of the segment 
curve length 

(16) 

indicates that the computation of curve length requires 
the c_omplete curve function a priori. The symbols i, 
and t, used in Equation 16 also unveil the iterative 
nature of the computation. To initiate the iteration 
process, we approximate the segment curve length by 
the chord length which is actually the straight line 
distance between the two end-points of the curve seg- 
ment, or 

ik=JF;-P,_,I (17) 

Since I, is always less than the true curve length, 
computational results indicate, after sufficient number 
of iterations, the computed curve length 7, will ap- 
proach the true curve length as an upper limit. 

Furthermore, from Equation 19, we have for the end at 
II = 1 of the kth segment 

Ir);Cl, = tj, (21) 

and, for the end at u = 0 of the (k + lkh segment 

P; . ,(O) = t, ~ ,+, (22) 

‘Therefore, at the common joint between the two adja- 
cent segments, we have 

which indicates that the joint is G’ continuous (for 
geometric continuity, see Reference 6, p 149). 

From a starting point with assumed known segment 
curve length, we arrive at the more general formulation 
of the PC curve, Equation 19. Now, one can see the 
difference between Equations 4 and 19. While the 
normalized parametrization associated with 4 implies 
an evenly-spaced data point spread, formulation associ- 
ated with Equation 19 produces more accurate compos- 
ite splines with the more general unevenly-spaced point 
spread. This will be illustrated by the circle approxima- 
tions given in the following section. 

Equation 19 further suggests: if one can determine 
the proper segment curve length t, and th,e directiops 
of the two end-point unit tangent vectors T,_ ,and T,, 
then, with the two known end-point positions P,- , and 
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0 

Figure 4 Joining of two circular arcs 

p,, the kth curve segment Pk (u) is completely de- 
termined. This indeed is the case for the construction 
of circular arcs of arbitrary angular widths. Consider 
the joining of two arbitrary circular arc segments as 
shown in Figure 4. The arcs have radius r and angular 
width (Ye and ak+l in radians, respectively. It can 
easily be seen that the best arc lengths the approxima- 
tion can achieve are the true arc lengths, or, respec- 
tively, 

t, = akr 

and 

(24a) 

tk+l = ffk+lr (24b) 

For the de?rmination of the unit tangent vector $i at 
pi, since OP = xi; + y,;, 

+i = (& (y,;-XJ (25) 

The other unit tangent vectors can be determined in 
a similar pattern. Generally, the k th arc segment in a 
general circle approximation can be expressed as 

P,(U) = P,_,(l - 3U2 + 2U3) + Pi(3UZ - 2U3) 

+ T(Yk+i_ &4 - 2U2 + U3> + r,,Q -U2 + U3> 

(26) 

This is a unique formula for the construction of 
circular arcs since angular widths can always be de- 
termined by the known data point spread together with 
the known radius of the circle. The application and 
accuracy study of this circular arc formula will follow in 
the sequel. 

CIRCLE APPROXIMATIONS 

With the composite PC spline formulations developed 
in the previous section, we are to undertake the circle 
approximation with PC curves in the following settings. 

0 
Figure 5 The C2 circle with even spacing Figure 7 The G2 circle 

The PC circle in even spacing and C* 
continuity 

The circle as shown in Figure 5 is a unit circle approxi- 
mated by joining four PC curve segments. with the 
normalized parameter formulation, the Formulation I 
and the cyclic-end conditions for n = 4, the computa- 
tion of Equations 11 yields the result of lPi I= 1.50 for 
i = 0, 1, 2, 3. An error estimation indicates that this 
approximated circle carries a maximal radial deviation 
IArl/r = 0.02773 where Ar is the difference between 
the radius of the approximating curve at the mid-point 
of its span and the corresponding radius r of the true 
circle. It can be seen by a visual inspection that this 
approximated circle is not very smooth. Further im- 
provement on the approximation accuracy can be done 
either by increasing the number of curve segments or 
by raising the accuracy order of the curve formulation. 

The PC circle in uneven spacing and C* 
continuity 

The diagram in Figure 6 shows a distorted circle with 
four curve segments of angular width 7r/6 and four 
segments of angular width r/3. The ticks on the cir- 
cumference mark this unevenly spaced data point 
spread. For the illustration of the distortion effect of 
uneven spacing on the composite PC spline in normal- 
ized parametrization, this circle is purposefully con- 
structed with the same conditions which produced the 
approximated circle in Figure 5. 

