

Available online at www.sciencedirect.com

Infrared Physics & Technology 47 (2006) 227-239

INFRARED PHYSICS & TECHNOLOGY

www.elsevier.com/locate/infrared

Intensities of line features in vibration-rotational bands 2–0 to 6–0 of ${}^{14}N^{16}O X^2\Pi_r$ and experimental evaluation of a radial function for electric dipolar moment

Yuan-Pern Lee^{a,b}, Swee-Lan Cheah^c, J.F. Ogilvie^{d,*}

^a Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan

^c Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan

^d Escuela de Quimica, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca,

San Jose 2060, Costa Rica

Received 14 September 2004 Available online 25 March 2005

Abstract

We measured the strengths of individual line-like features, representing unresolved Λ doublets, in vibration-rotational bands 2–0 to 6–0 of ¹⁴N¹⁶O within each substate of electronic ground state X²Π_{1/2,3/2} in mid and near infrared regions. Analyses of these data to derive values of matrix elements for vibrational transitions enabled production of a radial function for electric dipolar moment, containing seven parameters, that satisfactorily reproduces the intensities of about 700 such features for vibrational states up to v = 6. © 2005 Elsevier B.V. All rights reserved.

1. Introduction

We have measured the intensities of individual features in vibration-rotational bands of gaseous NO near 300 K from the first to the fifth overtone, or to vibrational states v' = 2, 3, 4, 5 and 6 from

v'' = 0. Each such band within the electronic ground state $X^2 \Pi_{1/2,3/2}$ has 24 branches, but 12 of these occur in two somewhat separate satellite bands, which involve also a change of total electronic angular momentum between electronic substates, and of which their consequent weakness makes them generally difficult to detect. Because our spectral resolution was insufficient to separate the Λ doublets, we observed effectively six branches of line-like features, comprising two weak Q

^{*} Corresponding author.

E-mail addresses: yplee@mail.nctu.edu.tw (Y.-P. Lee), ogilvie@ceem.sfu.ca (J.F. Ogilvie).

^{1350-4495/\$ -} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.infrared.2005.01.002

branches near the centre of each band and two intense P and R branches on each side of that centre. For each of five specified bands we measured the strengths of these features and present here the results of our analysis of these intensity data; this analysis yields a radial function, i.e. of internuclear distance R, of electric dipolar moment p(R) that reproduces those data within experimental uncertainties of measurement, which we compare with calculated data.

Previously reported measurements [1-3] of intensities of vibration-rotational bands of NO were based on gross features as a result of broadening through use of gaseous samples at large pressures, with these pertinent exceptions: there exist two independent measurements [4,5] of individual lines or features in the fundamental band, 1-0, two separate measurements of individual lines in the first overtone [6,7], 2–0, and single measurements of a band originating in v'' = 1 in the sequence with $\Delta v = 1$, or band 2–1 [8], and a band originating in v'' = 1 in the sequence with $\Delta v = 2$, or band 3-1 [9], with our own previous work on bands 5-0 [10] and 6-0 [11]. We have reanalysed the latter spectra, and here combine those data with fresh measurements on bands 2-0, 3-0 and 4–0 in a consistent manner to derive p(R) according to an established method [12].

2. Experiments

We recorded all spectra with an interferometric spectrometer (Bomem DA8, evacuated to $\sim 15 \text{ N m}^{-2}$) and a large vessel to contain gaseous samples. The latter cylindrical cell (Infrared Associates, model 100, of White type) has an optical path of length 1.375 m between mirrors for multiple internal reflections to produce an optical path variable between 8.25 m and 107.25 m in increments 11 m. Spots in sequences on internal mirrors from the beam of a helium-neon laser enable a precise count of a number of passes of the beam through a gaseous sample. The number of passes that we employ depends on the band being measured and the pressure of NO required to yield maximum net absorbance, $\log_{10}(I_0/I)$, of the most intense feature in each band less than ~ 0.12 , to avoid distortion of signals from effects of saturation. With a capacitance manometer (MKS model 122A, precision 0.5% of reading), we measured the pressure of a gaseous sample before and after each collection of interferograms. We employed partial pressures (N m⁻²) of NO in a range [68, 1.07×10^{5}] as appropriate for a particular band, within the limitations of properties of the cell; with NO at small partial pressures we added He gas to a total pressure at least 67,000 N m⁻² to ensure broadening of lines to widths substantially greater than the spectral resolution. We recorded interferograms for samples generally at three pressures, with at least two separate collections at each pressure. With two digital thermometers (Omega, thermocouples of type K) that indicate maximum and minimum temperatures (in °C) over a duration of spectral measurements, we monitored the temperature of the vessel at each end; for all spectra accepted for analysis here, the maximum variation was ± 0.5 K about the mean.

To obtain the best conditions for each band, for spectral measurements we employed beam splitters made of CaF₂ for band 2-0 and of quartz for bands 3-0 to 6-0, a SiC or tungsten filament as source, and an InSb detector near 77 K or a Si photodiode at ambient temperature. To limit the spectral region of radiation reaching a detector, we selected optical filters (CVI, Optical Coatings Limited, Omega, and Spectrogon) to provide pass bands about the band of intended measurement. Optical resolution was set at 1.0 or 1.5, 1.3 or 1.5, 4.0, 6.0 and 6.0 m^{-1} for bands 2, 3, 4, 5, 6-0, respectively, which was appreciably smaller than the apparent width of isolated individual spectral features in each case. We co-added interferograms numbering 300-750 and accumulated over periods up to 13.5 h. A ratio of a spectrum from each co-added interferogram with a reference spectrum yielded an absorbance spectrum, of which a sample for band 4-0 appears in Fig. 1. To reduce these spectra, and for further analysis of data, we employed software (Grams, Galactic Industries) designed to operate with the interferometric spectrometer; the characteristics (wave number, stature or apparent maximum net absorbance, width and area) of each feature were collected into a commercial spreadsheet, and further calculations

Fig. 1. Spectrum of band 4–0 of gaseous $^{14}N^{16}O$ at pressure 73,300 N m⁻² and 298 K with length 8.25 m of absorbing path and spectral resolution 4.0 m⁻¹.

were conducted with a symbolic processor (Maple 9.5, Maplesoft, Waterloo Maple Inc.). Strengths of more intense lines in each band have uncertainties $\sim 10\%$, but for weak lines up to 30%; statistical weights based on multiple spectra were applied in spectral reduction.

