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Abstract—This paper proposes a channel effect prediction-
based power control scheme using pipeline recurrent neural
network (PRNN)/extended recursive least squares (ERLS) for up-
links in direct sequence code division multiple access (DS-CDMA)
cellular mobile systems. Conventional signal-to-interference (SIR)
prediction-based power control schemes may incur prediction
mistakes caused by the adjustment of transmission power.
The proposed power control scheme purely tracks the vari-
ation of channel effect and, thus, can be immune to any
power adjustment. Furthermore, it adopts the PRNN with
ERLS for predicting the channel effect. Simulation results
show that the channel effect prediction-based power control
scheme using PRNN/ERLS achieves a 40% higher system ca-
pacity and a lower outage probability than the conventional SIR
prediction-based power control scheme using grey prediction
method (IEEE Trans. Veh. Technol., Vol. 49, No. 6, p. 2081, 2000).

Index Terms—Channel effect prediction, direct sequence
code division multiple access (DS-CDMA), extended recursive
least squares (ERLS), power control, pipeline recurrent neural
network (PRNN).

I. INTRODUCTION

THE direct sequence code division multiple access (DS-
CDMA) cellular mobile system is an interference-limited

system that requires power control to combat the multiple
access interference (MAI) and near–far effect. The general
concept of closed-loop power control for the reverse link in
the DS-CDMA system is that the transmission power of a
mobile is controlled within a required signal-to-interference
(SIR) value received at the base station. Many uplink power
control schemes have been proposed [1], [2]. However, they
exhibit a loop delay. Thus, several prediction-based power con-
trol schemes have recently been proposed, including the fuzzy
method [3] and grey method [4]. With a priori knowledge of the
fading channel, these prediction-based power control schemes,
employing predictors to compensate for delay, can reduce the
power control error and outperform the non-prediction-based
schemes.

The prediction objective of these prediction-based power
control schemes is the SIR value. This received SIR value is af-
fected not only by the channel effect, including the link gain and
the interference fluctuation, but also by the transmission power,
which is adjusted by the power control command. Notably,
the transmission power may inhibit the SIR prediction-based
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power control scheme, as in [3], from generating a precise
power control command. Consider an example in which the
link gain declines at a deep fade period. The SIR prediction-
based power control scheme first decides to send a positive
command to increase the transmission power if the received SIR
is lower than the desired threshold. The received SIR is thereby
enhanced. Then, if the SIR predictor is misled and forecasts
that the SIR value in the following cycle will exceed the
desired SIR value, a negative command is sent to decrease the
transmission power in the subsequent control cycle. However,
the channel remains in a bad situation actually. In such a case,
the received SIR value would exhibit zigzagging along a curve
of deteriorated SIR value, and then it takes a long time to be
restored to the desired SIR value. This is due to the fact that
the transmission power interferes with the SIR prediction, and
the SIR prediction-based scheme yields an inappropriate power
control command for the adjustment of transmission power.
The conventional SIR prediction-based power control schemes
do not perform well. Wien et al. proposed a short-term fading
prediction-based (SFP) power control scheme [5]. However, it
was for downlinks, and only short-term fading needed to be
considered.

In this paper, a channel effect prediction-based power control
scheme for uplinks is proposed. This scheme tracks only the
variation of the channel effect, including both the link gain and
the MAI. Without the transmission power factor, the channel
effect prediction-based power control scheme does not suffer
from unsuitable impact by the transmission power. In addition,
a pipeline recurrent neural network (PRNN) with extended re-
cursive least squares (ERLS) [6] is employed for the predictor.
The PRNN/ERLS predictor has been effectively and success-
fully applied to predict the MAI variation in the DS-CDMA/
packet reservation multiple access (PRMA) system [7]. Simu-
lation results show that the proposed scheme can improve the
accuracy of power control and increase the system capacity.

