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A PRESSURE-CORRECTION METHOD FOR
INCOMPRESSIBLE FLOWS USING
UNSTRUCTURED MESHES

Yeng-Yung Tsui and Yeng-Feng Pan
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

A pressure-correction method is presented to solve incompressible viscous flows. The

development of this method is aimed at dealing with unstructured grids, which are made

of control volumes with arbitrary topology. To enhance the robustness of the method, all

variables are collocated on the cell centers. The divergence theorem of Gauss is employed

for discretization, and vector forms are used throughout the formulation. In this way the

method is equally applicable to two- and three-dimensional problems. An overrelaxed

approach is adopted for the approximation of the cross-diffusion flux to deal with ‘‘skew’’

grids. It can be seen that this approach is equivalent to some other approximations available

in the literature. However, the present approach is more suitable for three-dimensional cal-

culations without causing complication. This overrelaxed approach is also employed in the

pressure-correction equation derived from the continuity constraint. Most prevailing meth-

ods simply ignore the cross-derivative term of the pressure-correction equation, which not

only causes instability but also slows down convergence rate if the grid is skew. This

cross-derivative term is taken into account in the present calculations by using a successive

correction procedure. The application of the methodology to flows in lid-driven cavities

and diffusers shows that no more than two pressure-correction steps are enough to obtain

fast and stable convergence. The method is also applied to a three-dimensional flow in an

impeller-stirred tank.

INTRODUCTION

The development of computational fluid dynamics has reached such a mature
stage that viscous flow, either laminar or turbulent, can be analyzed by solving the
full Navier-Stokes equations in an extremely complex geometry. In handling irregu-
lar boundaries, finite-element methods have been preferred to other methods such as
finite-difference schemes because they can use unstructured, triangular meshes which
can easily be generated to cope with arbitrary geometry. However, the recent devel-
opment of finite-volume methods is drawing much attention due to the following
reasons. First, the finite-volume methods satisfy the physical principle of conser-
vation law by using the Gauss’s divergence theorem as basis. Second, they are
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relatively easy to implement and the difference equations raised can be solved
efficiently using iterative methods because the generated coefficient matrices inherit
the sparse character of the finite-difference methods. Third, they allow the use of
mixed grids consisting of cells with various shapes without causing complication
in formulation.

In solving incompressible flow or low-Mach-number flow, pressure-based
methods are most widely used, since the velocity is mainly driven by pressure force.
In these methods a pressure equation or a pressure-correction equation is derived by
forcing the velocity field to satisfy the continuity constraint. The momentum equa-
tion and the pressure equation, or the pressure-correction equation, are solved for
velocity and pressure in a segregated manner. An important issue which affects
the coupling between the velocity and the pressure is the placement of the velocity
and the pressure on the grid. A sketch of some grid layouts in two dimensions is
given in Figure 1. It has been long recognized that the collocation of pressure and
velocity [1–6], such as the one shown in Figure 1a, would cause pressure wiggles since
the two variables are linked in a checkerboard manner. One way to circumvent this
problem is to introduce artificial pressure dissipation explicitly [1]. The amount of
dissipation is controlled via a damping coefficient. Partly due to the setting of the
damping coefficient being case dependent, this method did not gain popularity.
An effective way to conquer the oscillation is the use of staggered grids in which
the pressure is placed at cell centroids while the velocity components are sited on
the midpoints of cell faces, as shown in Figure 1b [7, 8]. In this manner the mass

NOMENCLATURE

AC, AP coefficients of the difference equation

AP
C coefficient of the pressure difference

equation
~dd a vector in the direction of ~ddPE
D pressure coefficient in the difference

equation
~eed unit vector in the direction of ~ddPE
~ees unit surface vector

~eet unit vector parallel to the cell face

fp spatial weighting factor

F flux

_mm mass flux

p pressure

p0 pressure correction

re distance vector from the upstream

cell node to the face node

s magnitude of~ss
~ss surface vector of the cell face

S source term of the difference equation

Sp1, Sp2 source terms of the pressure

difference equation

S/ source term of the transport equation

V
!

flow velocity vector

c blending factor

C diffusion coefficient
~ddPE distance vector from node P to

node E

h angle between the surface vector

and ~ddPE
q density

/ an entity

Subscripts

C neighboring cell nodes

e east face node

E east cell node

f a face node

P primary cell node

Superscripts

c convection

d diffusion

HD high-order scheme

UD upwind scheme

(1) first correction

(2) second correction
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fluxes crossing the cell faces, as required for the mass conservation for the pressure
cells, are directly available. However, this arrangement becomes inefficient when the
number of faces per cell increases. As an example, for a two-dimensional problem
with the use of quadrilateral cells one must solve four momentum equations on
two faces for each cell. Another drawback is that if the grid is ‘‘orthogonal’’ and
the flow velocity is in the direction of a cell face, the velocity is not directly related
to the pressures on the two cells sharing the face. In Figure 1c the velocity compo-
nents are placed on cell vertices [9, 10]. It is obvious that the link between the velocity
components and the pressure is weak. Thus, a special treatment is usually necessi-
tated. The placement of the velocity node in Figure 1d is the same as that in
Figure 1b, i.e., on the cell faces. In the latter the Cartesian velocity components
are the primary variables, whereas in the former it is the velocity component normal
to the face being solved for [11–13]. The equation governing the normal velocity
component is available by projecting the momentum equation onto the direction
normal to the face. The tangential velocity component is obtained through a special
interpolation procedure from the normal velocities on neighboring faces. The disad-
vantage of this method is the necessity for the edges of the primary grid and those of
the dual grid for the velocity to be perpendicular to each other. If these two families
of grids are not mutually orthogonal, the accuracy of the solution is severely
damaged.