To purify gaseous NO (AGA Specialty Gas, nominal chemical purity 99.5% in a cylinder as received), we passed the gas slowly through a trap charged with silica gel and cooled below 195 K [13]; this treatment served to diminish greatly other oxides of nitrogen, but not N2. Tests of purity based on spectra in the mid infrared region indicated that remaining impurities occurred at a negligible level. Because the vessel has a large volume and large area of internal surface, its evacuation through a narrow valve presented a problem for removal of residual water vapour, notorious for its retention on polar or metallic surfaces. In the regions of bands 2-0, 3-0, 4-0 and 6-0 of NO, vestigial water vapour either in the vessel or within the optical path inside the interferometer can absorb intensely, as transitions of H₂O involve fewer vibrational quanta than for NO in the same region. For this reason, to achieve minimal interference from spectral lines of H₂O at wave numbers of lines of NO, protracted pumping of both the vessel and the space inside the interferometer is essential. Comparison of Fig. 1 with a published spectrum [14] for band 4-0 of NO indicates the extent of our success. Under our conditions of preparation for recording of spectra and our fitting of all lines within each selected short segment of wave number scale, and in the absence of fortuitous coincidences between intense lines of H_2O and of NO, interference from H_2O with our measurements of spectral features of NO is generally negligible.

3. Theoretical basis

For absorption by a diatomic molecular species in electronic state X ${}^{1}\Sigma$ within a gaseous sample at temperature *T*, the strength *S_I* of a line attributed to a spectral transition from a state $|0, J''\rangle$ to another state $|v', J'\rangle$ in a vibration-rotational spectrum is represented according to [12]

$$S_{l} = (8\pi^{3}/3hc)[\exp(-hcE_{0J}/k_{\mathrm{B}}T)/4\pi\epsilon_{0}Q]\tilde{v}_{0}$$

$$\times [1 - \exp(-hc\tilde{v}_{0}/k_{\mathrm{B}}T)]|\iota||\langle \nu'J'|p(x)|0,J''\rangle|^{2}$$
(1)

in which appear fundamental physical constants h, c, $k_{\rm B}$ and ϵ_0 , total partition function Q, spectral term E_{0J} of the initial state $|0, J''\rangle$ of a transition, and wave number \tilde{v}_0 of the transition; $\iota \equiv$ 1/2[J'(J'+1) - J''(J''+1)] is a running number of value J'' + 1 for a line in branch R or -J'' for a line in branch P. In $|\langle v'J'p(x)|0, J''\rangle|^2$ that is a square of an experimental matrix element for a transition between specified states, p(x) is a radial function for electric dipolar moment of an absorbing molecular species in terms of reduced displacement x = $(R - R_{\rm e})/R_{\rm e}$ with internuclear distances instantaneous R and equilibrium R_e . Modification of this formula to make it applicable to a molecule such as NO in an electronic state ${}^{2}\Pi_{r}$ with small coupling between electronic spin and orbital angular momenta requires taking into account that the total partition function Q includes rotational states in the vibrational ground state of the electronic ground state ${}^{2}\Pi_{1/2}$ but also in the vibrational ground state of electronic state ${}^{2}\Pi_{3/2}$ lying above ${}^{2}\Pi_{1/2}$ by only 12313.361 m⁻¹ [15], and a vibrational factor ~ 1 , with a factor 2 for Λ doubling. We calculated $Q_{\rm rot}$ by direct summation over rotational states [15] up to J = 40.5 at each temperature. For application of formula (1) to NO in electronic state ${}^{2}\Pi_{r}$, $|\iota|$ also becomes replaced by

either $(|\iota|^2 - \Omega^2)/|\iota|$ for transitions with $\Delta J = \pm 1$ or $\Omega^2(2J+1)/[J(J+1)]$ for $\Delta J = 0$ [5]. The rotational dependence remains factorable according to [12],

$$\langle v'J'|p(x)|0, J''\rangle^2 = \langle v'|p(x)|0\rangle^2 (1 + C_0^{v'}\iota + D_0^{v'}\iota^2 + \cdots)$$
 (2)

in which $|\langle v'|p(x)|0\rangle|^2$ is the square of the pure vibrational matrix element of electric dipolar moment; the latter quantity is coefficient to a Herman-Wallis factor [12] containing coefficients $C_0^{v'}$ and $D_0^{v'}$. According to formula (1), strengths of lines and bands are proportional to squares of matrix elements; as coefficients $C_0^{v'}$ and $D_0^{v'}$ are linearly proportional to coefficients p_j in an expansion of p(x) [11], we apply this information to deduce the signs of $\langle v'|p(x)|0\rangle$. A sum of measured strengths S_l of all lines in a particular band,

$$S_b = \sum S_l \tag{3}$$

provides an experimental estimate of a band strength S_b , whereas a theoretical measure depends on the wave number \tilde{v}_c characterising the origin of a band and the square of the pure vibrational matrix element of electric dipolar moment,

$$S_b = 8\pi^2 \tilde{v}_c |\langle v'|p(x)|0\rangle|^2 / (12hc\epsilon_0) \tag{4}$$

A line strength is derived from integrated absorbance of a particular spectral line, a known number density N of molecules per unit volume in a gaseous sample at temperature T and an effective length ℓ of optical path:

$$S_{l} = (1/N\ell) \int \ln[I_{0}(\tilde{\nu})/I(\tilde{\nu})] d\tilde{\nu}$$
(5)

For NO under our conditions of measurement, spectral lines for vibration-rotational transitions occur in closely spaced couples due to Λ doubling, but each such couple appears as an unresolved line-like feature. We include factors two in pertinent formulae to reflect this condition, and assume equal probability of transition of each component of Λ doubling, according to precedent [5].

To represent the dependence of electric dipolar moment p as a function of internuclear distance R

or x we apply a simple polynomial [12] of order sufficient for data in a particular set:

$$p(x) = \sum_{j=0} p_j x^j \tag{6}$$

A Padé function [12] is a ratio of polynomials such that successive derivatives with respect to x, apart from factorial factors, agree exactly with as many coefficients p_j in formula (6) as can be evaluated from available data; tests on Padé functions of various orders indicate that, because of large magnitudes of coefficients p_j , such a form is impractical for the present data of NO. We employ SI units throughout this work and convert published values accordingly.