II. CHANNEL EFFECT PREDICTION-BASED POWER

CONTROL SCHEME USING PRNN/ERLS PREDICTOR

A. Channel Effect Prediction-Based Power Control Scheme

Fig. 1 depicts the block diagram of the channel effect
prediction-based power control scheme using a PRNN/ERLS
predictor. The channel effect Ch(n) at time nTp is designed
as the prediction objective of the predictor, where Tp is the
updating period. It is defined to be the ratio of link gain G(n)
to interference power I(n), given by

Ch(n) =
G(n)
I(n)

. (1)
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Fig. 1. Structure of Q-learning-based multirate transmission control (Q-MRTC) scheme.

Fig. 2. PRNN structure.

As shown in the figure, at time nTp, the mobile updates its
transmission power P (n); the base station measures the link
gain G(n) and the interference I(n) for each user. The link
gain can be measured from the signal strength of the com-
mon pilot channel. The channel effect Ch(n) is then deter-
mined from G(n)− I(n) in the decibel domain and fed into
the PRNN/ERLS predictor for the next-cycle prediction. The
PRNN/ERLS will yield a one-step predicted value of the chan-
nel effect Ch(n + 1). Furthermore, the measured transmission
power P (n) is determined by subtracting the received signal
power from the link gain. The received SIR at the next time
(n + 1)Tp, ŜIR(n + 1), defined as the product of the measured
transmission power P (n) and the predicted channel effect
Ĉh(n + 1), can then be obtained. Comparing ŜIR(n + 1) with
the desired SIR level D yields an error value. If the error is
nonnegative, then the power control command cmd is set to 1;
otherwise, it is −1. The base station sends this command to
the mobile. After a loop delay of Tp, the mobile detects
the command ĉmd and adjusts the transmission power by an
amount of ∆P × ĉmd dB.

B. PRNN Predictor

Consider a general sampled process of channel effect
{Ch(n), n = kTp, 0 ≤ k ≤ ∞}. According to the nonlinear
autoregressive-moving average (NARMA) model of this
process, with one-step prediction, the prediction value of the
sample Ĉh(n + 1) at time n + 1 can be determined from p

previous measured samples Ch(i), n− p + 1 ≤ i ≤ n, and q
prediction errors ê(j), n− q + 1 ≤ j ≤ n. It is expressed as

Ĉh(n + 1) =h (Ch(i); ê(j))

=h (Ch(n), . . . , Ch(n− p + 1)

ê(n), . . . , ê(n− q + 1)) (2)

where h(·) is an unknown nonlinear function to be determined
and ê(j) = Ch(j)− Ĉh(j).

The recurrent neural network (RNN) is an approach well
suited to fit the NARMA model [8]. Equation (2) should be
reformulated as a new function H to enable RNN to be adopted
with real-time recurrent learning algorithm (RTRL) to approxi-
mate h(·), given by

Ĉh(n + 1) = H
(
Ch(n), . . . , Ch(n− p + 1)

Ĉh(n), . . . , Ĉh(n− q + 1)
)
. (3)

In the implementation of the NARMA (p, q) prediction
model, a fully connected RNN structure with M neurons and
p + q + M input nodes can be adopted. Several kinds of RNN
have been applied to the power control prediction problem,
such as the modified Elman neural network [9]; however, their
computational complexities are pretty high. Instead, the PRNN
structure is here considered for its computation efficiency. As
depicted in Fig. 2, PRNN refers to the NARMA-based RNN
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predictor with a pipelined structure. PRNN divides the RNN
structure into q small RNN modules [6], [7], whose structures
are similar to that of the RNN. In our design, the ith small RNN
consists of M ′ neurons and (d + M ′ + 1) input nodes, where
q ×M ′ = M and d = p− q + 1. The first d input nodes are
the external inputs, which are the delayed signals from Ch(n−
i + 1) to Ch(n− d− i + 2); the (d + 1)th input node is con-
stantly set to unity; the (d + 2)th input node is the output of the
first neuron in the (i + 1)th module, yi+1,1(n), if i 	= q, or it
is the feedback signal from the first neuron’s output of module
q in time ((n− 1)Tp), yq,1(n− 1), if i = q; and the remain-
ing (M ′ − 1) input nodes are feedbacked from 2 ∼M ′ neu-
rons’ output of the same module, yi,2(n− 1) ∼ yi,M ′(n− 1).
The weight of the connection from the jth input node to the kth
neuron is given by wkj(n), 1≤ j ≤ d+M ′+ 1, 1≤ k ≤M ′.

