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Abstract. This paper proposes a method to detect network intrusions
by using the PCASOM (principal components analysis and self-organizing
map) neural networks. A modified unsupervised learning algorithm which
is more suitable for intrusion detection is presented. Experiments are
carried out to illustrate the performance of the proposed method by
using DARPA 1998 evaluation data sets. It shows that the proposed
method can cluster the network connections into proper clusters with
high detection rate and relatively low false alarm rate.

1 Introduction

Building of intrusion detection systems (IDSs) has been widely studied since the
early 1980’s. The challenges faced by designers increase as the targeted systems
become more diverse and complex [I]. Intrusion detection has been proven to
be a very valuable and powerful approach for network management as well as
network security. Generally, there are two fundamental approaches used in in-
trusion detection technology: misuse detection and anomaly detection [2]. The
misuse detection uses a signature-based database of well known intrusions and
use a pattern matching scheme to detect intrusions. The anomaly detection, on
the other hand, tries to quantify the normal operation of the host, or the network
as a whole, with various parameters and looks for anomalous values for those
parameters in real-time [3].

Artificial neural networks (ANNs) provide the potential to identify and classify
network activity based on limited, incomplete, and nonlinear data sources [I].
The goal in using ANNs for intrusion detection is to be able to generalize from
incomplete data and to be able to classify online data as being normal or intrusive
[4]. Principal components analysis (PCA) [5,6] and Self Organizing Feature Map
(SOFM) [7] are wildly used for intrusion detection. Ezequiel Lépez-Rubio et al.
[8] proposed a new self-organizing neural network model that performs principal
components analysis named PCASOM. In this paper, we use the PCASOM
neural networks to to build an intrusion detection model.

This paper is organized as follows. Some basic knowledge of PCASOM algo-
rithm is described in Section 2. The proposed algorithm for intrusion detection is
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given in Section 3. In Section 4, some experiments are carried out to validate the
performance of the proposed method. Finally, conclusion is given in Section 5.

2 The PCASOM

It is known that in SOM the neurons are trained to model the input space and the
information are stored in the weight connections of the neurons. PCASOM uses
convariance matrix to store the information [§]. For the purpose of locating the
winning neuron given by the data sample, PCASOM uses principal components
analysis (PCA) to give the distance measure by computing the projection errors
among all the neurons.

The covariance matrix of the input sequence vector {z} is defined by R =
E[(x — E(z))(z — E(z))'] [9]. Suppose we have M input samples at time ¢, the
covariance matrix and expectation can be given as

1M
R)= 3w~ B@) — B@), 1)

i=1
M
e(t)=E(x) = ]\14 Z% (2)

For online computing, the covariance matrix cannot be calculated in advance.
An iterative method for computing R(t) and e(t) is proposed in [8]. Suppose one
new input connection z;y1 is given at time instant ¢ + 1, then,

R(t+1) = (xits — BE@))(viq1 — E(2))’, 3)
et+1)=xiq1. (4)
It follows from (I),(2),(3) and (@) that,
M+1 1
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M
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Define learning rate 7, = ]\14 and n, = M1+1’ the iterative equations can be given
by:
R(t+1) = R(t) +n-(R'(t + 1) = R(t)), (7)
e(t+1) =e(t) +ne(e'(t +1) — e(t)). (8)

Clearly, M (t+ 1) = M(t) + 1, so the learning rate 7, and 7, are approaching to
zero as time goes on.

We initialize the unit number as m in the model. For the unit j at time
instant t, based on the theory of principal components analysis and subspace
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decomposition [9], the K main components directions of the input vector z;
(network connection data) along which z; has the largest deviation can be
obtained (This means every unit has K neurons.The weights of the neurons
represent the K principal components directions.). Those orthogonal vectors
B = {b;li = 1,..., K} consist the feature space of the input network connec-
tions. The input vector error on the unit j can be easily defined by projecting
it on the basis vector B; as follows [8]:

K

zit) — el (1) = Y (0 (i(t) — € (1))b})

h=1

#(t) =

: 9)

The winning unit has the minimum value #/(t) . For simplicity we assume the

degree of neighborhood of the winning unit as one. The winning unit C' can be
obtained through competition process as follows:

C:argmjn{:%g(t)},j:1,~-~,m. (10)
J

For every unit j, two small constants u, and p. are defined. If at time ¢, the new
input x;41 satisfies

IR (t+1) = R@)|| < peor, (11)
le'(t+ 1) —e()]] < pe, (12)

we can ignore the influence of the new input to the winning unit and need not
update the weights of the neurons in the unit. The training process of that unit
will be stopped.