4. Results

In Tables 1–5 we present strengths of line-like features in vibration-rotational bands v'-0, with v' = 2, 3, 4, 5 and 6, respectively; each feature is characterised by both a value of quantum number J'' for total angular momentum of the state of lesser energy and a wave number calculated as the difference of published spectral terms [15]. From a direct sum of these strengths S_l of lines according to formula (3) for a particular band we estimated a strength of each band S_b . In the case of band 2-0, the resulting value was about 6 per cent less than one published value [6], but the same, within experimental error, as another published value [7], either of which might be expected to be accurate; although problems with sample handling and adsorption of NO on surfaces within the large gas cell might slightly affect our measurements of that band, our independent coincidence with the later published result supports the correctness of that value [7]. Because we used the same samples of NO for corresponding measurements of band 3-0, for which only the length of optical path varied through an increased number of passes of the light through the cell, the strength of band 3-0 is as accurate as that of band 2-0; for the same reason ratios of bands 4, 5, 6-0 are likewise accurate. With large pressures of nominally pure NO used

Values of quantum number J'' for total angular momentum of the lower state of a vibration-rotational transition in band 2–0, wave number/m⁻¹ of each apparent line in branches P, Q and R, and line strength $S/10^{-23}$ m observed and calculated for ¹⁴N¹⁶O in substates of electronic ground state X² Π_r at 298 K

J	$\mathbf{P}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	Q(J)	$S_{l,\mathrm{ob}}$	$S_{l,cal}$	$\mathbf{R}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$
Sub-band	2–0 for substat	$te^{2}\Pi_{1/2}$							
0.5	v	172		372406.7	0.22	0.247	372898.0	0.50	0.500
1.5	371905.1	0.48	0.476	372396.4	0.07	0.096	373215.2	0.91	0.886
2.5	371560.4	0.84	0.816	372379.3	0.04	0.060	373525.6	1.23	1.226
3.5	371208.9	1.14	1.093				373829.2	1.55	1.515
4.5	370850.5	1.34	1.306				374125.9	1.66	1.744
5.5	370485.3	1.49	1.455				374415.6	1.89	1.906
6.5	370113.2	1.60	1.539				374698.6	1.97	2.000
7.5	369734.2	1.61	1.563				374974.6	1.90	2.028
8.5	369348.4	1.61	1.533				375243.7	1.73	1.994
9.5	368955.8	1.52	1.459				375505.9	1.81	1.906
10.5	368556.3	1.42	1.350				375761.1	1.66	1.780
11.5	368149.9	1.28	1.219				376009.5	1.49	1.621
12.5	367736.7	1.16	1.074				376250.8	1.37	1.443
13.5	367316.6	0.99	0.926				376485.2	1.16	1.258
14.5	366889.6	0.85	0.781				376712.5	1.00	1.073
15.5	366455.8	0.71	0.645				376932.9	0.82	0.898
16.5	366015.1	0.57	0.522				377146.2	0.68	0.736
17.5	365567.6	0.45	0.414				377352.5	0.54	0.592
18.5	365113.3	0.34	0.322				377551.6	0.44	0.467
19.5	364652.1	0.27	0.246				377743.7	0.33	0.361
20.5	364184.1	0.21	0.184				377928.6	0.25	0.275
21.5	363709.3	0.15	0.136				378106.4	0.19	0.205
22.5	363227.6	0.11	0.098				378277.1	0.12	0.150
23.5	362739.1	0.07	0.069				378440.5	0.10	0.109
24.5	362243.9	0.09	0.048				378596.8	0.07	0.077
25.5	361741.8	0.03	0.033				378745.8	0.05	0.053
26.5	361233.0	0.02	0.022				378887.5	0.04	0.036
27.5	360717.4	0.01	0.015				379022.0	0.03	0.024
28.5	360195.0	0.01	0.010				379149.1	0.02	0.016
29.5							379269.0	0.01	0.010
30.5							379381.4	0.01	0.007
Sub-band	2–0 for substat	te ${}^{2}\Pi_{3/2}$							
1.5				372353.0	0.54	0.486	373195.0	0.29	0.326
2.5	371493.0	0.30	0.305	372335.0	0.32	0.300	373513.7	0.52	0.558
3.5	371131.0	0.48	0.509	372309.7	0.23	0.210	373825.1	0.74	0.738
4.5	370761.9	0.66	0.656	372277.2	0.15	0.155	374129.1	1.02	0.872
5.5	370385.7	0.81	0.755	372237.6	0.12	0.117	374425.8	0.93	0.962
6.5	370002.4	0.86	0.813	372190.7	0.10	0.090	374715.2	1.02	1.011
7.5	369612.1	0.94	0.833	372136.6	0.08	0.070	374997.2	1.01	1.022
8.5	369214.8	0.89	0.821	372075.3	0.06	0.054	375271.8	0.90	0.999
9.5	368810.5	0.81	0.782				375538.9	0.95	0.948
10.5	368399.2	0.79	0.724				375798.7	0.89	0.876
11.5	367980.9	0.71	0.652				376051.0	0.79	0.789
12.5	367555.8	0.61	0.573				376295.9	0.73	0.695
13.5	367123.7	0.54	0.492				376533.3	0.59	0.598
14.5	366684.8	0.47	0.413				376763.2	0.50	0.504
15.5	366239.1	0.39	0.339				376985.7	0.54	0.416
16.5	365786.5	0.32	0.273				377200.7	0.34	0.336
17.5	365327.1	0.25	0.215				377408.2	0.27	0.266
								(againting a d	an nant name)

(continued on next page)

Table 1 (continued)

J	$\mathbf{P}(J)$	$S_{l,{ m ob}}$	$S_{l,\mathrm{cal}}$	Q(J)	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	$\mathbf{R}(J)$	$S_{l,ob}$	$S_{l,\mathrm{cal}}$
18.5	364860.9	0.17	0.166				377608.1	0.21	0.207
19.5	364387.9	0.14	0.126				377800.6	0.18	0.168
20.5	363908.2	0.11	0.094				377985.5	0.13	0.118
21.5	363421.7	0.09	0.068				378163.0	0.09	0.087
22.5	362928.5	0.07	0.049				378332.8	0.07	0.062
23.5	362428.7	0.04	0.034				378495.2	0.05	0.044
24.5	361922.1	0.03	0.024				378649.9	0.03	0.031
25.5	361408.8	0.02	0.016				378797.2	0.02	0.021
26.5	360888.8	0.02	0.011				378936.8	0.02	0.014
27.5	360362.3	0.01	0.007				379068.9	0.01	0.009
28.5							379193.4	0.01	0.006

for the latter measurements, problems with adsorption of NO or measurement of pressures are negligible.

