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Tunneling between helical Majorana modes and helical Luttinger liquids
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We propose and study the charge transport through single and double quantum point contacts setup between
helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential conductance
decreases for stronger repulsive interactions and that the point contacts become insulating above a critical
interaction strength. For a single-point contact, the differential conductance as a function of bias voltage shows a
series of peaks due to Andreev reflection of electrons in the Majorana modes. In the case of two point contacts,
interference phenomena make the structure of the individual resonance peaks less universal and show modulations
with different separation distance between the contacts. For small separation distance, the overall features remain
similar to the case of a single-point contact.

DOI: 10.1103/PhysRevB.91.235125 PACS number(s): 71.10.Pm, 74.45.+c, 05.30.Pr

I. INTRODUCTION

The recent discovery of topological insulators [1,2] has
spurred tremendous interest in the topological phases of
condensed-matter systems. Topological systems in two-
dimensional (2D) systems are characterized by their peculiar
symmetry-protected gapless one-dimensional (1D) edge states
in the presence of a gapped bulk [3,4]. In time-reversal
invariant (TRI) systems, two types of 1D edge states are
especially remarkable.

On the one hand, helical Dirac fermions, whose spin
is locked to the momentum, were first theoretically pre-
dicted [5,6] and experimentally realized [7,8] as the edge
states of 2D topological insulators. Being rather insensitive
to disorder, these edge states have promising applications in
the fields of nanoelectronics and spintronics.

On the other hand, helical Majorana modes have been
predicted to exist as the edge state of TRI topological
superconductors [13–18,22]. The current interest in the search
for various Majorana modes [9,10] in condensed-matter
systems mainly stems from their possible applications in
fault-tolerant quantum computing. While some experimental
signatures for Majorana zero modes existing as the end states
of effective 1D topological superconductors have already
been found [11,12], conclusive evidence in particular of their
non-Abelian exchange properties is still actively sought for.

In this paper, we focus on the charge transport between a
system of 1D helical Dirac fermions and a system of helical
Majorana modes, which are tunnel-coupled by one or several
quantum point contacts. Due to the Coulomb interaction
between the electrons, the low-energy properties of the helical
Dirac fermions are described by the helical Luttinger liquid
theory [19,20], which is possibly realized in the InAs/GaSb
experimental setup by Du’s group [21]. On the other hand, the
helical Majorana modes can to a good approximation be treated
as free Majorana fermions. While strong interactions between
the constituent electrons and holes [24] may destabilize the
Majorana modes [25], the nearby superconductor screens
moderate interactions effectively [26]. As long as the Majorana

modes exist, they behave largely as chargeless particles and
can be regarded as free.

Similar tunneling phenomena in heterostructures have been
discussed using renormalization group (RG) analysis [27–29]
and scattering formalism [27,30,32] in the case of noninter-
acting lead(s). In this paper, we calculate the tunneling current
by using perturbation theory in the coupling between the
Majorana modes and the interacting helical lead, using the
interacting helical lead Green’s function obtained by bosoniza-
tion and the noninteracting Majorana Green’s function as
unperturbed propagators. We use a scaling analysis to establish
that the tunneling term is the most renormalization-group
relevant local perturbation in our system. We consider a
finite-size topological superconductor with discrete helical
Majorana energy levels and assume for simplicity that the
level separation is larger than the tunneling rate. With this
assumption, we derive analytic results for the tunneling current
through one or two quantum point contacts, and obtain the
current-voltage relation by evaluating the analytic results
numerically.

For a single quantum point contact with a noninteracting
lead, the tunneling current is the same (up to an extra factor
of two in the differential conductance due to two spins) as
for chiral Majorana fermions [30]. It shows periodic peak
structures originating from the perfect Andreev reflection in
different Majorana energy levels. With increasing repulsive
interaction strengths, corresponding to a smaller Luttinger
parameter K , the differential conductance begins to decrease
and eventually vanishes completely at the resonance positions.
This effect may partly explain why perfect Andreev reflection
is difficult to observe even despite the existence of Majorana
zero modes in quantum wire experiments [11]. The quantum
critical behavior for the tunneling through a single-point
contact is similar to the charge transport with two helical
Luttinger leads connected by a quantum dot [34,35] or the
information leakage in the helical lead connected to a Majorana
mode [37].

As in a real experiment, the tunneling may not be perfectly
local, we shall also consider the effect of extended point
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contacts [38,39] using a model involving two point contacts.
For two nearby quantum point contacts, the distance be-
tween the two contacts determines the interference structures
in the tunneling current [52,53]. For distances much smaller
than the boundary length of the topological superconductor,
the interference changes the shape of the individual peaks,
giving features similar to Fano resonances with the overall
magnitude [40] remaining periodic. When the separation
distance is comparable with the boundary length, we see
that the overall magnitude also experiences some modulations
related to the separation scale. Those interference features
make the transport signature less universal and possibly modify
the scaling behavior [39], constituting another reason why
perfect transmission is hard to observe.

This paper is organized in the following way. In Sec. II, we
present the setup, the corresponding model Hamiltonian, and
the perturbation scheme. In Sec. III, we use a scaling analysis
to identify the tunneling term as the most relevant term in
our system and make a comparison with other systems or
different boundary conditions. In Sec. IV, we present the main
analytic and numerical results for single and double quantum
point contacts, and discuss their physical interpretations. We
summarize our results and compare our approach to the one
using scattering eigenstates in Sec. V.

II. TUNNEL JUNCTIONS

A. Proposed setup

To realize both 1D helical Luttinger liquids as well as 1D
helical Majorana modes, we adapt the proposal of Ref. [22],
which based on thin films of 3D topological insulators (3DTI)
such as Bi2Se3 or Bi2Te3, see Fig. 1. Helical Dirac fermions
emerge at the sample edges due to the mixing of the top and
bottom surface bands of the thin film [41,42]. Moreover, helical
Majorana modes can be realized by sandwiching the thin film
between conventional s-wave superconductors. For opposite
signs of the superconductor pairing functions on the top
and bottom layer, and sufficiently strong proximity-induced
pairing amplitude (greater than the mixing gap of the two
surfaces), helical Majorana modes are indeed formed as edge
states of the thin film [22].

In contrast to the converter between helical Dirac fermions
and Majorana modes proposed in Refs. [22,23], we study the
charge transport through tunneling junction(s) between a heli-

FIG. 1. (Color online) Proposed setup for realizing a heterojunc-
tion of a helical Luttinger lead and helical Majorana modes using a
thin film of a three-dimensional topological insulator. The top and
bottom superconductors’ order parameters carry different signs as
proposed in Ref. [22].

FIG. 2. (Color online) Schematic figure of single tunneling
junction.

cal Luttinger liquid and helical Majorana modes connected to
the ground. For systems with broken time-reversal symmetry,
where the helical edge states are replaced by chiral ones,
such transport phenomena were studied with noninteracting
leads [30] and interacting leads [28]. The schematic diagram
for a single tunneling junction is depicted in Fig. 2, where the
voltage difference between the two leads is controlled by the
chemical potential μ imposed on the helical Luttinger liquid
lead. The tunneling amplitude t̄ is controlled by the width
of the junction and is related to the wave-function overlap
between the two leads.