In view of the above discussion, the use of staggered grids is not without pro-
blems. Moreover, due to the displacement of the velocity from the pressure, another
family of control volumes (complementary control volumes) needs to be constructed.
As a result, formulations as well as programming become more complicated,
especially for three-dimensional flow. In this work a method incorporating unstruc-
tured grids along with a pressure-correction equation is developed to solve

Figure 1. Variable grid arrangements.
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incompressible flows. The solution variables are collocated at cell centers (Figure 1a).
To avoid the problem of velocity–pressure decoupling, the momentum interpolation
method [14] is employed to calculate the mass fluxes across cell faces. It has been
shown that this interpolation practice could lead to implicit fourth-order dissipation
in pressure [15], which can effectively eliminate pressure oscillations. This unstruc-
tured-grid method possesses two important features. First, it is equally applicable
to two- and three-dimensional problems without needing any modification or
reformulation. Second, the geometric shape of the cell can be arbitrary, i.e., the num-
ber of surfaces for each cell can be variable. This feature is important for local grid
refinement.

NUMERICAL METHOD

The method described in the following can be equally applicable to both two-
and three-dimensional flows. However, for the sake of easy presentation, only two-
dimensional cases are considered.

The transport equation for an entity / can be written in the following form:

r � ðqV!/Þ ¼ r � ðCr/Þ þ S/ ð1Þ

where S/ denotes the source term including the pressure gradient for the momentum
equation. In the equation, the convection and diffusion terms are cast in the diver-
gence form. In the finite-volume method the difference equation is obtained by first
integrating over a control volume. Then, by using the Gauss’s divergence theorem,
the volume integral of convection and diffusion becomes a surface integral.

Z
s

ðqV!/Þ � d~ss ¼
Z
s

ðCr/Þ � d~ssþ
Z
Dv
S/ dv ð2Þ

The control volume, in general, can be a polygon with arbitrary number of faces.
For illustration, a two-dimensional control volume is presented in Figure 2a. The
calculation of the convection and diffusion fluxes through the surface of the control
volume can be approximated as

Z
s

ðqV!/Þ � d~ss ¼
Xn
f¼1

Fc
f ¼

Xn
f¼1

ðq~VV �~ssÞf/f ð3aÞ

Z
s

ðCr/Þ � d~ss ¼
Xn
f¼1

Fd
f ¼

Xn
f¼1

ðCr/ �~ssÞf ð3bÞ

where Fc
f and Fd

f , as defined in the equation, stand for the convection and diffusion
fluxes through a face f, respectively, and ~ssf is the surface vector, which is always
directed outwardly normal to the face of the control volume considered.
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Convection Fluxes

In evaluating the convection face flux Fc
f , both the mass flux and the entity at

the face /f need to be approximated. The calculation of mass flux requires a spe-
cial treatment and will be dealt with later. The approximation of /f is crucial to
numerical accuracy and iteration stability. In the past decades a number of high-
order difference schemes other than first-order upwind differencing and the central
differencing were developed for structured grids. As examples, the QUICK scheme
[16] and the linear upwind scheme [17] are the most popular among others. How-
ever, these high-order schemes require more than two nodes in the upstream direc-
tion for the face value approximation. Unlike the structured grid, in general, there
is no certain grid direction in the unstructured grid system. In addition, the use of
more than two nodes on one side of the face considered would significantly
increase programming complication. Therefore, direct use of the above-mentioned
high-order schemes is not suitable in unstructured grid calculations. In the compu-
tations of the present study the central differencing and an upwind-biased second-
order scheme are employed. For a face e, the convection flux is arranged in the
following form:

Fc
e ¼ FUD

e þ cðFHD
e � FUD

e Þ ð4Þ

where the superscripts UD and HD denote the upwind and the high-order schemes,
respectively. The upwind-biased scheme is given by

/HD
e ¼ /UD

e þr/UD �~rre ð5Þ

where the first term on the right-hand side simply represents the upwind difference
approximation, r/UD is the gradient of / at the cell node upstream of the e face,

Figure 2. Illustration of (a) a typical control volume with arbitrary geometry and (b) a control volume

surrounding face e for calculation of diffusion flux.
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and~rre denotes the distance vector directed from the upstream cell node to the face
node. Substituting this into Eq. (4) leads to

Fc
e ¼ _mmeð/UD

e þ cr/UD �~rreÞ ð6Þ

In the above, c is a value between 0 and 1. It plays the role of blending the high-order
scheme and the upwind scheme. During calculation the upwind flux is treated
implicitly to construct the coefficients of the difference equation. Thus, diagonal
dominance is ensured for the coefficient matrix, which is beneficial to solution iter-
ation. The rest of the flux is implemented explicitly and updated after each solution
iteration.