By fitting all data for each band, including both sub-bands for each electronic substate, according to formulae (1) and (2), we derived values of squares of pure vibrational matrix elements and Herman-Wallis coefficient $C_0^{\nu'}$; for no band is a value of second coefficient $D_0^{\nu'}$ evaluated statistically significantly. Table 6 presents for each band a summary of results for pure vibrational matrix element and its statistical uncertainty, a band strength S_b derived therefrom at 298 K, $C_0^{\nu'}$, and corresponding theoretical quantities to be explained separately. To convert those values of pure vibrational matrix element into coefficient p_j in formula (6) through the following relation:

$$\langle v'|p(x)|0\rangle = \sum_{j=0}^{6} p_j \langle v'|x^j|0\rangle$$
(7)

we require further experimental information of two types: an accurate magnitude of $\langle 0|p(x)|0\rangle$ is obtained from application of the Stark effect on a molecular beam of ¹⁴N¹⁶O [16], which we associate with a polarity $^{-}NO^{+}$ and consequently a positive sign for p_0 as a sign convention, consistent with previous usage for CO [17]; as a value of $\langle 1|p(x)|0\rangle$ we accepted the more recent value of Spencer et al. [5]: both these data are reported in Table 6. Vibrational matrix elements of reduced displacement x to various powers require for their evaluation a knowledge of coefficients c_j of $z \equiv 2(R - R_e)/(R - R_e)$ in a function for potential energy,

$$V(z) = hcc_0 z^2 \left(1 + \sum_{j=1}^{j} c_j z^j \right)$$
(8)

and $\gamma \equiv 2B_e/\omega_e$ in terms of conventional spectral parameters. For this purpose we fitted values of vibrational terms G(v) and rotational parameters B_v listed by Amiot [14] to polynomials in (v + l/2)up to v = 22; from the resulting coefficients $Y_{k,0}$ and $Y_{k,1}$, respectively, we applied expressions [18,19] of these quantities in terms of coefficients c_j to derive directly the required values, involving no fitting. The results are $\gamma = 0.001790727$ and this formula for adiabatic potential energy,

$$V(z)/hc \text{ m}^{-1} = 53166650.6z^{2}(1 - 1.91599565z + 1.4963702z^{2} - 0.3822858z^{3} - 0.5913666z^{4} - 1.6270814z^{5} + 25.86692z^{6} - 95.37679z^{7})$$
(9)

with equilibrium internuclear distance $R_e = 1.1507825 \times 10^{-10}$ m of ¹⁴N¹⁶O; for vibrational terms within the range of states, $v \leq 6$, for which we measured intensities, this formula is essentially exact, in that uncertainties of measured intensities dominate the eventual values of parameters for dipolar moment, but this formula might become unreliable for vibration-rotational terms at large values of v and J. Using efficient procedures [12,19] to generate algebraic expressions for accurate vibrational matrix elements $\langle v'|p(x)|0\rangle$, we evaluated these quantities and solved seven simultaneous linear equations implied in formula (7) to evaluate seven coefficients p_j , according to the following formula:

Values of quantum number J'' for total angular momentum of the lower state of a vibration-rotational transition in band 3–0, wave number/m⁻¹ of each apparent line in branches P, Q and R, and line strength $S_r/10^{-25}$ m observed and calculated for ¹⁴N¹⁶O in substates of electronic ground state X² Π_r at 296.6 K

J	P(J)	$S_{l,\mathrm{ob}}$	$S_{l,\text{cal}}$	Q(J)	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	$\mathbf{R}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,cal}$
Sub-band 3	3–0 for substate	${}^{2}\Pi_{1/2}$							
0.5	0	1/2		554402.1	0.58	0.513	554888.3	1.09	1.048
1.5	553900.5	1.12	0.984	554386.7	0.09	0.200	555196.9	1.95	1.868
2.5	553550.7	1.71	1.681				555495.3	2.47	2.598
3.5	553190.6	2.38	2.241				555783.4	3.37	3.227
4.5	552820.2	2.81	2.669				556061.1	3.76	3.733
5.5	552439.4	3.13	2.960				556328.5	4.05	4.101
6.5	552048.4	3.21	3.118				556585.6	4.04	4.324
7.5	551647.1	3.40	3.152				556832.4	4.33	4.404
8.5	551235.5	3.33	3.078				557068.8	4.36	4.350
9.5	550813.6	3.14	2.915				557294.8	4.13	4.180
10.5	550381.4	2.82	2.686				557510.5	3.59	3.916
11.5	549938.8	2.60	2.413				557715.7	3.16	3.581
12.5	549486.0	2.43	2.116				557910.5	2.83	3.202
13.5	549022.8	2.01	1.815				558094.8	2.48	2.801
14.5	548549.3	1.73	1.522				558268.6	2.01	2.399
15.5	548065.4	1.36	1.250				558432.0	1.59	1.803
16.5	547571.2	1.26	1.006				558584.8	1.51	1.656
17.5	547066.8	0.90	0.794				558727.1	1.38	1.336
18.5	546551.9	0.89	0.614				558858.9	0.99	1.057
19.5	546026.8	0.58	0.466				558980.0	0.80	0.821
20.5	545491.3	0.43	0.347				559090.5	0.57	0.626
21.5	544945.6	0.17	0.254				559190.3	0.31	0.468
22.5	544389.5	0.09	0.182				559279.5	0.23	0.344
23.5							559358.0	0.16	0.248
Sub-band 3	3–0 for substate	$^{2}\Pi_{3/2}$							
1.5	v			554320.0	0.88	1.008	555153.0	0.62	0.696
2.5	553459.9	0.49	0.622	554292.9	0.47	0.622	555459.0	1.10	1.209
3.5	553088.9	1.08	1.033	554255.0	0.31	0.434	555754.1	1.53	1.619
4.5	552707.2	1.46	1.323	554206.3	0.41	0.320	556038.3	1.98	1.938
5.5	552314.7	1.80	1.514	554146.7	0.36	0.243	556311.5	2.14	2.187
6.5	551911.5	1.78	1.619	554076.3	0.26	0.186	556573.7	2.31	2.307
7.5	551497.7	1.69	1.647	553995.1	0.15	0.144	556825.0	2.26	2.361
8.5	551073.3	1.82	1.612				557065.3	1.82	2.336
9.5	550638.3	1.58	1.525				557294.5	2.06	2.245
10.5	550192.7	1.36	1.401				557512.7	1.91	2.099
11.5	549736.5	1.27	1.253				557719.9	1.81	1.905
12.5	549269.8	1.02	1.093				557916.1	1.67	1.706
13.5	548792.7	1.04	0.931				558101.2	1.26	1.485
14.5	548305.1	0.76	0.775				558275.3	1.27	1.266
15.5	547807.0	0.42	0.632				558438.3	1.00	1.056
16.5	547298.5	0.62	0.504				558590.2	0.94	0.864
17.5	546779.6	0.45	0.394				558731.0	0.51	0.692
18.5	546250.4	0.26	0.302				558860.8	0.50	0.544
19.5	545710.8	0.35	0.227				558979.5	0.40	0.419
20.5	545160.9	0.11	0.167				559087.0	0.23	0.317
21.5	544600.6	0.05	0.121				559183.5	0.35	0.235
22.5							559268.9	0.08	0.172
23.5							559343.2	0.06	0.123

Values of quantum number J'' for total angular momentum of the lower state of a vibration-rotational transition in band 4–0, wave number/m⁻¹ of each apparent line in branches P, Q and R, and line strength $S_{l}/10^{-26}$ m observed and calculated for ¹⁴N¹⁶O in substates of electronic ground state X² Π_r at 298.8 K