The PRNN predictor yields Ĉh(n + 1), which is the first
output of the first module y1,1(n), given by

Ĉh(n + 1) =φ


 d∑
j=1

wi,j(n)Ch(n− j + 1) + w1,d+1

+w1,d+2(n)y2,1(n)

+
d+M ′+1∑
j=d+3

w1,j(n)y1,j−d−1(n− 1)


 (4)

where φ(·) is a sigmoid function of each neuron, expressed as

φ(x) =
1

1 + exp(−x)
. (5)

Ignoring the dependency of the updated weight matrix
and recursively iterating yi,1(n) from i = 2 to (q − 1) yields
Ĉh(n + 1) as

Ĉh(n + 1) = Ĥ
(
Ch(n), . . . , Ch(n− p + 1)

Ĉh(n), . . . , Ĉh(n− q + 1)
)

(6)

where Ĥ(·) has a nested nonlinear property. Ĥ(·) can accu-
rately approximate the nonlinear function of H(·), which the
NARMA-based RNN can provide.

C. ERLS Learning Algorithm

Here, the ERLS is applied as the learning algorithm for
PRNN. The prediction errors for each module ei(n) and the
PRNN predictor E(n) are, respectively, defined as

ei(n) = Ch(n− i + 1)− yi,1 (7)

and

E(n) =
M∑
i=1

ξi−1e2
i (n) (8)

where ξ ∈ (0, 1] is the forgetting factor. The term ξi−1 is
an approximate measure of the memory of the individual
modules in the PRNN. The cost function of ERLS is defined as

εERLS(n) =
n∑
k=1

ξn−kE(k). (9)

The ERLS algorithm minimizes the cost function (9) and then
updates the weights of the neurons in the modules accordingly.
For a detailed description of the learning algorithm, please see
[6]. ERLS considers present and previous errors, so it outper-
forms the gradient decent algorithm which considers only the
present error.

The PRNN with ERLS is well suited for prediction in a
nonlinear and nonstationary radio channel environment because
of the distributed nonlinearity built into its design and the
capability of the neural network learning from the environment.

III. SIMULATION RESULTS AND DISCUSSIONS

In the simulations, the DS-CDMA cellular mobile system
is considered in a 19-cell hexagonal-grid configuration. The
link gain G(n) of the channel is determined by the long-term
fading (free space loss and log-normal shadowing) and the
short-term fading (Rayleigh fading). The data traffic is modeled
as an ON–OFF source, which consists of two major parameter
sets—the distributions of ON–OFF periods and the distribution
of packet arrivals during an ON period. For simplicity, the
transmission is assumed to be continuous during the ON period.
The Pareto distribution is used, where the typical mean ON

period is 7.2 s with a “heaviness” of ρ = 1.7 and the typical
mean OFF period is 10.5 s with a “heaviness” of ρ = 1.2 [10].
Furthermore, the simulations ignore the effects of sectorization,
handoff, branch diversity, and voice activity.

Every simulation result includes 100 simulation cycles, and
each of which contains 1000 updating periods. Mobiles are
randomly located at the beginning of each cycle and assumed
to be fixed. As for the PRNN predictor, parameters are selected
as: M = 4; N = 2; p = 4; and ξ = 0.99 [6].

