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Identifying the most influential individuals spreading information or infectious diseases can assist or hinder information
dissemination, product exposure, and contagious disease detection. Hub nodes, high betweenness nodes, high closeness nodes,
and high 𝑘-shell nodes have been identified as good initial spreaders, but efforts to use node diversity within network structures
to measure spreading ability are few. Here we describe a two-step framework that combines global diversity and local features to
identify the most influential network nodes. Results from susceptible-infected-recovered epidemic simulations indicate that our
proposed method performs well and stably in single initial spreader scenarios associated with various complex network datasets.

1. Introduction

Network-spreading studies range from information diffusion
via online social media sites, to viral marketing, to epidemic
disease identification and control, among many others [1–9].
Key spreader identification strategies are being established
and tested to accelerate information dissemination, increase
product exposure, detect contagious disease outbreaks, and
execute early intervention strategies [10]. Topological struc-
ture is a core concept in this identification process [1, 2, 11–
15].

Centrality measures for identifying influential social
network nodes are broadly categorized as local or global
[3, 7, 16]. Degree centrality (the number of nodes that a
focal node is connected to) measures node involvement in
a network. However, most network node researchers fail to
consider global topological structures. Betweenness (which
assesses the degree to which a node lies on the shortest path
between two other nodes) and closeness (the inverse sum of
the shortest distances from a focal node to all other nodes) are
the twomost widely usedmeasures for overcoming these lim-
itations. Influence is tied to advantageous network positions,

including high degree, high closeness, and high betweenness.
In simple network structures, these advantages tend to vary;
in complex networks, significant disjunctures can emerge
among position characteristics, so that a spreader’s location
may be simultaneously advantageous and disadvantageous.

Results from k-shell decomposition analyses indicate
that network nodes in core layers are capable of spread-
ing throughout much broader areas compared to those in
peripheral layers [1, 2]. Although spreading capability differs
among nodes, those with similar k-shell values are perceived
as having equal importance. To rank spreaders, a method
called mixed degree decomposition adds otherwise ignored
degree nodes to the decomposition process [3, 6, 8, 17].
Still, researchers have tended to overlook the importance of
network topology and node diversity, despite their positive
correlations with events such as community economic devel-
opment [18].

We used the concept of entropy to develop a robust
and reliable method for measuring the spreading capability
of nodes and identifying super-spreader nodes in complex
networks. It can be used to analyze numbers of global
network topological layers and local neighborhood nodes
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affected by specific individual nodes. Our assumption is that
k-shell decomposition [1, 2] can be used for global analysis,
with high global diversity/high local centrality nodes capable
of penetrating multiple global layers and influencing large
numbers of neighbors in local layers of complex networks.

To measure node influence, we propose a two-step
framework for acquiring global and local node information
within complex networks. Global node information is ini-
tially obtained using algorithms (e.g., a community detection
algorithm for complex networks [5, 19, 20] or a k-shell
decomposition algorithm for core/periphery network layers),
after which entropy is used to evaluate network node global
diversity. Next, local node information is acquired using
various types of local centrality. Last, global diversity and
local features are combined to determine node influence. In
our experiments, spreading ability equaled the total num-
ber of recovered nodes over time. We used a susceptible-
infective-recovered (SIR) epidemic simulation with various
social network datasets [21–25] to compare the spreading
capabilities of our proposed measure and social network
local/global centralities [2, 26, 27].

2. Background

To represent a complex network, let an undirected graph𝐺 =

(𝑉, 𝐸), where 𝑉 is the network node set and 𝐸 the edge set.
𝑛 = |𝑉| indicates the number of network nodes and 𝑚 = |𝐸|

the number of edges. Network structure is represented as an
adjacency matrix 𝐴 = {𝑎

𝑖𝑗
} and 𝑎

𝑖𝑗
∈ 𝑅
𝑛, where 𝑎

𝑖𝑗
= 1 if a

link exists between nodes 𝑖 and 𝑗, otherwise 𝑎
𝑖𝑗
= 0.