J	P(<i>J</i>)	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	Q(<i>J</i>)	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	$\mathbf{R}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,\text{cal}}$
Sub-band	4–0 for substa	$te^{2}\Pi_{1/2}$							
0.5	5	112		733598.3	0.16	0.232	734079.3	0.36	0.472
1.5	733096.7	0.49	0.445	733577.7	0.10	0.091	734379.3	0.92	0.839
2.5	732741.7	0.75	0.760	733543.3	0.03	0.056	734665.6	1.14	1.164
3.5	732373.0	1.03	1.015				734938.2	1.40	1.442
4.5	731990.5	1.31	1.210				735197.0	1.56	1.665
5.5	731594.3	1.47	1.343				735442.0	1.74	1.825
6.5	731184.3	1.48	1.415				735673.2	1.73	1.920
7.5	730760.6	1.55	1.432				735890.7	1.70	1.952
8.5	730323.1	1.51	1.400				736094.3	1.59	1.925
9.5	729871.9	1.44	1.327				736284.0	1.53	1.846
10.5	729406.8	1.49	1.224				736459.9	1.46	1.727
11.5	728928.0	1.21	1.101				736622.0	1.31	1.577
12.5	728435.5	1.00	0.967				736770.1	1.26	1.408
13.5	727929.1	0.90	0.830				736904.3	1.06	1.230
14.5	727408 9	0.76	0.697				737024 5	0.89	1.052
15.5	726874.9	0.64	0.573				737130.7	0.74	0.882
16.5	726327.1	0.51	0.462				737223.0	0.56	0.725
17.5	725765 5	0.38	0.365				737301.2	0.58	0.584
18.5	725190.1	0.33	0.283				737365 3	0.25	0.462
19.5	724600.8	0.24	0.215				737415 3	0.29	0.358
20.5	723997.8	0.20	0.160				737451.2	0.27	0.273
21.5	723380.9	0.14	0.118				737472.9	0.24	0.200
22.5	722750.2	0.09	0.085				737480.5	0.03	0.150
23.5	722105.6	0.08	0.060				737473.8	0.08	0.108
23.5	721447 3	0.02	0.041				737452.9	0.11	0.077
25.5	7207751	0.02	0.028				151452.9	0.11	0.077
26.5	720089 1	0.02	0.019						
20.5	/2000).1	0.02	0.019						
Sub-band	4–0 for substa	$te^{-2}\Pi_{3/2}$							
1.5				733486.5	0.48	0.458	734310.4	0.34	0.317
2.5	732626.4	0.23	0.284	733450.3	0.35	0.282	734603.7	0.55	0.554
3.5	732246.3	0.33	0.474	733399.7	0.18	0.197	734882.5	0.79	0.750
4.5	731851.9	0.54	0.608	733334.7	0.15	0.146	735146.8	0.92	0.909
5.5	731443.1	0.54	0.698	733255.2	0.12	0.110	735396.5	1.06	1.032
6.5	731020.1	0.64	0.749	733161.3	0.13	0.085	735631.6	1.23	1.119
7.5	730582.7	0.69	0.765	733053.0	0.09	0.065	735852.1	1.22	1.169
8.5	730131.1	0.70	0.751				736058.0	1.11	1.184
9.5	729665.3	0.66	0.713				736249.2	1.17	1.167
10.5	729185.4	0.63	0.657				736425.9	1.07	1.122
11.5	728691.2	0.59	0.590				736587.9	1.06	1.055
12.5	728183.0	0.53	0.516				736735.2	0.82	0.970
13.5	727660.6	0.44	0.441				736868.0	0.65	0.873
14.5	727124.2	0.38	0.369				736986.0	0.53	0.771
15.5	726573.7	0.30	0.302				737089.4	0.39	0.667
16.5	726009.3	0.25	0.242				737178.2	0.21	0.566
17.5	725430.8	0.24	0.190				737252.3	0.18	0.472
18.5	724838.4	0.18	0.146				737311.7	0.13	0.386
19.5	724232.0	0.15	0.110				737356.4	0.16	0.310
20.5	723611.7	0.09	0.089				737386.5	0.11	0.245

Table 3 (continued)

() $(1 \circ -30 \circ -30)$

J	P(J)	$S_{l,ob}$	$S_{l,\mathrm{cal}}$	Q(J)	$S_{l,ob}$	$S_{l,\mathrm{cal}}$	$\mathbf{R}(J)$	$S_{l,ob}$	$S_{l,\mathrm{cal}}$
21.5	722977.5	0.07	0.059				737401.8	0.10	0.190
22.5	722329.5	0.04	0.042				737402.5	0.08	0.145
23.5	721667.5	0.04	0.030				737388.5	0.05	0.108
24.5	720991.8	0.01	0.020				737359.8	0.05	0.080

$$p(x)/10^{-56} \text{ Cm} = 0.558274 - 8.649479x + 5.048787x^{2}$$
$$-0.866241x^{3} + 28.3255x^{4}$$
$$-81.2569x^{5} + 270.714x^{6}$$
(10)

As presented in Table 6, the signs of $\langle v'|p(x)|0\rangle$ are selected to produce best agreement between experimental values of Herman-Wallis coefficient $C_0^{\nu'}$ and values calculated on the basis of formula (10); these calculated values of $C_0^{\nu'}$ and also $D_0^{\nu'}$ are included in Table 6. With points resulting from calculations of molecular electronic structure [20] for comparison, formula (10) is plotted in Fig. 2; the range/ 10^{-10} m of validity of this formula, corresponding to the amplitude of vibration in state v = 6, is [1.0, 1.38]. With these values of $\langle v'p(x)|0\rangle$, $C_0^{\nu'}$, $D_0^{\nu'}$ for each band and the wave number of each spectral feature, as reported in Tables 1-5, we calculated with formula (1) the strength of each feature for comparison with observed strengths, also presented in Tables 1-5.