In real experiments, it may not be easy to fix the relative
phases of two adjacent superconductors nor fine tune the
chemical potential to the topological regimes. For the het-
erostructure setup, we can make the helical Majorana modes by
different types of realizations [18], or change the helical modes
to time reversal preserved double Majorana end states [31].
The result for tunnel transport to double Majorana end states
is the limiting case of a helical Majorana mode with energy
level separations going to infinity, as is shown in Fig. 5.

B. Model Hamiltonian

We consider one helical Luttinger liquid lead and one he-
lical Majorana fermion lead. The Hamiltonian describing this
system is H = HL + HM0 + ∑

α HTα
+ δH . The Hamiltonian

HL = ∫ ∞
−∞ dxHL for the helical fermions is a Luttinger liquid

Hamiltonian density,

HL = ivF [ψ†
L(x)∂xψL(x) − ψ

†
R(x)∂xψR(x)]

−μ(x)[ψ†
L(x)ψL(x) + ψ

†
R(x)ψR(x)]

+u2ψ
†
L(x)ψL(x)ψ†

R(x)ψR(x)

+
∑

r=R,L

u4

2
ψ†

r (x)ψr (x)ψ†
r (x)ψr (x). (1)

The Hamiltonian for the grounded propagating Majorana
fermions on a ring of circumference L is

HM0 = i
∑

σ

∫ L

0
dx(vM,σ γσ (x)∂xγσ (x)). (2)

Here, vM,σ = sgn(σ )vM . The single-particle tunneling term
between the helical Luttinger liquid lead and helical Majorana

235125-2



TUNNELING BETWEEN HELICAL MAJORANA MODES AND . . . PHYSICAL REVIEW B 91, 235125 (2015)

FIG. 3. (Color online) Schematic figure for two tunneling junc-
tions separated by spatial distance �x and �y.

fermion lead is described by [30]

HT = i
∑
r,σ,α

trσα√
2

γσ (yα)[ξrσαψr (xα) + ξ ∗
rσαψ†

r (xα)]. (3)

Here, trσα is the tunneling strength, and ξrσα are complex
numbers with |ξrσα| = 1. r indicates the left/right movers in
HL, σ denotes the spin index of the Majorana fermions, and
α = 1, . . . ,N is the number of tunneling channels (junctions)
and xα/yα are their spatial coordinates in Luttinger/Majorana
leads. We restrict our discussions to N = 1 and N = 2 in this
paper but the extension to arbitrary N is straightforward and
similar to the N = 2 case. The N = 2 case is illustrated in
Fig. 3.

The remaining δH term contains the leading instabil-
ities [27,28] under the renormalization group analysis in
the low-energy sector. We show in the next section why
they are not important in our setup. With this simplification
the full low-energy effective Hamiltonian becomes H �
HL + HM0 + ∑

α HTα
, describing the single-particle tunneling

between spinful Luttinger liquids and Majorana fermions lead.
The tunneling charge current through site xα (in the helical
Luttinger liquid coordinate system) is obtained by

〈
Îxα

〉 = ie

〈[∑
r

ψ†
r (x)ψr (x),H

]〉

= −e

〈∑
r,σ

trσα√
2

γσ (yα)(ξrσαψr (xα) − ξ ∗
rσαψ†

r (xα))
〉
.

The total tunneling current is the coherent sum of the
current from all tunneling channels (under the assumption
that the separation distance between junctions are less
than the coherence length). We choose a time dependent
gauge transformation to move the chemical potentials in
HL to HT by writing ψR/L → eiμtψR/L. By defining the
Keldysh contour ordered Green’s function Gσ,R/L,α(t,t ′) =
−i〈Tc{γσ (yα,t)ψ†

R/L(xα,t ′)}〉, we rewrite the particle current
as

I (t)/e = 

⎡
⎣ ∑

j=R,L;σ

tjσαe−iμtG<
σ,j,α(t,t)

⎤
⎦. (4)

This lesser mixed Green’s function G<
σ,j,α(t,t) is obtained

by perturbation theory as

Gσ,R/L,α(t,t ′) =
∞∑
l=0

(−i)l+1

l!

∫
c

dτ1 . . .

∫
c

dτl〈Tc{γσ (yα,t)

×Hint(τ1) . . . Hint(τl)ψ
†
R/L(xα,t ′)}〉. (5)

In applying the Wick theorem in Eq. (5), we should also
include all possible four-fermion interactions term (u2 and
u4 term in the edge states Hamiltonian) between any two
fermion operators. We use the spinless bosonization [33] as
a way to sum up all orders of perturbations in the four-fermion
interactions on the Keldysh contour. The edge-state correlators
evaluated this way are thus fully dressed by the four-fermion
interactions in our treatment and we do not specify this aspect
in the expression of Eq. (5).

We bosonize the helical Luttinger liquid lead operators by
writing the fermion fields as

ψR(x) = 1√
2πa0

ηRe−i
√

4πφR(x),

(6)
ψL(x) = 1√

2πa0
ηLei

√
4πφL(x),

with ηR/L as the Klein factor chosen to satisfy the fermion
anticommutation rule and a0 as the lattice spacing cutoff for the
linear spectrum. We define the bosonic fields �,� = φL ± φR

and rewrite H0 = HL + HM0 and HT as

H0 = v

2

∫ ∞

−∞
dx :

[
K(∂x�)2 + 1

K
(∂x�)2

]
:

+ i
∑

σ

vM,σ

∫ L

0
dxγσ (x)∂xγσ (x)

HT =
∑
σα

iγσ

[
e−iμt

(
tRσα√

2
ei

√
4πφR (xα )η

†
Rξ ∗

Rσα

+ tLσα√
2

e−i
√

4πφL(xα )η
†
Lξ ∗

Lσα

)
+ H.c.

]
(7)

with the Luttinger parameter K =
√

2πvF +u4−u2
2πvF +u4+u2

and velocity

v = vF

√
(1 + u4

2πvF
)2 − ( u2

2πvF
)2. Equation (7) serves as the

main Hamiltonian for computing the tunneling current in
Sec. IV. For a single tunneling point contact with time reversal
symmetry preserved, we set tR↑α = tL↓α = t̄α and otherwise
zero. We discuss why other relevant perturbations δH are not
important in this time reversal preserved system in the next
section.

III. SCALING ANALYSIS

Following the discussions in Ref. [27] for a single tunneling
junction located at x = 0, the most relevant terms δH other
than the tunneling term HT are

δH = V1[ψ†
R(0)ψR(0) + ψ

†
L(0)ψL(0)]

+ [V2ψ
†
R(0)ψL(0) + �ψR(0)ψL(0) + H.c.]. (8)

Here, the V1 terms represent the chemical potential change due
to the presence of the tunneling junction (also called quantum
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point contact). The V2 terms stand for backscattering due to the
point contact and � is the Cooper pair gap magnitude induced
at x = 0 via proximity effect [27,28]. Rewriting the fermionic
operators via Eq. (6), we get δH in a bosonized form as

δH = V1√
π

∂x�(0) − V2

πa0
sin(

√
4π�(0))

+ |�|
πa0

sin (
√

4π�(0) − φ), (9)

with � = |�|eiφ . The V1 terms can be absorbed in the
definition of �(x) by the shift �(x) → �(x) − KV1

2v
√

π
sgn(x).

For the rest of the terms in HT and δH , the scaling dimensions
around H0 are [28]

D[t̄] = 1

4

(
K + 1

K

)
+ 1

2
,

(10)
D[V2] = K, D[�] = 1/K.