Diffusion Fluxes

A usual way to discretize the partial derivative of the diffusion flux is the use of
Green’s theorem or Gauss’s theorem. For a control volume (P-B-E-T) surrounding
the face point e shown in Figure 2b, this can be approximated as

q/
qx

¼ 1

DA

I
/ dy ¼ 1

DA

X4
j¼1

/j Dyj ð7aÞ

q/
qy

¼ � 1

DA

I
/ dx ¼ � 1

DA

X4
j¼1

/j Dxj ð7bÞ

where, for example,

/1 ¼
1

2
ð/P þ /BÞ ð8aÞ

Dy1 ¼ yB � yP ð8bÞ

and DA is the area of the control volume P-B-E-T. The summation is over the four
edges of the control volume. The above method is rather laborious because a lot of
manipulation is required to yield the final form of the difference equation and the
formulation is very complicated for three-dimensional problems.

To suit the need for comprehensive applications, a method was proposed by
Jasak [18]. As given in Figure 3a, let ~ddPE be the vector connecting the cell nodes P
and E,~ss the surface vector of the face, and ~dd a vector in the direction of~ddPE . Then,

Fd
e ¼ ðCr/ �~ssÞe ¼ Cer/e �~dd þ Cer/e � ð~ss�~ddÞ ð9Þ

A simple choice of ~dd, termed orthogonal-correction approach [18], is

~dd ¼ s~eed ¼ s

dPE
~ddPE ð10Þ
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where~eed denotes the unit vector in the direction of~ddPE . Another choice, called over-
relaxed approach [18], is given by

~dd ¼ s

~eed �~ees
~eed ¼ s2

~ddPE �~ss
~ddPE ð11Þ

where ~ees denotes the unit vector normal to the face. It can be found that the two
approaches become identical and equal to ~ss when ~ddPE is in the same direction as
~ss. Unlike the orthogonal-correction approach, the magnitude of the overrelaxed
approach varies with the skew angle h between ~ss and ~ddPE . By introducing the
overrelaxed approach into the first term of Eq. (9), the flux can be expressed as

Fd
e ¼ Ces

2

~ddPE �~ss
ð/E � /PÞ þ Cer/e � ð~ss�~ddÞ ð12Þ

The gradient at the face in the second term is obtained via interpolation from the
adjacent nodal values.

r/e ¼ ð1� f PÞr/P þ f Pr/E ð13Þ

This term arises when the mesh is skew and disappears in orthogonal meshes. As in
the above section, the deferred correction method is employed again in the solution
iteration, that is, the first term is treated implicitly and the second term explicitly.
The merit of using the overrelaxed approach and the deferred correction is that
the coefficient of the implicit term increases with the skew angle h, as long as ~ddPE
is nonorthogonal to the face. Thus, the diagonal dominance of the coefficient matrix
of the difference equation is enhanced.

In Eq. (12) the first term designates the normal diffusion and the second term
the cross diffusion. The later is equivalent to the cross-derivative of the diffusion in

Figure 3. Illustration of (a) vectors ~dd and~ss and (b) the vector~ss�~dd for the overrelaxed approach.
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curvilinear structured grids. It can be shown in Figure 3b that

~ss�~dd ¼ s ~ees �
~eed

~eed �~ees

� �
¼ s tan h~eet ð14Þ

where h is the skew angle between~eed and~ees, and~eet is the unit vector parallel to the
surface. Thus, for a two-dimensional problem the diffusion flux can be approxi-
mated by

Fd
e ¼ Ces

2

~ddPE �~ss
ð/E � /PÞ þ Ce tan hð/T � /BÞ ð15Þ

where the subscripts T and B denote the two cell vertices at the ends of the edge face,
as shown in Figure 3b. If Eq. (15) is used in calculations, the vertex values must be
approximated using cell values surrounding the vertices. This indicates that the com-
putational molecule includes not only the neighboring cells sharing the faces with the
control volume considered, but also the corner cells sharing the cell vertices.

There are a number of formulations for the diffusion flux, obtained in different
ways. For the face control volume shown in Figure 4a, by using the approximations
given in Eq. (7) for the gradient r/, the following expression is obtained:

Fd
e ¼ Ces

2

~ddPE �~ddBT
��� ��� ð/E � /PÞ þ Ce

~ddPE �~ddBT
~ddPE �~ddBT
��� ��� ð/T � /BÞ ð16Þ

This formulation can also be derived when considering the parallelogram control
volume shown in Figure 4b used by Davidson [2].

Figure 4a shows two coordinates n and g which are in the directions of~ddPE and
~ddBT , respectively. By using these local curvilinear coordinates for r/ �~ss, a different
expression for the diffusion flux is yielded [4–8]:

Fd
e ¼ Ces

2

~ddPE �~ss
ð/E � /PÞ þ Ce

~ddPE �~ddBT
~ddPE �~ss

ð/T � /BÞ ð17Þ

Figure 4. Illustration of two control volumes used for calculation of diffusion flux.
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It is interesting to notice that the above two expressions (16) and (17) are
exactly the same as Eq. (15) because

~ddPE �~ddBT
��� ��� ¼~ddPE �~ss ð18aÞ

~ddPE �~ddBT
~ddPE �~ddBT
��� ��� ¼

�sin h
cos h

¼ � tan h ð18bÞ

Thus, these approaches are equivalent to the overrelaxed approach. Among the for-
mulations shown above, the expression given by Eq. (12) is favored because the
extension of the other expressions to three-dimensional flows is much more compli-
cated. It is interesting to be aware of that a form similar to Eq. (12) has also been
proposed by Mathur and Murthy [3].