5. Discussion

With only seven parameters in a radial function for electric dipolar moment—coefficients of x to various powers in formula (10)—and with γ and seven parameters c_j , j > 0, in a radial function for potential energy in formula (9), we reproduce the strengths of more than 500 spectral features, each having two components of supposed equal contribution, in our measurements of bands 2–0 up to 6–0, almost within the uncertainties of their measurement. With the same parameters we can likewise reproduce more than 100 separate measurements on band 1–0 [5] and another 79 measurements on bands 3–1 [9] and 2–1 [8]; the latter results are more compatible with the results [5] on band 1–0 that we used than with earlier measurements

[4]. Measurements of strengths of lines in some R branches are complicated by overlapping of features due to not only the presence of band heads but also branches of separate substates. Except for band 2-0, our experimental magnitudes of Herman-Wallis coefficient $C_0^{v'}$ are consistent with calculated values; as integrated areas of lines are small and subject to uncertainties from interferences between overlapping lines, evaluation of a quadratic term to evaluate D_0^{\prime} is impracticable in this work. Both reported values $C_0^2 = (3.57 \pm 0.14) \times 10^{-3}$ [6] and $(3.66 \pm 0.08) \times 10^{-3}$ [7] are consistent with our calculated value 3.75×10^3 indicated in Table 6, but a reported value $D_0^2 =$ $(4.74 \pm 0.50) \times 10^{-5}$ [7] differs appreciably from our calculated value 1.64×10^{-5} ; even with great spectral resolution and full separation of Λ doublets, an accurate evaluation of coefficient $D_0^{v'}$ is evidently difficult. Because the total strength of each band, estimated as the sum of measured strengths according to formula (3), is consistent with the band strength, presented in Table 6, that is derived from the deduced pure vibrational matrix element based on strengths of individual features through formula (4), likely the calculated strengths of features, which are double the strengths of each component of a feature, are more reliable than the observed strengths. The ratios of strengths of successive vibration-rotational bands-65.2, 48.1, 22.1, 13.4, 8.6-of NO decrease regularly with increasing vibrational quantum number v, whereas the corresponding ratios-128, 177, 289, \sim 250—for CO tend to increase in the same order [20]; the radial functions for electric dipolar moment of NO and CO share common features of two extrema, as exhibited in Fig. 2, with a consequent reversal of polarity between these two extrema and small magnitudes of permanent electric moment $p(R_e)$. In each case the polarities, -NO⁺ and -CO⁺, at that condition

Values of quantum number J'' for total angular momentum of the lower state of a vibration-rotational transition in band 5–0, wave number/m⁻¹ of each apparent line in branches P, Q and R, and line strength $S_l/10^{-28}$ m observed and calculated for ¹⁴N¹⁶O in substates of electronic ground state X² Π_r at 297.2 K

J	P(J)	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$	Q(J)	$S_{l,\mathrm{ob}}$	$S_{l,\text{cal}}$	$\mathbf{R}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,\text{cal}}$
Sub-band	5–0 for substat	$e^{2}\Pi_{1/2}$							
0.5	·			909998.7	1.67	1.748	910474.5	3.50	3.523
1.5	909497.1	3.43	3.385	909972.9	0.71	0.682	910765.9	6.16	6.220
2.5	909136.9	6.56	5.820	909929.9	0.42	0.421	911040.1	8.26	8.575
3.5	908759.6	7.99	7.851	909869.8	0.10	0.295	911297.2	10.7	10.56
4.5	908365.0	9.41	9.367				911536.9	12.7	12.10
5.5	907953.2	10.3	10.46				911759.5	13.9	13.18
6.5	907524.3	11.6	10.09				911964.8	12.7	13.77
7.5	907078.1	11.2	11.28				912152.8	14.1	13.90
8.5	906614.7	10.4	11.09				912323.5	14.5	13.61
9.5	906134.0	10.4	10.57				912477.0	12.6	12.96
10.5	905636.1	9.68	9.807				912613.0	13.2	12.04
11.5	905121.0	8.55	8.866				912731.8	11.7	10.91
12.5	904588.6	7.43	7.826				912833.1	7.72	9.668
13.5	904038.9	6.67	6.752				912917.0	8.33	8.383
14.5	903471.9	5.89	5.701				912983.4	6.30	7.117
15.5	902887.6	4.77	4.712				913032.4	4.48	5.920
16.5	902286.1	4.01	3.816				913063.9	4.01	4.827
17.5	901667.2	2.56	3.030				913077.8	3.29	3.860
18.5	901031.0	2.37	2.359				913074.2	3.25	3.028
19.5	900377.5	1.84	1.801				913052.9	2.98	2.331
20.5	899706.6	1.40	1.350				913014.0	0.79	1.762
21.5	899018.5	1.18	0.993				912957.4	1.58	1.307
22.5	898313.0	0.45	0.707				912883.1	0.82	0.952
23.5	897590.1	0.46	0.509				912791.1	0.97	0.681
24.5							912681.3	0.44	0.479
Sub-band	5–0 for substat	$e^{2}\Pi_{3/2}$							
1.5	0	512		909855.9	3.10	3.438	910670.7	2.60	2.321
2.5	908995.8	1.93	2.170	909810.7	2.31	2.120	910951.4	3.49	3.996
3.5	908606.7	3.86	3.635	909747.4	1.28	1.481	911213.8	6.15	5.303
4.5	908199.5	4.33	4.696	909666.0	0.90	1.093	911458.1	6.32	6.292
5.5	907774.4	4.79	5.423	909566.6	0.99	0.829	911684.2	7.85	6.974
6.5	907331.4	5.73	5.850	909449.1	0.63	0.636	911892.1	6.32	7.357
7.5	906870.5	7.16	6.007	909313.5	0.48	0.491	912081.8	7.80	7.461
8.5	906391.7	7.06	5.930				912253.2	8.79	7.319
9.5	905895.1	6.15	5.661				912406.4	7.05	6.970
10.5	905380.6	5.44	5.247				912541.4	7.11	6.461
11.5	904848.4	4.64	4.735				912658.1	6.36	5.841
12.5	904298.5	4.59	4.166				912756.6	5.89	5.157
13.5	903730.8	3.36	3.580				912836.8	6.35	4.452
14.5	903145.5	2.87	3.008				912898.7	3.98	3.761
15.5	902542.6	2.44	2.473				912942.4	3.04	3.111
16.5	901922.0	2.37	1.991				912967.9	2.16	2.521
17.5	901283.8	1.90	1.570				912975.0	1.64	2.003
18.5	900628.1	1.33	1.214				912963.9	1.08	1.560
19.5	899954.8	0.91	0.921				912934.6	0.85	1.192
20.5	899264.0	0.77	0.685				912886.9	1.15	0.894
21.5	898555.7	0.47	0.500				912821.0	0.64	0.658

Values of quantum number J'' for total angular momentum of the lower state of a vibration-rotational transition in band 6–0, wave number/m⁻¹ of each apparent line in branches P, Q and R, and line strength $S_1/10^{-28}$ m observed and calculated for ¹⁴N¹⁶O in substates of electronic ground state $X^2 \Pi_r$ at 297.4 K