The term 1
2 in D[t̄] comes from the scaling dimension of

helical Majorana modes D[γ ] = 1
2 , which is the same as

the chiral ones, assuming its spectrum is continuous (or the
boundary of the topological superconductor being infinite).
For a time reversal symmetric Hamiltonian the backscattering
term proportional to V2, being the only relevant term in the
repulsive interaction regime (0 < K � 1), is forbidden. For
repulsive interactions, 1 � D[t̄] � D[�] and thus the most
important terms (marginally relevant) in the perturbation for
HT + δH around H0 is the tunneling term HT .

For the short topological superconductors considered in this
paper, the helical Majorana edge states become discretized
and D[γ ] � 0. Under this approximation, D[t̄] � 1

4 (K + 1
K

)
becomes relevant for 2 − √

3 < K < 1, while D[�] stays
irrelevant in the repulsive regime, indicating the same quantum
phase transition (metallic to insulating) as for helical Luttinger
liquids connected via a quantum dot [35] in the repulsive
regime.

For different geometries, such as a Luttinger liquid
terminated at a Majorana zero-mode end state [27] or a
helical Luttinger liquid connected to a time-reversal breaking
topological superconductor (with chiral Majorana modes as
its edge state) [28], the backscattering V2 term is relevant for
K < 1 and the low-energy physics is determined by a new
fixed point Hamiltonian [28]:

H
′
0 = H0 − V2

πa0
sin (

√
4π�(0)), (11)

which fixes the value of �(0) = √
π/4 for V2 > 0. Under this

constraint, the scaling dimension of the tunneling term D[t̄]
with D[γ ] � 0 becomes D[t̄] � 1

2K
and is relevant for 1/2 <

K < 1, giving rise to the transition between perfect normal and
perfect Andreev reflection at K = 1/2 in this system [27]. The
transition from perfect normal to perfect Andreev reflection is
shown as an insulating to metallic transition in the charge
transport. The key difference from our setup is the different
scaling behavior (different power law dependence), controlled
by the density-density interaction strength in the helical
Luttinger liquid, in the differential conductance as a function
of the bias voltage or the temperature.

IV. EVALUATING THE CURRENT

In this section, we carry out the calculation of the current
for a single-point contact and a double-point contact at zero
temperature. We start by finding analytic expressions for
the helical Luttinger liquid and dressed helical Majorana
modes Green’s functions. From there we compute the current
numerically by using Eqs. (4) and (5), and thus obtain the
current-voltage relation numerically. By taking the derivative
numerically, we get the differential conductance as a function
of voltage. We find a metallic to insulating quantum phase
transition (near zero bias) with increasing repulsive interaction,
and less universal patterns owing to the interference nature in
the case of double-point contacts.

As a side remark, notice that the computation carried out
here is not the one loop RG calculations mentioned in the pre-
vious section. We perform a diagramatic based resummation of
perturbative terms and the evaluated differential conductivities
depend explicitly on the choice of linear momentum cutoff �.
The choice of � depends on the particular realizations of the
helical Luttinger modes, i.e., they are material dependent. The
cutoff dependence, as shown in Appendix A, is consistent
with the trend we expect from usual higher order (two loops
or more) RG calculations, that is, for a larger cutoff �, the
deviations from what we expect from the lowest RG analysis
are larger. In the rest of the paper, we choose � = 10−2εF as a
typical value of modeling the linearization of some quadratic
bands at the Fermi surface, or the band touching point where
the edge states of 2DTI become mixed with the bulk band.

A. Single point contact

We start with a single-point contact between the he-
lical Luttinger liquid and helical Majorana modes real-
ized in a time-reversal symmetric topological supercon-
ductor. From Ref. [35] the Keldysh component of bare
(uncoupled) lead Green functions, defined as GψL/R

(τ,τ ′) =
−i〈Tc{ψL/R(τ )ψ†

L/R(τ ′)e−iμL/R (τ ′−τ )}〉, expressed in the fre-
quency space at zero temperature are [36]

G++
ψL/R

(ω) = a2κ
0

4π2v2κ

�(κ)2

�(2κ)
|ω − μ|2κ−1

×(h̃(κ)θ (ω − μ) − h̃(κ)θ (μ − ω)),

G−−
ψL/R

(ω) = a2κ
0

4π2v2κ

�(κ)2

�(2κ)
|ω − μ|2κ−1

×( − h̃∗(κ)θ (ω − μ) + h̃∗(κ)θ (μ − ω)),

G+−
ψL/R

(ω) = a2κ
0

v2κ

i

�(2κ)
|ω − μ|2κ−1θ (μ − ω),

G−+
ψL/R

(ω) = a2κ
0

v2κ

−i

�(2κ)
|ω − μ|2κ−1θ (ω − μ). (12)

Here, κ = 1
4 (K + 1/K) and h̃(κ) = 2e−πiκ sin(πκ)�(1 − κ)2

and the plus/minus sign on GψL/R
indicates its labeling on

the Keldysh contour (with G++
ψL/R

as time ordered and G−−
ψL/R

as antitime ordered). By relabeling the spin index in γσ by
the left/right-movers label of the Luttinger lead operator, the
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steady-state charge current is expressed as

〈Î 〉 = e

[ ∑

n,m;j=L,R

tj,nt
∗
j,m

2

∫
dω

(
GR

γj,nm
(ω)G<

ψj
(ω)

+G<
γj,nm

(ω)GA
ψj

(ω)
)]

. (13)

Here, n, m denote the discrete energy levels in the
finite size helical Majorana modes. Equation (13) follows
from maintaining the structure of the first-order expansion
in Eq. (5) and resum all higher order terms through the
“dressed” helical Majorana Green’s function. The retarded
helical Majorana Green’s function contains higher-order terms
through inclusion of self energy terms:

GR
γj,nm

(ω) = G(0)R
γj,nm

(ω)+
∑
l,l′

G(0)R
γj,nl

(ω)�R
j,ll′(ω)GR

γj,l′m (ω). (14)

Here, the “bare” retarded helical Majorana Green’s
function is G(0)R

γj,nm
(ω) = δn,m/(w − εn,j + i0+) with εn,j =

�vMsgn(j ) 2πn
L

(with sgn(j ) = +/− for L/R), and the retarded

self-energy is �R
j,nm(ω) ≡ tj,nt

∗
j,m

2 GR
ψj

(ω) given by the Dyson
equation. The dressed helical Majorana lesser Green’s function
is G<

γj,nm
(ω) = GR

γj,nl
(ω)�<

j,ll′(ω)GA
γj,l′m (ω) with �<

j,nm(ω) ≡
tj,nt

∗
j,m

2 G<
ψj

(ω). Similar expressions hold for GA
γj,nm

(ω) and
G>

γj,nm
(ω).

In Eq. (13), the summation over integers n, m [and l,l′
in Eq. (14)] refers to the sum over discrete Majorana modes
energy level indices. From this, the expression for the current
is related to the evaluation of G<

ψj
(ω) = G+−

ψj
(ω), GA

ψj
(ω) =

G++
ψj

(ω) − G−+
ψj

(ω), and the aforementioned dressed helical
Majorana Green’s functions. In this paper, we assume that
the energy difference between different Majorana modes is
sufficiently large (greater than the broadening effect coming
from coupling with the Luttinger lead) such that �j,nm(ω) �
�j (ω)δn,m, to simplify the calculation. In other words, we
consider the helical topological insulator as short, such that
the finite size makes the energy difference between discrete
Majorana modes sufficiently large, so that the overlap between
them is negligible. Under this assumption, the helical Majorana
Green’s functions G>

γj,nm
(ω) and GR

γj,nm
(ω) are diagonal and the

analytic expression for Eq. (13) is obtained. From there we
evaluate the current numerically and obtain its relation with
the bias voltage V = (μ − 0)/e to evaluate the differential
conductance. The results for a single tunneling junction,
with different Luttinger parameters K indicating different
interaction strengths, are shown in Fig. 4.