Mass Fluxes

The velocity at face e shown in Figure 4 is calculated from

V
!

e ¼ V
!

e � ðDerpe �DerpeÞ ð19Þ

where

De ¼
Dv
Au

P

� �
e

¼ 1

2

Dv
Au

P

� �
P

þ Dv
Au

P

� �
E

� �
ð20Þ

In Eq. (19), the overbars denote the values interpolated from the two neighboring
nodes P and E. Au

P is the main coefficient of the difference momentum equation.
The mass flux is then obtained by

_mme ¼ qeV
!

e �~ss ¼ qeV
!

e �~ss� qeDeðrpe �~ss�rpe �~ssÞ ð21Þ

The difference of the two pressure forces in parentheses is approximated, by replac-
ing~ss by ~dd, as

rpe �~ss�rpe �~ss � rpe �~dd �rpe �~dd ð22Þ

This approximation does not make the second-order accuracy of the expression (21)
for _mm deteriorate because the difference between the two gradients simply represents
a third-order correction to the velocity [15]. When the overrelaxed approach is
employed, the mass flux becomes

_mme ¼ qeV
!

e �~ss� AP
E ½ðpE � pPÞ � rpe �~ddPE � ð23Þ
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where

Ap
E ¼ �qqeDe

s2

~ddPE �~ss
ð24Þ

A
p
E is the coefficient connecting point P and point E in the pressure-correction

equation discussed later.

Pressure Gradients

The pressure gradient is approximated, using the divergence theorem, in the
following form:

rp ¼ 1

Dv

Z
Dv
rp dv ¼ 1

Dv

Xn
f¼1

pf~ssf ð25Þ

For a component of the gradient in the xi direction, it is given as

qp
qxi

¼ 1

Dv

Xn
f¼1

pf ð~ssf �~eeiÞ ð26Þ

where ~eei represents the unit vector in the xi direction and the face pressure pf is
obtained using linear interpolation.

Discretized Momentum Equation

By substituting the flux expressions (4) and (12) and the pressure gradient
approximation (26) into Eq. (2), the following equation is obtained:

AP/P ¼
Xn
C¼1

AC/C þ S ð27Þ

where /C is the value at the neighboring cell node C and AC is the coefficient
connecting the nodes P and C. The coefficient AC is made of the implicit parts of
the convection and the diffusion fluxes. The source S consists of the explicit parts
of the fluxes and the volume integral of the pressure gradient.

Pressure-Correction Equation

The pressure-correction equation can be derived from satisfaction of the con-
tinuity equation as follows. As suggested by Patankar [19], the velocity correction is
related to the gradient of pressure correction in the following way:

~VV 0
e ¼ ~VV��

e � ~VV �
e ¼ �Derp0e ð28Þ
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The mass flux is then calculated by

_mm��
e � _mm�

e ¼ �qeDerp0e �~ss
¼ �qeDerp0e �~dd � �qqeDerp0e � ð~ss�~ddÞ ð29Þ

When the overrelaxed approach is applied, it can be cast into the following form:

_mm��
e � _mm�

e ¼ Ap
Eðp0P � p0EÞ � qeDerp0e � ð~ss�~ddÞ ð30Þ

where the coefficient Ap
E is given in Eq. (24) and Derp0e is approximated by

Derp0e ¼
1

2
ðDPrp0P þDErp0EÞ ð31Þ

By forcing the mass fluxes m��
f on all the faces surrounding the control volume con-

sidered to satisfy the mass conservation law, a pressure-correction equation is
obtained.

App
0
p ¼

Xn
C¼1

ACp
0
C þ Sp1 þ Sp2 ð32Þ

where the coefficient AC for a neighboring cell E is just the A
p
E . The two sources

are

Sp1 ¼ �
Xn
f¼1

m�
f ð33aÞ

Sp2 ¼
Xn
f¼1

qf Dfrp0f � ð~ss�~ddÞ ð33bÞ

In Sp1 the mass flux m�
f is given in Eq. (23). The Sp2 term, representing the contri-

bution of the cross-derivative of pressure, contains grid points other than the ones
immediately neighboring the control volume considered. This term disappears in
orthogonal meshes and is simply ignored by most researchers. However, this term
gathers importance as the mesh becomes skew. It has been shown in the use of curvi-
linear grids that by including this cross-derivative term, a stable solution can be
achieved even if the mesh is extremely skew [20–22]. In unstructured grid calcula-
tions, it is extremely difficult to treat this term implicitly, due to the inclusion of
far neighboring grid points. To account for this term, a successive correction pro-
cedure is used [23].