The system performance measure considered herein is the
average outage probability P0, which is given by

P0 = Pr{SIRr < SIR0} (10)

where SIRr is the received SIR and SIR0 is the minimum SIR
required to achieve a desired bit error rate. Eb/N0 = SIR0 ×
PG, where PG is the processing gain, so the value of SIR0 for
a service can be determined by the service’s required Eb/N0

and PG. For voice services, SIR0 = −18 dB is obtained if
PG = 256 and the required Eb/N0 = 6 dB. For multirate data
services, the required Eb/N0 is assumed to be 9 dB, the PG is
assumed to be varied from 256 to 32, and then the SIR0 is set
accordingly. The desired level D is set to be 4 dB higher than
SIR0 in the simulation. In addition, the step size ∆P is set to
2 dB, and the number of mobile users in each cell is K = 8.

The proposed channel effect prediction-based power con-
trol scheme and the conventional SIR prediction-based power
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Fig. 3. Outage probabilities of power control schemes versus fDTp for eight
voice users in a cell.

control scheme are simulated for performance comparison.
Both the PRNN/ERLS and the grey methods are adopted
by these two schemes as a predictor. Hence, four schemes
are investigated, namely: 1) the channel effect prediction-
based scheme with PRNN/ERLS (CE-PRNN/ERLS); 2) the
channel effect prediction-based scheme with grey (CE-Grey);
3) the SIR prediction-based scheme with PRNN/ERLS
(SIR-PRNN/ERLS); and 4) the SIR prediction-based scheme
with grey (SIR-Grey) [4].

Fig. 3 plots the outage probabilities versus the normalized
Doppler frequency shift fDTp. The channel effect prediction-
based power control schemes (CE-PRNN/ERLS and CE-Grey)
outperform the conventional SIR prediction-based ones
(SIR-PRNN/ERLS and SIR-Grey). This is due to the fact
that the channel effect prediction-based scheme is related to
the channel gain and the interference but is independent of
the transmission power, especially for high-speed users. As
mentioned above, if the transmission power is both the control
objective and a component of the prediction objective, the
situation could confuse the predictor regarding the real status of
the radio channel. As a result, the SIR prediction-based power
control scheme slowly converges to the desired SIR value D.
Furthermore, PRNN/ERLS outperforms the grey method, given
a prediction-based power control scheme. This is due to the
fact that the PRNN/ERLS can capture the signal correlation
more accurately than the grey method. The PRNN is basically
a RNN and has an infinite memory of past signals. Moreover,
the ERLS algorithm introduces the forgetting factor that assigns
higher weights to recently received signals. This feature helps
the PRNN/ERLS predictor to deal with nonstationary signals.
On the contrary, the grey method only performs well in shorter
learning windows (of three to six time intervals) [5].

Fig. 4 plots the outage probabilities versus the number of
voice-only mobile users in each cell with fDTp = 0.05. The
CE-PRNN/ERLS scheme outperforms the other schemes. If
the quality of service (QoS) required outage probability for
voice service is set to 1%, then the proposed CE-PRNN/ERLS
can serve seven users in each cell, while the SIR-Grey

Fig. 4. Outage probabilities of power control schemes versus the number of
voice-only mobile users in each cell with fDTp = 0.05.

Fig. 5. Outage probabilities of power control schemes versus the number of
mobile users in a cell with fDTp = 0.05.

scheme can only serve about five users. The CE-PRNN/ERLS
yields a system capacity 40% higher than that given by the
SIR-Grey. Fig. 5 plots the outage probabilities versus the num-
ber of voice and/or data users in each cell with fDTp = 0.05.
It can be seen that the system performance deteriorates as the
ratio of data users increases. The reasons are as follows: Data
services require higher transmission rates and higher quality of
communications; so the transmission power of data users must
be increased. Furthermore, the traffic flows of data services are
intermittent, corresponding to a relatively higher transmission
variation. Hence, data services suffer a larger interference vari-
ation. The CE-PRNN/ERLS scheme, with the aid of channel
effect prediction, can eliminate the interference associated with
power control adjustment itself. Thus, it still can outperform
the SIR-Grey scheme by an amount of 8% in a mixed mode
scenario and 6.5% in a pure data scenario, given with a 2%
outage probability requirement.
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