In Fig. 4, we see the perfect transmission (maximum
differential conductance) at zero voltage for a noninteracting
(K = 1) helical Luttinger liquid. It originates from the perfect
Andreev reflection between the metal and superconductor
mediated by the helical Majorana modes [30]. The Majorana
modes inside the superconducting gap serve as resonance
levels, which facilitates the Andreev reflection process and
gives a differential conductance value g1e

2/h with g1 =
2 × 2 = 4, reflecting particle-hole and spin symmetry. This
perfect transmission signature is used to identify the Majorana
zero modes in the nanowire experiments [11]. The periodic

0.0 0.1 0.2 0.3 0.4
eV0.0

0.2

0.4

0.6

0.8

1.0
dI dV g1e2 h

K 0.3

K 0.5

K 1

FIG. 4. (Color online) Differential conductance as a function of
voltage for different Luttinger parameters in the helical Luttinger lead
connected by a single quantum point contact with grounded helical
Majorana modes. The Luttinger parameters are K = 1 (blue solid),
0.5 (purple dot dashed), and 0.3 (brown dashed). Other parameters are
t̄ = 0.05�, the length of the edge of the topological superconductor
L = 103a0, and the linear spectrum cutoff � = 10−2εF = 10�vM

2π

L
.

peaks at finite bias voltages, similar to the case of the tunneling
measurement chiral Majorana modes discussed in Ref. [30],
come from discrete Majorana energy levels with an energy
difference (peak intervals) set by the physical size of the
edge of the helical topological superconductor. For (repulsive)
interacting leads, the general feature is the suppression of
the resonant conductance peaks, both in peak magnitude and
width, and the spreading out of the spectral weight away from
the resonance levels [35].

The spreading of spectral weight makes the transition from
perfect Andreev reflection to perfect normal reflection more
difficult to observe at a smaller Luttinger parameter K . This is
because the Majorana levels begin to merge together (as shown
for K = 0.3 case in Fig. 4), violating our starting assumption
that the levels are sufficiently far apart. To illustrate this kind
of metallic (perfect Andreev reflection) to insulating (perfect
normal reflection) behavior in this single tunneling junction
context, we plot the differential conductance for a single level
(zero-energy) helical Majorana mode in Fig. 5. We see that the
transition takes place between K = 0.3 and 0.2 with marked
tendency differences between the two at finite bias.

The scaling analysis mentioned in the previous section
for single Majorana mode gives D[t̄] = (K + 1/K)/4, re-
sulting in a critical Luttinger parameter Kcr = 2 − √

3 for
the repulsive helical Luttinger lead. This scaling/criticality
behavior is the same as the case for two helical Luttinger
liquids connected (with particle-hole symmetry imposed, or
μ1 = −μ2 = eV/2) by a noninteracting single level quantum
dot discussed in Ref. [35]. The vanishing charge transport at
zero bias below K = Kcr corresponds to the transition point
where some quantum information stored by qubits formed
by Majorana modes is maintained and does not decohere
completely [37]. In general, for charge transport we can
formally make analogy between the two helical Luttinger leads
with a particle-hole symmetric driven voltage connected via a
noninteracting multilevel quantum dot system with our single
helical Luttinger lead connected with the helical Majorana
modes.
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FIG. 5. (Color online) Differential conductance as a function of
voltage for different Luttinger parameters with a single Majorana
level: K = 1 (blue solid), 0.5 (purple dot dashed), 0.3 (brown dashed),
and 0.2 (green dotted). Other parameters are the same as in Fig. 4.

Note that once introducing time-reversal-invariance break-
ing terms [28] or different ways [27] of connecting the
Majorana modes, the critical behavior in the charge transport
could occur at different Kcr. For example, if we replaced
the helical Majorana modes by the chiral Majorana modes
(the edge state of a topological superconductor with broken
time-reversal symmetry) [28], similar metallic to insulating
behavior is seen but with scaling behavior controlled by
D[t̄] = 1/2K , or Kcr = 1/2. Thus, for single Majorana modes
(or other modes sufficiently far apart such that the overlap is
not significant), different scaling behaviors in the single tunnel
junction transport reveal a great deal of information about the
boundary conditions imposed on the Luttinger liquid.

In a real experiment, there is a finite length region where
tunneling between the Majorana modes and the helical lead
occurs. Assuming a separable form for the spatial dependence
of the tunneling term [38,39], the analytic expressions for
weak tunneling current are obtained for the case of leads
made of the same type of material. For tunneling between
helical Luttinger leads, the power-law dependence is modified
for an extended contact compared to the case of a pointlike
contact [39]. Extension of this formulation to the infinite-size
helical Majorana lead case seems to be straightforward but
not so easy for the case of a finite helical Majorana lead.
Therefore we proceed with the simpler case: the case of two
quantum point contacts.

B. Double-point contact

Proposals for double-point contact setups are mainly
related to the study of quantum interference effects [43,44]
and the quasiparticle statistics of the edge states [45–47].
Similar setups for the helical edge states have been discussed
[49–51,53] with the possible applications for electronic means
of spin pumping [52,54]. Different types of interferometers
have also been proposed for heterostructures of a topological
superconductor and normal metal/edge states of topological in-
sulators such as the Majorana Dirac converter [22,23,48]. Here,
the double-point contact between the helical Luttinger liquid
and the Majorana modes is yet another type of heterostructure

showing quantum interference, which is analogous to the two
point source interference in optics.

For two point contacts the total current passing through
those contacts is 〈Î 〉 = 〈Îx1 + Îx2〉. Without loss of generality,
we choose x1 = 0, x2 = x, y1 = 0, and y2 = y. Here, xi

denotes the spatial coordinate of the fermion operators in
the helical Luttinger lead and yi denotes that of the helical
Majorana operators in the topological superconductor. We
evaluate the current 〈Î 〉 via perturbations on the tunneling term
HT on the Keldysh contour. To simplify the notation, we denote
G

(0)
(ψ/γ )α

as the bare (unperturbed) helical fermion/Majorana
mode with a chiral (or spin) and position index α and
concentrate on the structure of the perturbation in the Dyson
equation without bookkeeping the Keldysh contour labels on
the Green’s functions for the moment. We get

Gγα
= G(0)

γα
+ G(0)

γα
|tα|2Gψα

Gγα
+ G(0)

γα
tαGψαψβ

t∗βGγβγα

+G(0)
γαγβ

tβGψβψα
t∗αGγα

+ G(0)
γαγβ

|tβ |2Gψβ
Gγβγα

, (15)

Gγαγβ
= G(0)

γαγβ
+ G(0)

γα
tαGψαψβ

t∗βGγβ
+ G(0)

γαγβ
|tβ |2Gψβ

Gγβ

+ G(0)
γαγβ

tβGψβψα
t∗αGγαγβ

+G(0)
γα

|tα|2Gψα
Gγαγβ

. (16)