First step:

APp
ð1Þ
P ¼

Xn
C¼1

ACp
ð1Þ
C þ Sp1 ð34Þ
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Here only Sp1 is taken into consideration. After the first pressure correction p(1) is
obtained, the old pressure p is updated.

p� ¼ pþ pð1Þ ð35Þ

The velocity at each cell center and the mass flux at each cell face are also adjusted via

~VV
�� ¼ ~VV

� �Drpð1Þ ð36aÞ

m��
f ¼ m�

f þ Ap
Cðp

ð1Þ
P � p

ð1Þ
C Þ ð36bÞ

Second step:

APp
ð2Þ
P ¼

Xn
C¼1

ACp
ð2Þ
C þ S

ð1Þ
p2 ð37Þ

where

S
ð1Þ
p2 ¼

Xn
f¼1

qf Dfrp
ð1Þ
f � ð~ss�~ddÞ ð38Þ

In this step the first pressure correction pð1Þ is used for calculating Sp2 and a second
pressure correction pð2Þ is solved for. The pressure, velocity, and mass flux are further
upgraded by

p�� ¼ p� þ pð2Þ ð39aÞ

~VV��� ¼ ~VV �� �Drpð2Þ ð39bÞ

_mm���
f ¼ m��

f � qf Dfrp
ð2Þ
f � ð~ss�~ddÞ ð39cÞ

More corrections in the same manner as the second step can be undertaken.

Solution Algorithm

The overall solution procedure can be described in the following sequence of
steps.

1. Initial velocity and pressure fields are assumed.
2. The momentum equation (27) is solved to find the velocity.
3. The mass flux at cell face is computed from Eq. (23).
4. The first pressure correction is sought through solving the pressure-correction

equation (34), and the pressure, velocity, and mass flux are updated accordingly.
5. Equation (37) is solved to find the second pressure correction, and the velocity

and pressure fields are adjusted. More correction steps in the same way can be
performed if it is necessary.
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Steps 2–5 are repeated until convergence for the momentum and the pressure-
correction equations is reached. It is noted that the convergence of pressure
correction is based on the first pressure-correction step [Eq. (34)] because when
the pressure correction approaches zero, mass conservation is ensured.

In order to take advantage of the sparse characteristic in solving the large sys-
tem of algebraic equations raised from discretization, iterative methods are usually
employed. In the past several decades the tridiagonal matrix algorithm (TDMA)
and Stone’s SIP have been the most popular. However, these algorithms are no
longer applicable in the unstructured mesh system because the coefficient matrices
are not banded. An effective algorithm suitable for unstructured grid calculation
is the preconditioned conjugate gradient method. In this study the symmetric pressure-
correction equation is solved by the incomplete Cholesky conjugate gradient method
proposed by Kershaw [24], and the nonsymmetric transport equations by the biconju-
gate gradient method of Fletcher [25].

RESULTS AND DISCUSSION

The following flow cases are tested to validate the above method: lid-driven
cavity flows, diffuser flows, and the flow in a stirred tank. The first two cases are
two-dimensional and the last serves as an example which extends the methodology
to three-dimensional flow. Central differencing is adopted in the first two flow cal-
culations, whereas the upstream-biased scheme is used in the stirred-tank flow, with
c being setting at 0.9.

Lid-Driven Cavity Flows

As shown in Figure 5a, a cavity is skew at an angle a with respect to the y axis.
The lid at the top of the cavity moves at a constant speed. Due to the transport of
shear stress from the moving lid by the molecular viscosity a flow is set up in the cav-
ity. Benchmark solutions have been obtained by Ghia et al. [26] for an orthogonal
cavity (a ¼ 0) and by Demirdzic et al. [27] for skew cavities. To validate the current
method these problems were solved using both quadrilateral and triangular meshes.
For the orthogonal cavity the quadrilateral grid consists of 128� 128 cells, which
was adopted by Ghia et al. [26] as well. To generate the triangular mesh a 91� 91
rectilinear grid was constructed first and then each quadrilateral was divided into
two triangles. The calculated u velocity along the vertical centerline and the v velocity
along the horizontal centerline for Reynolds numbers Re ¼ 100 and 1,000 are shown
in Figure 6. It is apparent that the present predictions by both grids are in good
agreement with the data of Ghia et al. for the low-Reynolds-number case. For the
high-Reynolds-number flow the peaks of the velocity profiles are slightly underpre-
dicted by using the triangular grid. For the flow in the skew cavity, the triangular
grids are generated using PATRAN. The grids are made of about 14,000 triangular
cells, which are equivalent to a 120� 120 quadrilateral grid as adopted in the
following calculations. The triangular grid for a ¼ 60� is sketched in Figure 5b. A
portion of the grid layout is magnified and illustrated in the inset. It can be seen that
the computational cells, different from those used in the orthogonal cavity flow, are
much more nondistorted, i.e., close to equilateral triangles. As shown in Figure 7, the
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predictions of u and v velocities along the centerlines by both grid systems do repro-
duce the data of Demirdzic et al. [27] well for a ¼ 45� and 60�. Also shown in the case
of a ¼ 60� are the effects of grid size. When the grid density increases, the calcula-
tions approach the ‘‘exact’’ one. The predictions by the grid levels higher than
80� 80 become grid independent.