Degree (or local) centrality is a simple yet effective
method for measuring node influence in a complex network.
Let 𝐶

𝑑
(𝑖) denote node 𝑖 degree centrality. Higher values

indicate larger numbers of connections between a node and
its neighbors. NB

ℎ
(𝑖) denotes the set of node 𝑖 neighbors at a

h-hop distance. Node 𝑖 degree centrality is therefore defined
as

𝐶
𝑑 (𝑖) =

NBℎ (𝑖)
 =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
, (1)

where |NB
ℎ
(𝑖)| is the number of node 𝑖 neighbors at a h-hop

distance; in most cases, ℎ = 1 [7].
Betweenness centrality or dependency measures the pro-

portion of shortest paths going through a node in a complex
network.𝐶

𝑏
(𝑖) denotes node 𝑖 betweenness centrality. Higher

values indicate that a complex network node is located
along an important communication path. Accordingly, node
𝑖 betweenness centrality is defined as

𝐶
𝑏 (𝑖) = ∑

𝑠 ̸=𝑡 ̸=V∈𝑉

𝑄
𝑠𝑡 (𝑖)

𝑄
𝑠𝑡

, (2)

where 𝑄
𝑠𝑡
(𝑖) is the number of shortest paths from node 𝑠 to

node 𝑡 through node 𝑖 and𝑄
𝑠𝑡
is the total number of shortest

paths from node 𝑠 to node 𝑡 [3, 7, 16].
Closeness (or global) centrality measures the average

length of the shortest paths from one node to other nodes.

Let 𝐶
𝑙
(𝑖) denote node 𝑖 closeness centrality. Higher values

indicate node location in the center of a complex network,
with a shorter average distance from that node to other nodes.
Node 𝑖 closeness centrality is thus defined as

𝐶
𝑙 (𝑖) =

1

𝑙
𝑖

, 𝑙
𝑖
=
1

𝑛
⋅

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
, (3)

where 𝑙
𝑖
is the average length of the shortest paths fromnode 𝑖

to the other nodes and 𝑑
𝑖𝑗
is the distance from node 𝑖 to node

𝑗 [16].
k-shell decomposition [1, 2] iteratively assigns k-shell

layer values to all nodes in a complex network. During the
first step, let 𝑘 = 1 and remove all nodes where𝐶

𝑑
(𝑛) = 𝑘 = 1.

Following removal, some remaining network node degrees
may be 𝑘 = 1. Nodes are continuously pruned until there are
no 𝑘 = 1 nodes. All removed nodes are assigned a k-shell
value of 1.The next step is similar: let 𝑘 = 2, prune nodes, and
assign a k-shell value of 2 to all removed nodes. Repeat the
procedure until all network nodes are removed and assigned
k-shell indexes.Thismethod reveals the significant features of
a complex network—for example, all Internet nodes can be
classified as nuclei, peer-connected components, or isolated
components [1].

The SIR epidemic model [2, 26, 27] is used in many fields
to study the spreading processes of information, rumors, bio-
logical diseases, and other phenomena.Themodel consists of
three states: susceptible (𝑆), infective (𝐼), and recovered (𝑅).
𝑆 nodes are susceptible to information or diseases, 𝐼 nodes
are capable of infecting neighbors, and 𝑅 nodes are immune
and cannot be reinfected. Initially, almost all network nodes
are in the 𝑆 set, with a small number of infected nodes acting
as spreaders. During each time step, 𝐼 nodes infect their
neighbors at a preestablished infection rate, after which they
become recovered nodes at a recovery rate of 𝛾. The total
number of nodes in an SIRmodel is 𝑆(𝑡)+𝐼(𝑡)+𝑅(𝑡) = 𝑛, with
𝑆(𝑡) denoting the number of susceptible nodes at time 𝑡, 𝐼(𝑡)
the number of infected nodes at time 𝑡, 𝑅(𝑡) the number of
recovered nodes at time 𝑡, and 𝜌(𝑡) = 𝑅(𝑡)/𝑁 the proportion
of immune nodes.

3. The Proposed Measure

Our two-step method for obtaining global and local node
information in a complex network is illustrated in the
following steps. In step 1, global algorithms (e.g., community
detection, graph clustering, and k-shell decomposition) are
used to analyze the global features of nodes, and results
are used to compute their global diversity. In step 2, degree
centrality is used to measure local node features. Global
diversity and local features are then combined to determine
the influence of complex network nodes.