Note that we do not have a spin-flip process in the tunneling
term, and the Gψβψα

or Gγβγα
are diagonal in spin space and

functions of differences in the spatial coordinate. In these
simplified notations, the current at position xα of the helical
Luttinger lead coordinate is

〈
Îxα

〉 = e

[∫

dω
(|tα|2Gγα

Gψα
+ tαt∗βGγαγβ

Gψβψα

)]
. (17)

It is easy to check that the above formula gives the single-
point contact result (13) by taking tα = t̄/

√
2, tβ = 0, and

with the Langreth theorem [59] (to denote the contour order).
Following the same recipes, the current for two point contacts
with tα = t̄1/

√
2 and tβ = t̄2/

√
2 is then expressed as

〈Î 〉 =
∑
j=±1

(〈
Îx1,j

〉 + 〈
Îx2,j

〉)
,

〈
Îx1,j

〉 = e

2


[ ∫

dω
(|t̄1|2

(
GR

γj
(ω)G<

ψj
(ω) + G<

γj
(ω)GA

ψj
(ω)

)

+ t̄1 t̄
∗
2

(
GR

γj
(ω, − y12)G<

ψj
(ω,x12) + G<

γj
(ω, − y12)

×GA
ψj

(ω,x12)
))]

,

〈
Îx2,j

〉 = e

2


[ ∫

dω
(|t̄2|2

(
GR

γj
(ω)G<

ψj
(ω) + G<

γj
(ω)GA

ψj
(ω)

)

+ t̄2 t̄
∗
1

(
GR

γj
(ω,y12)G<

ψj
(ω, − x12) + G<

γj
(ω,y12)

×GA
ψj

(ω, − x12)
))]

. (18)

Here, G(0)R
γj

(ω,y) = ∑
n

e
−sgn(j )i 2πn

L
y

ω−εn,j +iη
and G(0)<

γj
(ω,y) =

2πi
∑

n e−isgn(j ) 2πn
L

yθ (−ω)δ(εn,j − ω) are the unperturbed re-
tarded and lesser Green’s function for the helical Majorana
modes, label j = ±1 denotes left/right moving mode, and
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FIG. 6. (Color online) Differential conductance vs voltage for
different Luttinger parameters K = 1, 0.5, and 0.3 with a separation
distance x12 = y12 = 10a0. We choose the tunneling term t̄1/� =
t̄2/� = 0.01, and the length of the helical Majorana modes L = 103a0

with a0 denoting lattice spacing. � = 10−2εF = 10�vM
2π

L
is the

linear spectrum cutoff in the helical Luttinger lead.

x12 = x1 − x2 and y12 = y1 − y2 are the spatial coordinate
differences. Following Eqs. (15) and (16) and the Langreth
rule, we obtain the various dressed Majorana Green’s functions
and the unperturbed helical fermions Green’s functions needed
for evaluating the current. The derivations and analytic expres-
sions for various Green’s functions are shown in Appendixes B
and C. With the analytic expressions shown in the Appendixes,
we perform numerical integrals to compute the current (18)
and obtain the differential conductance by taking numerical
derivatives with respect to the source drain voltage V . The
results are shown in Figs. 6–9.

We chose a small separation length (x12 = y12 = 10−2L)
between the two contacts in Fig. 6 and fixed the tun-
neling strengths of the two point contacts to be identi-
cal. The interference effect due to two point contacts for
the weakly interacting lead (K � 1) is not apparent, and
the resonance structure is similar to the single-point con-
tact. For a noninteracting lead (K = 1 or blue solid line
in Fig. 6), the differential conductance reaches its max-
imum value g2e

2/h with g2 = 2(particle hole) × 2(spin) ×
2(2 tunneling points) = 8 when the chemical potential of the
helical lead is in line with the discrete Majorana energy
levels. For a helical lead with stronger repulsion (say K = 0.5
or purple dashed line in Fig. 6), we see features similar
to the single-point contact (with shrinking peak width and
height at resonance value and transfer of spectral weight away
from the resonance) and the effect of interference between
two point contacts. Around zero bias, the peak splits into
two, similar to the physics of Fano resonance, and slight
modulations occur in the resonance positions in other finite
voltage peaks. To further study the interference effect, we
fix K = 0.5 and plot different separation lengths (still keeping
x12 = y12 and x12/L ∼ 10−2) in Fig. 7. We see that the subpeak
structure (see the inset of Fig. 7) also emerges near the finite
voltage resonance peaks with peak heights at a fixed voltage
depending on the separation distance. This kind of subpeak
structure mainly comes from the change in the real part of
the self-energy correction on the Majorana Green’s function,

0.00 0.05 0.10 0.15 0.20 0.25 0.30
eV0.0

0.1
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0.3
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0.5

0.6
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0.290 0.295 0.300 0.305 0.310
0.0
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0.2
0.3
0.4
0.5
0.6

FIG. 7. (Color online) Differential conductance vs voltage for a
Luttinger parameter K = 0.5 with different separation lengths. We
choose x12 = y12 with x12 = 3.18a0 (blue solid), x12 = 7.96a0 (purple
dot dashed), and x12 = 10a0 (brown dashed). The other parameters are
t̄1/� = t̄2/� = 0.01, L = 103a0, and � = 10−2εF = 10�vM

2π

L
. Top

right inset shows the enlarged figure for peaks around eV/� = 0.3.

which emerges with the cancellation of the fast oscillating
term related to eikF sgn[j ]x12 in the Gψαψβ

in Appendix C from
different orientations.

For longer separation distance, the interference effect
also brings a change in the peak heights. To demonstrate
this, we choose x12 = y12 = 0.1L in Fig. 8 such that the
separation distance is one-tenth of the linear dimension of
the Majorana modes. Other than the subpeak structure seen
for the K = 0.5 case, we now also see modulations in the
resonance peak heights. This larger envelope (modulation with
large voltage range) is associated with the separation length
scale being comparable with the Majorana system size. For
the off-resonance region (K = 1 plot with voltage between
eV/� = 0 to 0.1 in Fig. 8, for example), we also see small
oscillations around zero, which is attributed to the inaccuracy
of the numerical integrals for fast oscillating functions.
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FIG. 8. (Color online) Differential conductance vs voltage for
different Luttinger parameters K = 1 (blue solid), 0.5 (purple dot
dashed), and 0.3 (brown dashed) with a separation distance x12 =
y12 = 102a0. We choose the tunneling term t1/� = t2/� = 0.01, and
the length of the helical Majorana modes L = 103a0 with a0 denoting
lattice spacing. � = 10−2εF = 10�vM

2π

L
is the linear spectrum cutoff

in the helical Luttinger lead.
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FIG. 9. (Color online) Differential conductance vs tunneling am-
plitude phase difference φ for different Luttinger parameters K = 1
(blue solid), 0.5 (purple dot dashed), and 0.3 (brown dashed). t1 =
t2e

iφ with |t1|/� = 0.01. Other parameters are x12 = y12 = 10a0,
� = 10−2εF = 10�vM

2π

L
, and L = 103a0.

For general double-point contacts, we could have different
tunneling amplitudes t1, t2 and different separation distances
|x12| �= |y12|. For |t1| � |t2| or |t1| � |t2|, the transmitted
current is dominated by one of the point contacts, and the
result is basically the same as that of the single-point contact.
For |x12| �= |y12| but with |t1| = |t2| and |x12| ≈ |y12|, the
general features are similar to what we have mentioned in this
section. Here, we discuss the case of identical separation length
|x12| = |y12| = 10a0 but with different tunneling amplitude
t1 = t2e

iφ . We plot the differential conductance around zero
bias as a function of the tunneling phase difference φ

for different Luttinger parameters in Fig. 9. For the small
separation distance chosen here, φ = π or t1 = −t2 leads to an
almost complete cancellation of the resonance peak. For larger
separation distance, the general feature is the same (decreasing
dI/dV with increasing φ) but with a finite conductance even
at φ = π .