The diagram in Figure 7 shows a smoothly connected 
circle with the same data points as those used in the 
diagram of Figure 6. Now, in this circle, the component 
PC curves are of the arc-length-parameter formulation, 
Formulation II. These PC curves have end-tangent 
vectors with magnitudes equal to unity since the 
parameter is the arc length. Furthermore, the curve 
length t, of each curve segment is obtained through 

Figure 6 The C2 circle with uneven spacing 

0 
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Starting with data points 
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Figure 8 The flow chart for arc length iteration 

Equation 16 with an initial length value given by Equa- 
tion 17. The iteration cycles and the iteration ending 
criterion are given and depicted in Figure 8. 

The PC circle in uneven spacing and G’ 
continuity 

The PC circle of Figure 7 can also be constructed with 
the geometric continuity formulation, Formulation III. 
Generally, the curve segments in this formulation can 
be constructed in a piecewise independent manner. As 
one can see from the diagram, with the known arc 
radius r and the two end-point positions p, , and p,. 
the angular width (Y,! of the segment can be calculated 
with simple trigonometry. Together with Equations 24 
and 25, PC curves expressed in Equation 19 are com- 
pletely defined. 

Furthermore, it can be established that the circle of 
this formulation also satisfies the G’ continuity condi- 
tion at the joints. From Reference 6, p 150, the G’ 
continuity condition can be expressed as, with ap- 
propriate notations of the present paper 

127) 

where & and vk are two constant parameters and are 
generally referred to as the bias parameter and the 
tension parameter for parametric curve shape adjust- 
ment (refer to Reference 8 for details). Here, for circle 
approximations, no tension adjustment is required and 
we have uk = 0. Then, Equation 27 can be derived from 
Equation (23) with px = t, + ,/t,. Therefore, circle ap- 

proximations with curve segments by Equation 19 are 
actually G 2 continuous. 

ACCURACY OF CIRCLE 
APPROXIMATIONS 

I‘he accuracies of the approximated circles formulated 
III this paper are tabulated in Tables 1 and 2. The 
common feature of the circles enlisted in Table I is the 
angular width, or the number of segments, of PC 
curves in the approximation. The radial deviation 
!hrl/r, indicates that the accuracy improves in the 
order of Formulations I, II, and III. This is a reason- 
able result from the standpoint of the rigorousness of 
the parametrization. Particularly worth mentioning is 
the accuracy improvement of Formulation III over that 
of Formulation II. In Formulation II, the improved 
accuracy is obtained by iterations. Through the itera- 
tion steps, the arc length of the PC curve segment 
approaches the best value that can be achieved by that 
formulation. Yet, it is still not the arc length of the true 
circle. In Formulation III, through Formulae 24, we 
adopt the true arc length for the use in the approxima- 
tion, hence an even better result. 

The common feature of the circles enlisted in Table 
? is the formulation. Now by increasing the number of 
approximating curve segments, or by reducing the width 
of the arc span, we can reach the expected accuracy of 
design demands. 

CONCLUSIONS 

in this paper formulations of PC splines have been 
presented. They are presented in an order of increasing 
rigorousness and improved accuracy in circle approxi- 
mation. Although the parametric curve is a common 
topic which has frequent appearance in the literature, 
some aspects of its nature still remain to be explored. 
In a loose sense, there are not strict standards for the 
performance judgment of free-form parametric curves. 
Their merits are based on the ease of use in practice 
and the smoothness in visual inspection, so that the 
normalization (Formulation 1) evolves to be the most 
popular choice in the field without much concern to 
the effects of joint continuity and data point spread. 
Through the approximation of a circle, it has been 
shown here that the choice of joint continuity makes 
some significant improvement in the approximation 
accuracy and the spacing of data points will make a 

Fable 1 Approximation accuracy of arc with u = rr/2 

~. _~_____ 

l~~rmulat~on 1 II 111 

Ar1,, r 0.02773 0.01903 0.01521 

Table 2 Approximation accuracy of Formulation III 

_~ 

Angular width v/2 ?r/3 7r.I fl 

,Iri//r 0.01521 0.00307 0.00010 
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striking difference in the appearance of the resulting 
spline curve. 

Furthermore, with Formulation III, the G2 continu- 
ous circle in uneven spacing, the construction of com- 
posite PC curves is rendered piecewise independent. In 
other words, unlike the conventional composite PC 
curve in which the end-tangent of curve segments at all 
internal joints are interlocked by Equations 7, the 
curve segments in this G2-continuous PC circle can be 
constructed individually without influence from the 
other segments. This simplifies the construction of cir- 
cles and spheres by the parametric cubic formation. 
Though the order of accuaracy of the approximated 
circle obtained by Formulation III is not quite compa- 
rable to some of those obtained in the referenced 
articles, it is accurate enough for the common practice 
of computer-aided design. Besides, its simple form and 
ease of use will certainly make it more attractive in the 
field. 
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