In step 1, k-shell decomposition was used as an example
for obtaining global node information in a complex network,
with Shannon’s entropy [28] used to calculate node k-shell
values and to determine how many network layers are
affected by a node. According to (4), maximum entropy
indicates a case in which a node is capable of connecting
with all layers of a complex network, and minimum entropy
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(0) indicates a case in which all node connections are in the
same network layer. The k-shell entropy of node 𝑖, which
ensures that its neighbors’ k-shell values are significantly
more diverse, is defined as

𝐸
𝑖
(𝑋
𝑖
) = −

𝑘𝑠max

∑

𝑗=1

𝑝
𝑖
(𝑥
𝑗
) ⋅ log

2
𝑝
𝑖
(𝑥
𝑗
) , (4)

𝑝
𝑖
(𝑥
𝑗
) =


𝑥
𝑗



∑
𝑘𝑠max
𝑗=1

𝑥
𝑗

, (5)

𝐸
𝑖
(𝑋
𝑖
) =

𝐸
𝑖
(𝑋
𝑖
)

log
2
𝑘𝑠max

, (6)

where 𝑋
𝑖
= {1, 2, . . . , 𝑘𝑠max} are the k-shell values of the

neighbors of node 𝑖, 𝑝
𝑖
(𝑥
𝑗
) the probability of the 𝑥

𝑗
-core layer

of neighbors, |𝑥
𝑗
| the number of nodes in the 𝑥

𝑗
-core layer

of the complex network, and 𝐸
𝑖
(𝑋
𝑖
) the normalized k-core

entropy required for the case under consideration.
In step 2, the node’s degree centrality is used to analyze

the value of local features in the complex network; the degree
centralities of neighbors are also considered. High influence
values indicate high degree centralities of a node and its
neighbors, meaning that the node is capable of reaching the
widest possible local range. The local feature of node 𝑖 is
defined as

𝐿
𝑖 (𝑖) = log

2
( ∑

𝑗∈NBℎ=1(𝑖)
𝐶
𝑑
(𝑗)) , (7)

where 𝐶
𝑑
(𝑗) is the degree centrality of neighbor 𝑗 and

NB
ℎ=1

(𝑖) is the node 𝑖 neighbor set at a h-hop distance. 𝐿
𝑖
(𝑖)

can be extended to become a “neighbor’s neighbor” version,
meaning that all node 𝑖 neighbors with a 2-hop distance are
considered.

Finally, 𝐸
𝑖
and 𝐿

𝑖
are combined to denote 𝐼𝐹

𝑖
, the final

influence of node 𝑖, defined as

𝐼𝐹
𝑖
= 𝐸
𝑖
⋅ 𝐿
𝑖
. (8)

4. Results and Discussion

Basic complex network properties and results from a network
GCC structure analysis are shown in Table 1. We used three
network dataset classifications: scientific collaboration, tradi-
tional social, and “other.”Measureswere degree, betweenness,
and closeness centralities; k-shell decomposition; neighbor’s
core (also known as coreness) [29]; PageRank [30]; and our
proposed method. Spreading experiment and SIR epidemic
model parameters were 1,000 simulations for each dataset,
50 time steps per simulation, and with the top-1 node for
each measure serving as the initial spreader. 𝛽 infection rates
are shown in Table 1. According to at least one study, a large
infection rate makes no difference in terms of spreading
measures [2]. To assign a suitable infection rate for each
network dataset, rates were determined by comparing the
theoretical epidemic threshold 𝛽thd with the number used
in referenced studies [29]. Recovery rate was always 𝛾 = 1,

meaning that every node in set 𝐼 entered set 𝑅 immediately
after infecting its neighbors.

Experimental results and details are shown in Figure 1
andTable 2.We found that the leading group could be defined
as the spreading result of measures that are larger than the
maximum result minus an inaccuracy factor of 1%:

𝐿𝐺 = {𝑚 | 𝑝
𝑚 (𝑡) ≥ (𝑝max (𝑡) − err∗𝑝max (𝑡)) ,

𝑚 ∈ 𝑀 and err ∈ [0, 1] } ,
(9)

where 𝑀 is the set of measures used in the experiment,
𝑝max(𝑡) is the maximum result at time t, err is the inaccuracy
rate (0.01), and time step 𝑡 = 50.