V. CONCLUSION

We have investigated the charge transport between a helical
Luttinger liquid and a system of helical Majorana fermions
coupled by single and double quantum point contacts. The
helical Luttinger liquid is realized as a one-dimensional
edge state of a thin film of a 3D topological insulator with
the inclusion of short-range repulsion. The helical Majorana
fermion could be realized in noncentrosymmetric topological
superconductors or proximity-induced effective topological
superconductors with time reversal symmetry. For a single
tunneling point contact, we find that perfect Andreev reflection
occurs only for a noninteracting helical lead. Increasing the
repulsive interaction strength leads to the suppression of the
differential conductance on resonance and shifts the weight
away from resonance. This feature is similar to the case of
two Luttinger leads connected by a noninteracting quantum
dot [35] with a particle-hole-symmetric bias voltage (μ1 =
−μ2 = eV/2).

We then studied the case of two quantum point contacts. For
small separation distance (x12 � L with L being the size of

the edge of the topological superconductor), the interference
from the two point contacts strongly changes the shape of
the individual resonance peaks but does not affect the overall
magnitude at different Majorana mode energies. At larger
separation distance (x12 ∼ 10−1L), we observe modulations
in the magnitude and shape of individual resonance peaks
resulting from two point interference.

In a real experimental setup, the point contact may not be
perfect, in which case an extended contact may provide a better
description [38,39]. The analytic results of the perturbation
theory in the tunneling get more complicated with an increased
number of tunneling channels, as shown for the case of
two point contacts in this paper. We conjecture, based on
our result at small separation distance, that with sufficiently
small size of this extended point contact (�x ∼ �y � L), the
overall transport behavior will be similar to the single-point
contact. The detailed scaling behavior [39] or the shape of the
individual resonance peak can be different and the transport
signature gets modified by the interaction more significantly.
This can also be viewed as a generalization of the scaling
behavior change due to the modification of the boundary
conditions as mentioned in Ref. [28].

As a final remark, the noninteracting limit (K = 1) of our
results can also be derived by the scattering function formalism
as done for the chiral Majorana case [30]. For repulsive
interactions (K < 1), one can, in principle, use the Bethe
ansatz scattering eigenstates [55,56] and derive the tunneling
current for a single-point contact. This formulation might be an
extension of the perturbative approach introduced here, had the
issues of complex Bethe momenta be clarified [56]. Different
type of interacting leads realizing different kind of Luttinger
liquids [58] can also be connected with noninteracting Majo-
rana modes, which leaves a unique transport signature due to
the different scaling behavior for an ideal single-point contact.
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APPENDIX A: CUTOFF DEPENDENCE OF
DIFFERENTIAL CONDUCTANCE

In this section, we evaluate numerically the zero bias dif-
ferential conductance at various different cutoffs, maintaining
the cutoff energies at the order of 10−2εF . In the main text,
we choose � = 10 (i.e., with εF /�vF = 103 inverse length
unit), a tunneling amplitude t̄ = 0.5 in Figs. 4 and 5, and
different t̄ for the rest of the figures. Here, for demonstration
purposes, we fix t̄ = 0.5 and all other parameters the same as
those in Figs. 4 and 5, and we vary � from 10 to 40 stepped
by 10. The result is shown in the log-log scale in Fig. 10.
For Kcritical � 0.26 < K < 1, the lowest order RG flow to the
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FIG. 10. (Color online) Zero bias differential conductance v.s.
linear momentum cutoff � for fixed tunneling amplitude t̄ .

fixed point of perfect transmission gives dI/dV |V →0 = 1 (in
unit of g1e

2/h).
In Fig. 4, the calculated zero bias differential conductance

depends explicitly on the linear momentum cutoff �, with
a larger � giving a smaller value and a generic trend
of decreasing transmission amplitude for decreasing K (or

FIG. 11. (Color online) (Left) Contour chosen to evaluate
I+−(ω,x). (Right) Contour chosen to evaluate I++(ω,x).

stronger repulsion in a helical Luttinger lead, shown for K =
0.7 to 0.3). For generic two loops RG (or higher order), the next
leading correction normally takes the form of (1 + 1/F (�)),
with 1/F (�) → 0 as � → 0. The explicit form of the higher
order corrections F (�) depends on the specific Hamiltonian.
The trend we see in Fig. 10 is consistent with the naive higher
order RG. However, we shall bear in mind that this is not the
RG type of calculations, but a fixed cutoff with inclusion of
most of the perturbative terms (neglecting the level crossing
terms) via the Dyson’s approach.

APPENDIX B: LUTTINGER LEAD CORRELATORS

The action

−S0 =
∫ β

0
dτ

∫
dx

{[
i∇�(x,τ )∂τ�(x,τ ) − v

2

(
K(∇�)2 + 1

K
(∇�)2

)]
+

∑
σ

γσ (∂τ − εd )γσ

}
.

At zero temperature,

1

K
〈�(r1)�(r2)〉 = −1

2π
ln

[
x2 + (a + ivt)2

a2

]
≡ F (1)−+(t,x), (B1)

〈�(r1)�(r2)〉 = −1

2π
ln

[
a + ivt − ix

a + ivt + ix

]
≡ F (2)−+(t,x). (B2)

Here, t = t1 − t2 and x = x1 − x2. For t2 on the bottom and t1 on the top branch of Keldysh contour, we substitute x → −x and
t1 ↔ t2 to get

F (1)+−(t,x) = −1

2π
ln

[
x2 + (a − ivt)2

a2
0

]
, (B3)

F (2)+−(t,x) = −1

2π
ln

[
a − ivt + ix

a0 − ivt − ix

]
. (B4)

For both t2 and t1 on the top branch, or the time-ordered branch, we get

F (1)++(t,x) = θ (t)F (1)−+(t,x) + θ (−t)F (1)+−(t,x) = −1

2π
ln

[
x2 + (a + iv|t |)2

a2

]
, (B5)

F (2)++(t,x) = θ (t)F (2)−+(t,x) + θ (−t)F (2)+−(t,x) = −1

2π
ln

[
a + iv|t | − isgn[t]x

a + iv|t | + isgn[t]x

]
. (B6)

Similarly, for antitime-ordered F (1)−−(t,x) and F (2)−−(t,x), obtained by θ (t) ↔ θ (−t) in Eqs. (B5) and (B6), we get

F (1)−−(t,x) = −1

2π
ln

[
x2 + (a − iv|t |)2

a2

]
, (B7)
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F (2)−−(t,x) = −1

2π
ln

[
a − iv|t | + isgn[t]x

a − iv|t | − isgn[t]x

]
. (B8)

We absorb the effect of Klein factor −i〈TcηR/L(τ1)ηR/L(τ2)〉 by introducing F̃ (2)++/−−(t,x) = F (2)++/−−(t,x) +
F (2)++/−−(−t, − x) ± sgn[t]i and F̃ (2)+−/−+(t,x) = F (2)+−/−+(t,x) + F (2)+−/−+(−t, − x) ± i. The general form of Gψj