In solving the pressure-correction equation a successive correction procedure
has been introduced to deal with the cross-derivative term Sp2, which arises in skew
meshes. The number of correction steps requires optimization such that an efficient
and stable solution is obtained. In calculations the process of underrelaxation sug-
gested by Patankar [19] was necessitated to assure convergence. For the case with
a ¼ 60�, Figure 8a presents the required number of iterations for convergence
against the underrelaxation factor of velocity urf(u) by setting the underrelaxation
factor of pressure urf( p) ¼ 0.2. On the other hand, the required iterations versus
urf( p) is shown in Figure 8b, in which urf(u) is fixed at 0.8. The convergence criterion
is based on the total residuals for both the momentum and pressure-correction
equations to be less than 10�4. The number of correction steps is denoted as k in
the figures. Obviously, by ignoring the cross-derivative term (k ¼ 1), the under-
relaxation factor required for convergence is restricted in a small range that is much
smaller than 1. By having more than one correction, this range is enlarged.

Figure 5. Illustration of (a) cavity flow configuration and (b) triangular grid layout for a ¼ 60� cavity.
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Comparing with k ¼ 2, further increase of k to 3 does not help to increase the stab-
ility limits. A similar trend can also be observed in the other skew angles. It can also
be noticed that minimum number of iterations for convergence is yielded for k ¼ 2.

In the above calculations the overrelaxed approach was used for both the dif-
fusion flux and the pressure-correction equation. In order to demonstrate the superi-
ority of this approach the orthogonal-correction approach has also been tested. It
was found that by using the orthogonal-correction approach it is difficult to obtain
convergent solution when the skew angle becomes large enough.

Diffuser Flows

A schematic drawing of the diffuser is shown in Figure 9. The expansion ratio
of the diffuser W2=W1 is 3 and the height S is equal to W1. The computational
domain extends to 30S downstream of the diffuser entrance, which is much larger
than the size of the recirculating flow formed in the diffuser. The inlet velocity
was assumed to be fully developed and the zero gradient condition was imposed

Figure 6. Comparison of velocities u and v along the vertical and horizontal centerlines in orthogonal

cavity ða ¼ 60�Þ: (a) Re ¼ 100; (b) Re ¼ 1,000.
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at the outlet. Two Reynolds numbers were considered: Re ¼ 56 and 114. The defi-
nition of Reynolds number is based on W1 and the inlet centerline velocity.

Experimental data are available for the sudden expansion case (diffuser angle
a ¼ 90�) [28]. The domain is divided into 100� 50 rectangular cells. To create a tri-
angular mesh, a 77� 33 rectilinear grid was generated and each rectangle was then
divided into two triangles. The comparison of predictions with measurements at a
number of x stations in Figure 10 shows good agreement for the low-Reynolds-
number case, though a certain degree of difference exists. In calculations the overall
mass flow rate at each cross section is assured to be identical when the solution con-
verges. However, integrating the measured velocity profile indicates that the mass is
not conserved. This causes the disagreement between predictions and measurements,
especially at downstream locations. Similar conclusions could be found in the

Figure 7. Comparison of velocities u and v along the vertical and horizontal centerlines for Re ¼ 1,000 in

skew cavity: (a) a ¼ 45�; (b) a ¼ 60�.
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previous study [29]. For the high Reynolds number the flow becomes asymmetric,
with a large recirculating flow behind one backward step and a small recirculation
zone behind the other step. The comparison with measurements indicates the degree
of flow asymmetry being less significant in the predictions. The cause of this discrep-
ancy can be attributed mainly to the fact that the flow in the experiments tends to
become three-dimensional in the recirculation region, being supported by the photo-
graphs of Durst et al. [28].

The diffuser with a ¼ 45� was used for testing the effects of number of press-
ure-correction steps. A grid with 80� 40 quadrilaterals was employed. The sketch
of streamlines seen in Figure 11 indicates that, similar to the sudden-expansion case,
the flow pattern is symmetric for Re ¼ 56 and asymmetric for Re ¼ 114. For the
latter a large recirculating flow forms on one side of the diffuser and a small one
on the other side. Like the cavity flow, the underrelaxation factor urf(p) shown in
Figure 12a for Re ¼ 114 is greatly limited and much smaller than 1 when only
one correction step is performed in each iteration cycle. By taking account of the
Sp2 via adopting more corrections, the convergence range is greatly enlarged. Still,
with k ¼ 2 it brings about wider convergence range and fewer iterations. The above
results are obtained by using the overrelaxed approach. The corresponding results

Figure 9. Diffuser flow configuration.

Figure 8. Number of iterations against (a) underrelaxation factor of velocity and (b) underrelaxation

factor of pressure for 60� cavity flow.
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for the orthogonal-correction approach are presented in Figure 12b. It can be seen
that, compared with the overrelaxed approach, the convergence ranges for k ¼ 1
and 3 by this approach are greatly narrowed.

Flow in a Stirred Tank

Stirred-tank reactors are widely used in chemical industries. In this equipment
the flow is driven by a rotating impeller. A schematic drawing of the agitation system
considered in the present calculations is shown in Figure 13a. The impeller used for
agitating the fluid consists of six blades with a pitch angle a ¼ 45�. There are four
baffles on the surrounding wall of the tank. The flow is inherently unsteady. Since
transient calculations are very time-consuming, the flow is assumed to be quasi-
steady in the modeling. It was shown [30] that with the steady-state approximation,
good agreements with fully unsteady calculations can be achieved. In the steady-state

Figure 10. Comparison of axial velocities at a number of x stations in sudden expansion diffuser: (a)

Re ¼ 56; (b) Re ¼ 114.