The number of recovered nodes 𝜌(𝑡)was used to measure
and rank the spreading capability of various measures. The
leading group can help determine measure stability for
identifying the influence of nodes in different networks.
Measures inside the leading group had approximately the
same spreading capability.The average rank shown in Table 2
was used to interpret the expected rank in different networks:
a measure with a lower average rank was viewed as having
better discrimination in terms of identifying good spreaders.

According to the inside leading group number (ameasure
stability indicator), our proposed method performed well
in terms of identifying the most influential network nodes
and thus is capable of identifying nodes that serve as good
spreaders with global diversity in a complex network. In
addition to being within the leading group, the method also
had a better ranking compared to other measures within
that group. The identified influence spreaders were capable
of reaching large numbers of network nodes through their
diverse global connections, of affecting network layers, and
of exerting a maximum spreading effect. Our results also
indicate that the degree centrality of a node and its neighbors
can be used to maintain the number of contact nodes in
the local layer of a complex network. However, important
differences were noted among measures. For example, the
closeness measure performed well in the top-1 position of the
ca-HepTh and Email-Enron networks (Figure 1, Table 2), but
not in the ca-GrQc, jazz musician, or NetScience networks.
Since the characteristic the measure wanted to capture may
not have been sufficiently strong in those networks, the most
influential spreaders could not be identified.

Although our proposed method underscores the robust-
ness and stability of identifying themost influential nodes, we
acknowledge two limitations. First, in cases of global node
diversity and lower node degree centrality, the spreading
capability of nodes is constrained and dependent on the
degree centrality of their neighbors. The influence of a node
is limited to the local layer of a complex network when the
degree centrality of its neighbors is lower. The spreading
range is also limited when a node’s connected neighbors
are located in the network’s peripheral layer. However, the
spreading range of nodes may be wide when the node’s
neighbors are located near the hub and within the core
network layers and when information and ideas can still be
spread to infect a large number of nodes throughout the
network.
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Figure 1: Spreading dynamic results for different networks.Measurements shown are betweenness (gray), closeness (orange), degree (yellow),
k-core (blue), proposed method (cyan), neighbor-core (magenta) and PageRank (red).



6 Mathematical Problems in Engineering

Ta
bl
e
2:
C
om

pa
ris

on
of

sim
ul
at
io
n
re
su
lts

fro
m

di
ffe
re
nt

m
ea
su
re
s(
in
clu

di
ng

ou
rp

ro
po

se
d
m
et
ho

d)
in

ex
pe
rim

en
ts
us
in
g
th
er

ea
l-w

or
ld

ne
tw
or
ks

sh
ow

n
in

Ta
bl
e1
.