J	P(J)	S _{l,ob}	$S_{l,\mathrm{cal}}$	Q(J)	$S_{l,ob}$	$S_{l,\mathrm{cal}}$	$\mathbf{R}(J)$	$S_{l,\mathrm{ob}}$	$S_{l,\mathrm{cal}}$
Sub-band	d 6–0 for substa	$te^{2}\Pi_{1/2}$							
0.5	5	112		1083605.8	0.22	0.202	1084076.4	0.44	0.406
1.5	1083104.2	0.47	0.392	1083574.8	0.12	0.079	1084359.1	0.79	0.717
2.5	1082738.8	0.68	0.674	1083523.1	0.04	0.049	1084621.2	1.17	0.988
3.5	1082352.8	0.96	0.906				1084862.6	1.38	1.214
4.5	1081946.1	1.15	1.087				1085083.3	1.38	1.391
5.5	1081518.7	1.14	1.215				1085283.4	1.52	1.513
6.5	1081070.7	1.27	1.290				1085462.6	1.53	1.580
7.5	1080602.0	1.24	1.314				1085621.2	1.55	1.593
8.5	1080112.5	1.35	1.293				1085758.9	1.53	1.558
9.5	1079602.4	1.29	1.234				1085875.9	1.47	1.483
10.5	1079071.5	1.04	1.145				1085972.1	1.32	1.375
11.5	1078519.9	1.08	1.037				1086047.4	1.29	1.246
12.5	1077947.6	0.94	0.916				1086101.8	1.16	1.103
13.5	1077354.5	0.64	0.791				1086135.3	1.30	0.955
14.5	1076740.6	0.79	0.669				1086147.8	0.65	0.810
15.5	1076105.9	0.60	0.553				1086139.3	0.51	0.673
16.5	1075450.4	0.54	0.449				1086109.9	0.77	0.549
17.5	1074774.1	0.30	0.357				1086059.4	0.37	0.438
18.5	1074077.0	0.22	0.278				1085987.8	0.33	0.343
19.5	1073359.0	0.24	0.212				1085895.0	0.28	0.264
20.5							1085781.1	0.18	0.199
Sub-band	d 6–0 for substa	$te^{-2}\Pi_{3/2}$							
1.5	v			1083430.4	0.34	0.397	1084236.2	0.25	0.268
2.5	1082570.4	0.28	0.251	1083376.1	0.24	0.245	1084504.1	0.50	0.460
3.5	1082172.1	0.47	0.421	1083300.1	0.15	0.171	1084750.2	0.68	0.610
4.5	1081752.3	0.41	0.545	1083202.3	0.15	0.126	1084974.5	0.73	0.723
5.5	1081310.8	0.66	0.630				1085176.9	0.68	0.801
6.5	1080847.7	0.74	0.680				1085357.5	0.72	0.844
7.5	1080363.2	0.79	0.699				1085516.3	0.69	0.855
8.5	1079857.1	0.66	0.691		1085653.2	0.93	0.838		
9.5	1079329.6	0.59	0.660		1085768.3	0.86	0.797		
10.5	1078780.6	0.64	0.613		1085861.4	0.68	0.738		
11.5	1078210.3	0.65	0.553		1085932.8	0.66	0.667		
12.5	1077618.5	0.41	0.488		1085982.2	0.49	0.588		
13.5	1077005.5	0.35	0.419		1086009.8	0.52	0.507		
14.5	1076371.2	0.38	0.353		1086015.5	0.45	0.428		
15.5	1075715.6	0.25	0.290		1085999.3	0.43	0.354		
16.5	1075038.7	0.23	0.234		1085961.3	0.29	0.286		
17.5	1074340.7	0.25	0.185		1085901.4	0.28	0.227		
18.5	1073621.5	0.14	0.143		1085819.6	0.13	0.177		
19.5					1085716.0	0.08	0.135		

contradict expectations from crude consideration

of conventional electronegativities. For band 3–0 of ¹⁴N¹⁶O our strength $S_b = (1.48 \pm 0.01) \times 10^{-23}$ m, reported in Table 6, is consistent with the most recent result, $S_b = (1.52 \pm 0.08) \times 10^{-23}$ m, from measurements on

samples with He or Ar at pressures large enough to obliterate rotational structure [21]. Like our independent reproduction of the strength of band 2-0 [7], this agreement confirms the efficacy of our procedure of measurement involving fitting, with a mixed gaussian and lorentzian profile, of

Origins of vibration-rotational bands ν' -0, experimental matrix elements of electric dipolar moment, band strengths at 298 K and experimental and calculated values of Herman-Wallis coefficients for ¹⁴N¹⁶O

v′	$\tilde{v}_c/\mathrm{m}^{-1}$	$\langle v' p(x) 0\rangle/C$ m	S_b/m^a	$C_0 v' / \times 10^{-3b}$	$C_0 v' / \times 10^{-3c}$	$D_0 v' / \times 10^{-5c}$
0	0	$(5.29433 \pm 0.00066) \times 10^{-31d}$	_	_	0	-10.5
1	187598.9277	$-(2.5778 \pm 0.0017) \times 10^{-31e}$	4.63×10^{-20e}	$0.51 \pm 0.13^{\rm e}$	0.414	0.178
2	372388.7584	$(2.2579 \pm 0.0035) \times 10^{-32f}$	7.10×10^{-22}	2.52 ± 0.22	3.751	1.638
3	554374.4427	$-(2.6605 \pm 0.0077) \times 10^{-33f}$	1.48×10^{-23}	4.99 ± 0.57	5.675	1.606
4	733560.2566	$(4.9386 \pm 0.0150) \times 10^{-34f}$	6.69×10^{-25}	5.86 ± 0.48	5.527	0.074
5	909949.6772	$-(1.2135 \pm 0.0058) \times 10^{-34f}$	5.01×10^{-26}	3.44 ± 0.73	4.822	-2.011
6	1083544.980	$(3.791 \pm 0.019) \times 10^{-35 \text{f}}$	5.83×10^{-27}	3.18 ± 0.89	3.892	-1.917

^a calculated from matrix element in preceding column

^b fitted from spectra with formulae (1) and (2)

^c calculated on the basis of formulae (9) and (10)

^d $|\langle 0|p(x)|0\rangle|$ from Ref. [15]

^e $|\langle 1|p(x)|0\rangle|$, S_b and C_0^1 from Ref. [5]

^f uncertainties from fits of line strengths; relative error of absolute magnitude is likely $\pm 2\%$.

Fig. 2. Radial function p(R) of ¹⁴N¹⁶O from spectral data (solid curve) with points from calculations of molecular electronic structure from reference 19 for comparison.

each perceived feature that comprises two lines in close proximity, each of which has hyperfine structure due to coupling of rotational and angular momenta and the nuclear quadrupolar moment of ¹⁴N. As already explained, our value of the strength of band 3–0 results from an accurate ratio with band 2–0. Our strength of band 2–0 is also consistent with a measurement of matrix element for band 3–1 [9], which implies a corresponding matrix element (2.284 ± 0.029)×10⁻³² C m for

band 2–0. For band 4–0, extensive quantitative measurements of intensity are unavailable. For bands 5–0 and 6–0 our results reported here supersede those reported in previous publications [10,11].