(ω,x)
at zero temperature is

Gψj
(ω,x) = eisgn[j ]kF x

2πa

∫ ∞

−∞
dtei(ω−μ)t e

π
2 ((K+ 1

K
)F (1)(t,x)+sgn(j )F̃ (2)(t,x)). (B9)

It is straightforward to show that the G
+−,−+
ψj

(t,x) obtained in Eq. (B9) (before performing a Fourier transform to the frequency
space) is the same as Eq. (A1) in Ref. [58]:

G
+−
−+
ψj

(t,x) = eisgn[j ]kF x

2πa

[
a

sgn[j ]x + v(t ± i0+)

]κ− 1
2
[

a

sgn[j ]x − v(t ± i0+)

]κ+ 1
2

, (B10)

G
++
−−
ψj

(t,x) = eisgn[j ]kF x

2πa

[
a

sgn[j ]x + v(t ∓ isgn[t]0+)

]κ− 1
2
[

a

sgn[j ]x − v(t ∓ isgn[t]0+)

]κ+ 1
2

. (B11)

To compute Eq. (B9), let us first define I
+−
−+ (ω,x) and I

++
−− (ω,x) as

I
+−
−+ (ω,x) =

∫ ∞

−∞
dteiωt

[
a2

x2 − v2(t ± i0+)2

]κ− 1
2

, I
++
−− (ω,x) =

∫ ∞

−∞
dteiωt

[
a2

x2 − v2(t ∓ isgn[t]0+)2

]κ− 1
2

. (B12)

The contours chosen for Eq. (B12) are shown in Fig. 11. From Eq. (B12), it is easy to check that Eq. (B9) is expressed as

G
+−
−+
ψj

(ω,x) = −eisgn[j ]kF x

4π
(
κ − 1

2

)
[
∂sgn[j ]x + i

ω − μ

v

]
I

+−
−+ (ω − μ,x), G

++
−−
ψj

(ω,x) = −eisgn[j ]kF x

4π
(
κ − 1

2

)
[
∂sgn[j ]x + i

ω − μ

v

]
I

++
−− (ω − μ,x).

Since ω is real, we have (I+−(−ω,x))∗ = I−+(ω,x) and (I++(−ω,x))∗ = I−−(ω,x). We only need to evaluate I++ and I+−.
For I+−(ω,x), the nonzero contribution comes from the lower half circular contour:

I+−(ω,x) =
(

a

v

)2κ−1 ∫ ∞

−∞
dt

eiωt

((
x
v

)2 − (t + i0+)2
)
κ− 1

2

=
(

a

v

)2κ−1[
− eiω

|x|
v

∫
C1

eiωydy

[−y(y + 2|x|/v)]κ− 1
2

− eiω
−|x|

v

∫
C2

eiωȳdȳ

[ȳ(−ȳ + 2|x|/v)]κ− 1
2

]
θ (−ω)

= i
2a

√
π

v�
(
κ − 1

2

)
[(

2i|x|v
ωa2

)1−κ

Kκ−1(|x|ω/iv) −
(−2i|x|v

ωa2

)1−κ

Kκ−1(−|x|ω/iv)

]
θ (−ω). (B13)

Here, Kn(z) is the modified Bessel function of the second kind and �(x) is the Gamma function. For evaluation of I++(ω,x),
notice that I++(ω,x) is an even function of ω following its definition:

I++(ω,x) =
(

a

v

)2κ−1 ∫ ∞

−∞
dt

eiωt

((
x
v

)2 − (t − isgn[t]0+)2
)
κ− 1

2

. (B14)

Thus we only need to evaluate ω > 0 in I++(ω,x). For this ω > 0 region, we have

I++(ω,x)θ (ω) =
(

a

v

)2κ−1[ ∫ ∞

0
dteiωt

((
x

v

)2

− (t − i0+)2

)−κ+ 1
2

+
∫ 0

−∞
dteiωt

((
x

v

)2

− (t + i0+)2

)−κ+ 1
2
]
θ (ω)

=
(

a

v

)2κ−1[ ∫ ∞

0
dteiωt

((
x

v

)2

− (t − i0+)2

)−κ+ 1
2

+
∫ ∞

0
dte−iωt

((
x

v

)2

− (t − i0+)2

)−κ+ 1
2
]
θ (ω)

=
(

a

v

)2κ−1
⎧⎨
⎩
⎡
⎣−eiω

|x|
v

∫
C3

eiωydy

[−y(y + 2|x|/v)]κ− 1
2

−
∫ 0

∞

ie−ωydy[(
x
v

)2 + y2
]κ− 1

2

⎤
⎦ −

⎡
⎣∫ ∞

0

ie−ωydy[(
x
v

)2 + y2
]κ− 1

2

⎤
⎦
⎫⎬
⎭θ (ω)

= i
2a

√
π

v�
(
κ − 1

2

)
(

2i|x|v
ωa2

)1−κ

Kκ−1(|x|ω/iv)θ (ω). (B15)
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The full expression for I++(ω,x) is

I++(ω,x) = i
2a0

√
π

v�
(
κ − 1

2

)
[(

2i|x|v
ωa2

)1−κ

Kκ−1(|x|ω/iv)θ (ω) +
(−2i|x|v

ωa2

)1−κ

Kκ−1(−|x|ω/iv)θ (−ω)

]
. (B16)

We combine the above results and use the derivative relation

∂x

(
x

a

)−n

Kn(ax) = −a

(
x

a

)−n

Kn+1(ax)

for the modified Bessel functions. Replacing ω by ω − μ to account for nonzero chemical potential and after some algebras, we get

G+−
ψj

(ω,x) = eisgn[j ]kF x

2
√

π�
(
κ + 1

2

) a(ω − μ)

v2

{(
2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

iv

)
+ sgn[jx]Kκ

( |x|(ω − μ)

iv

)]

−
( −2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

−iv

)
− sgn[jx]Kκ

( |x|(ω − μ)

−iv

)]}
θ (μ − ω), (B17)

G−+
ψj

(ω,x) = −eisgn[j ]kF x

2
√

π�
(
κ + 1

2

) a(ω − μ)

v2

{(
2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

iv

)
+ sgn[jx]Kκ

( |x|(ω − μ)

iv

)]

−
( −2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

−iv

)
− sgn[jx]Kκ

( |x|(ω − μ)

−iv

)]}
θ (ω − μ), (B18)

G++
ψj

(ω,x) = eisgn[j ]kF x

2
√

π�
(
κ + 1

2

) a(ω − μ)

v2

{(
2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

iv

)
+ sgn[jx]Kκ

( |x|(ω − μ)

iv

)]

×θ (ω − μ) + (same expressions with |x| → −|x|and sgn[jx] → sgn[−jx])θ (μ − ω)

}
, (B19)

G−−
ψj

(ω,x) = −eisgn[j ]kF x

2
√

π�
(
κ + 1

2

) a(ω − μ)

v2

{(
2i|x|v

(ω − μ)a2

)1−κ[
Kκ−1

( |x|(ω − μ)

iv

)
+ sgn[jx]Kκ

( |x|(ω − μ)

iv

)]

×θ (μ − ω) + (same expressions with |x| → −|x|and sgn[jx] → sgn[−jx])θ (ω − μ)

}
. (B20)

The x → 0 limit is obtained by noting that the small argument expansion of the modified Bessel function of the second kind
Kα(z) takes the following form [57]:

Kα(z) � 1

2

[
�(α)

(
2

z

)α

+ �(−α)

(
z

2

)α]
(1 + O(z2)) (B21)

for z → 0. For α > 0, the first term in Eq. (B21) is divergent, reflecting the artifact of the lack of small distance cutoff in taking
the continuous limit (i.e., the smallest distance we can take should not be x = 0 but lattice constant a ∝ 1/�). Thus these
divergence terms can be safely neglected or suppressed by the regularization via a further differentiation [58]. Using further the
functional relation of Gamma function �(2z) = (2π )−1/222z− 1

2 �(z)�(z + 1
2 ) we can get Eq. (12) from Eq. (B17) to Eq. (B20),

which is consistent with the direct derivation done in Ref. [35].