Figure 11. Flow streamlines in 45� diffuser: (a) Re ¼ 56; (b) Re ¼ 114.
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Figure 12. Number of iterations against underrelaxation factor of velocity for 45� diffuser at Re ¼ 114: (a)

overrelaxed approach; (b) orthogonal-correction approach.

Figure 13. Illustration of (a) stirred-tank configuration and (b) grid layout.
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approach the volume swept by the impeller, i.e., the passage region between blades,
is situated on a rotating frame of reference, while a stationary frame is assigned to
the rest of the tank. In the passage region, appropriate rotational body forces need
to be included. At the interface of the two regions, a suitable transformation of the
velocities from one reference frame to another is required.

Due to the symmetrical arrangement of the blades and the baffles, only half the
tank is considered in calculations (see Figure 13a). Periodic conditions are imposed
on the radial boundary planes. A layout of the computational grid is given in
Figure 13b. To generate this grid, the domain was divided into 40 blocks first, and
then an algebraic method was employed to construct the mesh in each block. The
impeller rotates at 3.53 rev=s. At this speed the flow is inevitably turbulent. To
account for turbulent effects the k–emodel was used. To illustrate the flow structure,
a plot of velocity vectors on a h ¼ 90� plane is shown in Figure 14. The most promi-
nent flow structure is a large circulation formed by a jet discharging from the bottom
edge of the blade. The jet is caused mainly by the centrifugal force induced by the
rotating impeller. The discharging angle is mostly dependent on the pitch angle of
the blade. Another circulation is visible in the region near the axis below the impeller.
The predictions are validated via comparison with measurements [31], as shown in

Figure 14. Velocity vectors on h ¼ 90� plane.
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Figure 15. In this figure the radial variations of velocities in the axial, radial, and
tangential directions at z=rt ¼ 0:533 (see Figure 14 for the location) for a number
of grids ranging from 30,342 to 207,520 cells are presented. In the jet region all
the velocity components increase with the radius, followed by a decay outside the
jet. Although the velocity peaks of the jet are underpredicted, the flow trends are
fully reflected in the calculations. The disagreement between the predictions and
the measurements can be attributed mainly to the assumption of steady state and
the deficiency of the turbulence model. In addition, it is time averaging, rather than
ensemble averaging, carried out in the experiments. Therefore, the accuracy of the
measurements is not without problem.

CONCLUSIONS

A finite-volume algorithm is presented for solving incompressible flows. This
algorithm is based on the pressure-correction concept and is suitable for unstruc-
tured grid calculation. It features the following characteristic.

1. The grid is arranged in a cell-centered, collocated manner.
2. The divergence theorem is applied and surface vectors are employed in calcu-

lation of fluxes and gradients. In this way the discretization is equally applicable
to two- and three-dimensional problems.

Figure 15. Comparison with measurements: (a) axial velocity; (b) tangential velocity; (c) radial velocity.
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3. Vector forms are used throughout the formulation of discretization. Therefore,
the programming of the algorithm can easily be extended from two dimensions
to three dimensions by simply including the additional component.

4. The overrelaxed approach is adopted for calculation of diffusion fluxes and in the
formulation of the pressure-correction equation. This approach can be imple-
mented directly into three-dimensional flows without requiring reformulation.

5. Successive corrections are used to deal with the cross-derivative term in the press-
ure-correction equation raised by the overrelaxed approach. Testing indicates
that two correction steps are the most preferred.

REFERENCES

1. M. Williams, The Solution of the Two-Dimensional Incompressible Flow Equations on
Unstructured Triangular Meshes, Numer. Heat Transfer B, vol. 23, pp. 309–325, 1993.

2. L. Davidson, A Pressure Correction Method for Unstructured Meshes with Arbitrary
Control Volumes, Int. J. Numer. Meth. Fluids, vol. 22, pp. 265–281, 1996.

3. S. R. Mathur and J. Y. Murthy, A Pressure-Based Method for Unstructured Meshes,
Numer. Heat Transfer B, vol. 31, pp. 195–215, 1997.

4. Y. G. Lai, An Unstructured Grid Method for a Pressure-Based Flow and Heat Transfer
Solver, Numer. Heat Transfer B, vol. 32, pp. 267–281, 1997.

5. Y. G. Lai, Unstructured Grid Arbitrarily Shaped Element Method for Fluid Flow Simula-
tion, AIAA J., vol. 38, pp. 2246–2252, 2000.

6. D. Kim and H. Choi, A Second-Order Time-Accurate Finite Volume Method for
Unsteady Incompressible Flow on Hybrid Unstructured Grids, J. Comput. Phys., vol.
162, pp. 411–428, 2000.

7. Y.-H. Hwang, Calculation of Incompressible Flow on a Staggered Triangular Grid, Part I:
Mathematical Formulation, Numer. Heat Transfer B, vol. 27, pp. 323–336, 1995.

8. S. Rida, F. McKenty, F. L. Meng, and M. Reggio, A Staggered Control Volume Scheme
for Unstructured Triangular Grids, Int. J. Numer. Methods Fluids, vol. 25, pp. 697–717,
1997.