N
et
w
or
k
na
m
e

G
ia
nt

co
nn

ec
te
d
co
m
po

ne
nt

(G
CC

)
𝜌
(𝑡
)
an
d
𝑡
=
50

D
eg
re
e

Be
tw
ee
nn

es
s

Cl
os
en
es
s

𝑘
-c
or
e

N
ei
gh
bo

r-
co
re

Pa
ge
Ra

nk
Pr
op

os
ed

ca
-A
str

oP
h

0.
15
21

3
0.
14
99

5
0.
15
21

3
0.
12
05

7
0.
15
22

2
0.
15
23

1
0.
14
80

6
ca
-C

on
dM

at
∗

0.
04

86
5

0.
04

87
4

0.
04

80
6

0.
02
78

7
0.
05
20

2
0.
04

88
3

0.
05
27

1
ca
-G

rQ
c∗

0.
14
71

2
0.
117

8 5
0.
116

9 6
0.
14
56

4
0.
14
77

1
0.
07
61

7
0.
14
64

3
ca
-H

ep
Ph

0.
19
53

1
0.
19
40

7
0.
19
52

2
0.
19
51

3
0.
19
50

5
0.
19
51

3
0.
19
43

6
ca
-H

ep
Th
∗

0.
11
31

3
0.
10
63

5
0.
13
69

1
0.
06
58

7
0.
06
90

6
0.
11
19

4
0.
13
59

2
Ja
zz
-M

us
ic
ia
ns

0.
30
37

5
0.
30

50
4

0.
30
14

6
0.
21
91

7
0.
31
49

1
0.
30

55
3

0.
31
39

2
Em

ai
l-C

on
ta
ct
s∗

0.
04

87
6

0.
05
33

5
0.
05
38

2
0.
05
35

4
0.
05
38

2
0.
01
36

7
0.
05

41
1

Em
ai
l-E

nr
on

0.
10
11

5
0.
10
09

6
0.
16
20

1
0.
16
18

4
0.
16
20

1
0.
10
03

7
0.
16
19

3
C
ele

ga
ns
N
eu
ra
l

0.
19
39

3
0.
19
19

5
0.
19
11

6
0.
06

44
7

0.
19
26

4
0.
20

11
1

0.
19
75

2
D
ol
ph

in
s

0.
11
07

1
0.
07
54

6
0.
07
95

5
0.
07
02

7
0.
10
19

3
0.
10
89

2
0.
08
97

4
Le
sM

is
0.
08

85
4

0.
08

90
3

0.
08

93
2

0.
07
92

6
0.
07
53

7
0.
08

78
5

0.
09

05
1

N
et
Sc
ie
nc
e∗

0.
07

96
4

0.
04

83
5

0.
04
73

6
0.
08

16
1

0.
08

07
3

0.
04
72

7
0.
08

14
2

Po
lB
lo
gs
∗

0.
13
40

3
0.
09
90

5
0.
13
39

4
0.
08
71

7
0.
13
47

2
0.
09
89

6
0.
13
54

1
In
sid

el
ea
di
ng

gr
ou

p
nu

m
be
r:

9
7

9
5

11
7

12
Av

er
ag
er

an
k:

3.
46
15

5.
00

00
3.
84
61

5.
46
15

3.
0

4.
69
23

2.
61
53

∗
N
et
w
or
k
re
su
lt
sh
ow

n
in

Fi
gu
re

1.
Bo

ld
:m

ea
su
re
m
en
tr
es
ul
ti
si
ns
id
et
he

le
ad
in
g
ne
tw
or
k
gr
ou

p.
Su
bs
cr
ip
t:
ra
nk

of
ne
tw
or
k
in

th
em

ea
su
re
m
en
t.



Mathematical Problems in Engineering 7

Second, maximum k-shell values are lower and network
sizes are considerably smaller in the absence of global
diversity in a complex network. As shown in Table 2, nodes
with high global diversity in the Dolphins network could
not be identified. In that case, the spreading ability of nodes
identified by our proposed method decreased to the degree
centrality (ignoring the first term), and the influence of nodes
was limited to local network layers. In the absence of global
diversity, (8) becomes 𝐼𝐹

𝑖
≈ 𝐿
𝑖
, which favors local network

layers (i.e., degree centrality). The spreading ranges of nodes
were also limited to local network layers when nodes were
located in peripheral layers or inside local and dense clusters.
However, broad spreading ranges were observed for nodes
located in the network’s core layers [2]. In addition, the𝐸

𝑖
(𝑋
𝑖
)

normalized global diversity values produced by our proposed
method are similar to the participation coefficients reported
by Teitelbaum et al. [31], and the high global diversity
values of nodes that we observed are similar to those of
connector hubs and kinless hubs, both of which have distinct
participation coefficients.

5. Conclusion

Our plans are to add considerable detail to our analysis, to
introduce a sophisticated method for evaluating spreading
ability, and to clarify how the proposed method is affected
by network structure. For example, global algorithms such as
community detection algorithms can be used to analyze and
obtain global information on community network structures
and to determine how factors such as position and node
role [31] affect the degree to which spreaders distribute
information or diseases throughout a complex network. We
also plan to study strategies associated with multiple initial
spreaders in networks. Since overlapping infected areas for
selected spreaders must be minimized [2], a multiple initial
spreader scenario may either accelerate or hinder spreading
within a complex network.
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