From calculations of molecular electronic structure [20] that indicate the polarity at $R_{\rm e}$ to be $^{-}NO^{+}$ as we applied, points for electric dipolar moment of NO, included in Fig. 2, at internuclear distances in the range of experimental observations lie consistently slightly above a curve corresponding to formula (10). These differences reflect a systematic deficiency of those calculations, previously explained [20] to be related to an underestimate of the electron affinity of oxygen, with respect to the permanent dipolar moment, $p(R_{\rm e})$; as the latter value that is based essentially on an accurate measurement through the Stark effect [16] is included in the basis of our generation of formula (10), the differences persist between our experimentally derived function and the calculated points [20]. Apart from that slight systematic shift, our results are entirely compatible with those computational results. Some estimates [22] of band strengths from results of other, unpublished calculations of molecular electronic structure are greater than either reported value for band 2-0 [6,7] and thus also our present value, but smaller [22] for band 5-0 than our experimental result; comparison with graphical depictions [22] indicates that those estimates of line strengths in bands 3-0 and 4–0 are also only roughly consistent with our direct measurements. Further, accurate calculations are desirable.

6. Conclusion

Based on experimental measurements of line strengths in five bands of the infrared spectrum of ¹⁴N¹⁶O in vibration-rotational transitions within each substate of its electronic ground state X ${}^{2}\Pi_{r}$, we have derived a formula for electric dipolar moment as a function of internuclear distance that reproduces satisfactorily the observed strengths of about 700 features in vibration-rotational spectra up to v = 6. Our data will facilitate monitoring the concentration of NO in the terrestrial atmosphere.

Acknowledgments

Taiwan's National Science Council (grant NSC92-2113-M007-034) and Ministry of Education Program for Promoting Academic Excellence of Universities (grant 89-FA04-AA) provided support for this project.

References

- L.A. Pugh, K.N. Rao, Intensities from infrared spectra, in: K.N. Rao (Ed.), Molecular spectroscopy: modern research, Academic Press, New York, 1976, pp. 165–181.
- [2] M.A.H. Smith, C.P. Rinsland, B. Fridovich, K.N. Rao, Intensities and collisional broadening parameters from infrared spectra, in: K.N. Rao (Ed.), Molecular Spectroscopy: Modern Research, Academic Press, New York, 1985, pp. 111–248.
- [3] M.A.H. Smith, C.P. Rinsland, V.M. Devi, L.S. Rothman, K.N. Rao, Intensities and collisional-broadening parameters from infrared spectra—an update, in: K.N. Rao, A. Weber (Eds.), Spectroscopy of the Earth's Atmosphere and Interstellar Media, Academic Press, Boston, 1992, pp. 153– 260.
- [4] J. Ballard, W.B. Johnston, B.J. Kerridge, J.J. Remedies, Experimental spectral line parameters in the band 1 ← 0 of NO, J. Mol. Spectrosc. 127 (1988) 70–82.
- [5] M.N. Spencer, C. Chackerian, L.P. Giver, L.R. Brown, The fundamental band of NO: frequency and shape parameters for rovibrational lines, J. Mol. Spectrosc. 165 (1994) 506–524.

- [6] A.S. Pine, A.G. Maki, N.-Y. Chou, Pressure broadening, line shapes and intensity measurements in the band 2 ← 0 of NO, J. Mol. Spectrosc. 114 (1985) 132–147.
- [7] J.-Y. Mandin, V. Dana, L. Regalia, A. Barbe, X. Thomas, Λ splittings and line intensities in the first overtone of NO, J. Mol. Spectrosc. 185 (1997) 347–355.
- [8] V. Dana, J.-Y. Mandin, L.H. Coudert, M. Badaoui, F. LeRoy, G. Guelachvili, L.S. Rothman, Λ splittings and line intensities in the hot band 2 ← 1 of NO, J. Mol. Spectrosc. 165 (1994) 525–540.
- [9] J.Y. Mandin, V. Dana, L. Regalia, A. Barbe, P. von der Heyden, Λ splittings and line intensities in the hot band 3 ← 1 of ¹⁴N¹⁶O; the spectrum of nitric oxide in the firstovertone region, J. Mol. Spectrosc. 187 (1998) 200–205.
- [10] Y.-P. Lee, J.F. Ogilvie, Strengths of absorption lines in vibration-rotational band $v = 5 \leftarrow v = 0$ of ${}^{14}N^{16}O X^2\Pi_r$, Infrared Phys. 28 (1988) 321–324.
- [11] Y.-P. Lee, S.-L. Cheah, J.F. Ogilvie, Strengths of absorption features in vibration-rotational band $v = 6 \leftarrow v = 0$ of $^{14}N^{16}O X^2\Pi_r$ in the near infrared region, Infrared Phys. Technol. 44 (2003) 199–205.
- [12] J.F. Ogilvie, The Vibrational and Rotational Spectrometry of Diatomic Molecules, Academic Press, London, UK, 1998, and references therein.
- [13] J.D. Ray, R.A. Ogg, A new method of preparing nitric oxide, J. Amer. Chem. Soc. 78 (1956) 5893.
- [14] C. Meyer, C. Haeusler, Spectre de vibration-rotation de l'oxyde nitrique NO; etude de la bande 4 ← 0 a 7336 cm⁻¹, C. R. Acad. Sci. Paris 280 (1965) 4182–4185.
- [15] C. Amiot, The infrared emission spectrum of NO; analysis of the sequence $\Delta v = 3$ up to v = 22, J. Mol. Spectrosc. 94 (1982) 150–172.
- [16] R.M. Neumann, Highly precise radio-frequency spectrum of ¹⁴N¹⁶O, Astrophys. J. 161 (1970) 779–784.
- [17] J.F. Ogilvie, S.-L. Cheah, Y.-P. Lee, S.P.A. Sauer, Infrared spectra of CO in absorption and evaluation of radial functions for potential energy and electric dipolar moment, Theor. Chem. Ace. 108 (2002) 85–97, and unpublished results.
- [18] J.F. Ogilvie, Spectral energy coefficients for vibrationrotational states of diatomic molecules, Comput. Phys. Commun. 30 (1983) 101–105.
- [19] F.M. Fernandez, J.F. Ogilvie, Symbolic programmes for analysis of diatomic vibration-rotational spectra, Maple-Tech. 5 (1998) 42–46.
- [20] S.R. Langhoff, C.W. Bauschlicher, J. Partridge, Theoretical dipole moment for the X²Π state of NO, Chem. Phys. Lett. 223 (1994) 416–422.
- [21] G. Chandraiah, P. Gillard, Absorption intensity measurements of the second overtone band of NO, Can. J. Phys. 69 (1991) 597–602.
- [22] A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, J.-Y. Mandin, NO line parameters: review of 1996 HITRAN update and new results, J. Quant. Spectrosc. Radiat. Transfer 60 (1998) 825–838.