9. M. Thomadakis and M. Leschziner, A Pressure-Correction Method for the Solution of
Incompressible Viscous Flows on Unstructured Grids, Int. J. Numer. Methods Fluids,
vol. 22, pp. 581–601, 1996.

10. G. K. Despotis and S. Tsangaris, Fractional Step Method for Solution of Incompressible
Navier-Stokes Equations on Unstructured Triangular Meshes, Int. J. Numer. Meth.
Fluids, vol. 20, pp. 1273–1288, 1996.

11. R. A. Nicolaides, Flow Discretization by Complementary Volume Techniques, AIAA
Paper 89-1978, 1989.

12. B. Niceno and E. Nobile, Numerical Analysis of Fluid Flow and Heat Transfer in Periodic
Wavy Channels, Int. J. Heat Fluid Flow, vol. 22, pp. 156–167, 2001.

13. J. C. Cavendish, C. A. Hall, and T. A. Porsching, A Complementary Volume Approach
for Modelling Three-Dimensional Navier-Stokes Equations Using Dual Delaunay=
Voronoi Tessellations, Int. J. Numer. Meth. Heat Fluid, vol. 4, pp. 329–345, 1994.

14. C. M. Rhie and W. L. Chow, Numerical Study of the Turbulent Flow Past an Airfoil with
Trailing Edge Separation, AIAA J., vol. 21, pp. 1525–1532, 1983.

15. F. S. Lien and M. A. Leschziner, A General Non-orthogonal Collocated Finite Volume
Algorithm for Turbulent Flow at All Speeds Incorporating Second-Moment
Turbulence-Transport Closure, Part 1: Computational Implementation, Comput. Meth.
Appl. Mech. Eng., vol. 114, pp. 123–148, 1994.

64 Y.-Y. TSUI AND Y.-F. PAN

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
54

 2
6 

A
pr

il 
20

14
 



16. B. P. Leonard, A Stable and Accurate Convection Modeling Procedure Based on
Quadratic Upstream Interpolation, Comput. Meth. Appl. Mech. Eng., vol. 19, pp. 59–98,
1978.

17. Y.-Y. Tsui, A Study of Upstream-Weighted High-Order Differencing for Approximation
to Flow Convection, Int. J. Numer. Meth. Fluids, vol. 13, pp. 167–199, 1991.

18. H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications
to Fluid Flows, Ph.D. thesis, Imperial College, University of London, London, UK, 1996.

19. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
20. M. Peric, Analysis of Pressure-Velocity Coupling on Nonorthogonal Grids, Numer. Heat

Transfer B, vol. 17, pp. 63–82, 1990.
21. Y.-Y. Tsui and P.-W. Wu, Investigation of the Mixing Flow Structure in Multilobe

Mixers, AIAA J., vol. 34, 1386–1391, 1996.
22. Y.-Y. Tsui, S.-W. Leu, C.-C. Lin, and P.-W. Wu, Heat Transfer Enhancement by Multi-

lobe Vortex Generators: Effects of Lobe Parameters, Numer. Heat Transfer A, vol. 37, pp.
653–672, 2000.

23. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag,
Berlin, 1997.

24. D. S. Kershaw, The Incomplete Cholesky Conjugate Gradient Method for the Iterative
Solution of Systems of Linear Equations, J. Comput. Phys., vol. 26, pp. 43–65, 1978.

25. R. Fletcher, Conjugate Gradient Methods for Indefinite Systems, Lecture Notes Math.,
vol. 506, pp. 774–789, 1976.

26. U. Ghia, K. N. Ghia, and C. T. Shin, High-Re Solutions for Incompressible Flow
Using the Navier–Stokes Equations and a Multigrid Method, J. Comput. Phys., vol. 48,
pp. 387–411, 1982.

27. I. Demirdzic, Z. Lilek, and M. Peric, Fluid Flow and Heat Transfer Test Problems for
Non-orthogonal Grids: Bench-Mark Solutions, Int. J. Numer. Meth. Fluids, vol. 15, pp.
329–354, 1992.

28. F. Durst, A. Melling, and J. H. Whitelaw, Low Reynolds Number Flow over a Plane
Symmetric Sudden Expansion, J. Fluid Mech., vol. 64, part 1, pp. 111–128, 1974.

29. Y.-Y. Tsui and C.-K. Wang, Calculation of Laminar Separated Flow in Symmetric Two-
dimensional Diffusers, ASME J. Fluids Eng., vol. 117, pp. 612–616, 1995.

30. K. Wechsler, M. Breuer, and F. Durst, Steady and Unsteady Computations of Turbulent
Flows Induced by a 4=45� Pitched-Blade Impeller, ASME J. Fluids Eng., vol. 121, pp.
318–329, 1999.

31. V. V. Ranade and J. B. Joshi, Flow Generated by Pitched Blade Turbines I: Measurements
Using Laser Doppler Anemometer, Chem. Eng. Commun., vol. 81, pp. 197–224, 1989.

PRESSURE-CORRECTION METHOD USING UNSTRUCTURED MESHES 65

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
54

 2
6 

A
pr

il 
20

14
 