APPENDIX C: DERIVATION FOR GREEN FUNCTIONS

Here, we use the Langreth rule [59] on Eqs. (15) and (16). The retarded and advanced Green’s functions are decoupled from
the lesser and greater ones and are solved directly from these two coupled equations. The explicit expressions of all retarded
Green’s functions expressed via unperturbed Majorana Green’s functions and lead Luttinger Green’s functions are

GR
γα

=
G(0)R

γα
− |tβ |2GR

ψβ

(
G(0)R

γα
G(0)R

γβ
− G(0)R

γαγβ
G(0)R

γβγα

)
f R

γ

, GR
γαγβ

=
G(0)R

γαγβ
+ tαt∗βGR

ψαψβ

(
G(0)R

γα
G(0)R

γβ
− G(0)R

γαγβ
G(0)R

γβγα

)
f R

γ

, (C1)

GR
γβ

=
G(0)R

γβ
− |tα|2GR

ψα

(
G(0)R

γα
G(0)R

γβ
− G(0)R

γαγβ
G(0)R

γβγα

)
f R

γ

, GR
γβγα

=
G(0)R

γβγα
+ t∗α tβGR

ψβψα

(
G(0)R

γα
G(0)R

γβ
− G(0)R

γαγβ
G(0)R

γβγα

)
f R

γ

. (C2)

Here, the numerator f R
γ is defined as

f R
γ ≡ 1 − G(0)R

γα
|tα|2GR

ψα
− tβ t∗αG(0)R

γαγβ
GR

ψβψα
− |tβ |2G(0)R

γβ
GR

ψβ
− tαt∗βG(0)R

γβγα
GR

ψαψβ
+ |tα|2|tβ |2

×(
G(0)R

γα
G(0)R

γβ
− G(0)R

γαγβ
G(0)R

γαγβ

)(
GR

ψα
GR

ψβ
− GR

ψαψβ
GR

ψβψα

)
. (C3)
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Once we obtain the full advanced and retarded Green’s functions, we then substitute these expressions into the equations for
lesser and greater ones, which are coupled with advanced and retarded Green’s functions. The full expressions for lesser Green’s
functions are

G<
γα

= Nuα1

De1De2
− Nuα2

De2
,

Nuα1 = (
1 − tαt∗βGR

ψαψβ
G(0)R

γβγα
− |tβ |2GR

ψβ
G(0)R

γβ

)((
1 − |tα|2GR

ψα
G(0)R

γα
− t∗α tβGR

ψβψα
G(0)R

γαγβ

)
×{

G(0)<
γβγα

+ GA
γβ

[|tα|2(G(0)<
γβγα

GA
ψα

+ G(0)R
γβγα

G<
ψα

) + t∗α tβ
(
G(0)<

γβ
GA

ψβψα
+ G(0)R

γβ
G<

ψβψα

)]
+GA

γβγα

[|tβ |2(G(0)<
γβ

GA
ψβ

+ G(0)R
γβ

G<
ψβ

) + tαt∗β
(
G(0)<

γβγα
GA

ψαψβ
+ G(0)R

γβγα
G<

ψαψβ

)]}
+ (|tα|2GR

ψα
G(0)R

γβγα
+ t∗α tβGR

ψβψα
G(0)R

γβ

){
G(0)<

γα
+ GA

γα

[|tα|2(G(0)<
γα

GA
ψα

+ G(0)R
γα

G<
ψα

)
+ t∗α tβ

(
G(0)<

γαγβ
GA

ψβψα
+ G(0)R

γαγβ
G<

ψβψα

)] + GA
γβγα

[|tβ |2(G(0)<
γαγβ

GA
ψβ

+ G(0)R
γαγβ

G<
ψβ

)
+ tαt∗β

(
G(0)<

γα
GA

ψαψβ
+ G(0)R

γα
G<

ψαψβ

)]})
,

Nuα2 = G(0)<
γβγα

+ |tα|2(G(0)<
γβγα

GA
ψα

GA
γα

+ G(0)R
γβγα

G<
ψα

GA
γα

) + t∗α tβ
(
G(0)<

γβ
GA

ψβψα
GA

γα
+ G(0)R

γβ
G<

ψβψα
GA

γα

)
+ tαt∗β

(
G(0)<

γβγα
GA

ψαψβ
GA

γβγα
+ G(0)R

γβγα
G<

ψαψβ
GA

γβγα

) + |tβ |2(G(0)<
γβ

GA
ψβ

GA
γβγα

+ G(0)R
γβ

G<
ψβ

GA
γβγα

)
,

De1 = (
1 − |tα|2GR

ψα
G(0)R

γα
− t∗α tβGR

ψβψα
G(0)R

γαγβ

)(
1 − |tβ |2GR

ψβ
G(0)R

γβ
− tαt∗βGR

ψαψβ
G(0)R

γβγα

)
− (|tα|2GR

ψα
G(0)R

γβγα
+ t∗α tβGR

ψβψα
G(0)R

γβ

)(|tβ |2GR
ψβ

G(0)R
γαγβ

+ tαt∗βGR
ψαψβ

G(0)R
γα

)
,

De2 = |tα|2GR
ψα

G(0)R
γβγα

+ t∗α tβGR
ψβψα

G(0)R
γβ

;

G<
γβγα

= Nuβα

De1
,

Nuβα = (
1 − |tα|2GR

ψα
G(0)R

γα
− t∗α tβGR

ψβψα
G(0)R

γαγβ

){
G(0)<

γβγα
+ GA

γα

[|tα|2(G(0)<
γβγα

GA
ψα

+ G(0)R
γβγα

G<
ψα

)
+ t∗α tβ

(
G(0)<

γβ
GA

ψβψα
+ G(0)R

γβ
G<

ψβψα

)] + GA
γβγα

[
tαt∗β

(
G(0)<

γβγα
GA

ψαψβ
+ G(0)R

γβγα
G<

ψαψβ

)
+ |tβ |2(G(0)<

γβ
GA

ψβ
+ G(0)R

γβ
G<

ψβ

)]} + (|tα|2GR
ψα

G(0)R
γβγα

+ t∗α tβGR
ψβψα

G(0)R
γβ

){
G(0)<

γα
+ GA

γα

×[|tα|2(G(0)<
γα

GA
ψα

+ G(0)R
γα

G<
ψα

) + t∗α tβ
(
G(0)<

γαγβ
GA

ψβψα
+ G(0)R

γαγβ
G<

ψβψα

)] + GA
γβγα

[|tβ |2

×(
G(0)<

γαγβ
GA

ψβ
+ G(0)R

γαγβ
G<

ψβ

) + tαt∗β
(
G(0)<

γα
GA

ψαψβ
+ G(0)R

γα
G<

ψαψβ

)]}
.
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