3 Algorithm Description

The proposed algorithm can be described as follows:

1. Preparing training and testing data. Decide the unit number m according
to particular applications. Set the initial principal components number K.

2. For every unmit j, initialize R7(0) and €7(0). R/(0) is a random symmetric
nonnegative matrix by setting the main diagonal element near to one and
all the others near to zero. Initial the vector ¢7(0) by using small random
values near to zero [§].

3. Training process: at time ¢, input the training data. For every unit j, ac-
cording to ([B]) and ), compute R'(t+ 1) and €'(t + 1) .

4. Competition and updating: according to @)and(I0), find the winning unit
Jj, then update R’ (t + 1) and €’(t + 1) according to () and (&).

5. For the winning unit j, if (IT)) and (I2)) are satisfied, stop training process.
Otherwise go to step 3. Until all the units satisfy (II]) and (2]), stop the
whole training process.
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4 Experiments

We use KDD Cup 1999 Data in our experiments [10]. It is a subversion of DARPA
project [11]. The available database is made up of a large number of network
connections related to normal and malicious traffic. Each connection includes
forty-one feature values. We discard protocol-type, service and flag three pure
symbolic features. Then we obtain the dataset with thirty-eight feature values.

We select 5, 760 (1, 740 normal and 4, 020 intrusions) labeled connections ran-
domly to test our IDS model. Besides normal, the other five popular type of
attacks are included (such as smurfneptune,back,guess-password and satan).
The labeled value (data type) in the connections is discarded in our training
process but just for experimental result evaluation. Gopi K. Kuchimanchi et al
[5] use traditional PCA to reduce the dimensionality from forty-one to nineteen.
We select the principal components number as twenty and the unit number as
ten. The experimental results are shown in Table 1.

Table 1. The clustering results of PCASOM (20 PCs, 10 units)

clusters 1 2 3 4 5 6 7 8 9 10 detection
type — smurf —  — gpwd — neptunenormal — back rate(%)

normal 3 26 0 0 1 1 32 1676 1 0 96.32

neptune 0 0 0 0 0 0 992 0 0 28 97.26
smurf 0 1000 O 0 0 0 0 0 0 0 100
gpwd 3 9 0 13 693 1 0 181 0 0 77
back 0 0 0 0 0 0 0 1 0 799  99.87
satan 0 1 4 0 0 0 295 0 0 0 0

accuracy(%) — 9653 — — 99.86 — 75.21 90.20 — 96.61 -

Obviously, the selection of learning rate in the training process is very impor-
tant for every unsupervised algorithm. In our experiments, the learning rate is
defined as follows:

- - 1
M (t) = () = 1+ WinTimes(t,j)/p’

For the winning unit j at time ¢, the winning times is recorded in WinTimes(t, j).
The parameter p is an integer type constant. The learning rate can be adjusted
through varying p. In the above experiment, we selected p as 8 to obtain the
best performance.

Table 1 shows that all the training data are clearly clustered into five clusters
which have been labeled with type name using our label machine. The last row is
named accuracy. For example,cluster two (smurf, 96.53%) means our model has
detected 1,036 connections as smurf, but only 1,000 connections are real smurf
(accuracy = 1,000/1,036 * 100%). We can calculate total intrusion detection
rate (IDR, as the view of two types, normal or intrusions), average detection
rate (ADR) and false alarm rate (FAR), where
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IDR =1 - (1+ 181)/4020 x 100% = 95.47%,
ADR = (1676 + 992 + 1000 + 693 + 799) /5760 * 100% = 89.58%,
FAR = (1-1676/1740) x 100% = 3.68%.

The second step of the experiment is to test the performance of this model in
different unit setup. We select the unit number as 6, 8, 10, 12, 15 respectively.
Table 2 shows the results under different scenarios.

Table 2. The performance comparison using different unit number setup (20 PCs)

unit number 6 8 10 12 15

main clusters 5 5 5 7 7
IDR(%) 95.57 95.52 95.47 94.60 95.52
ADR(%) 84.97 82.69 89.58 87.80 84.30
FAR(%) 3.68 23.68 3.68 2.70 17.70

In PCASOM model, the different unit setup will impact the performance as
other clustering algorithms do. But Table 2 shows that the ADR and IDR vary
little and maintain a high performance value under different scenarios. The main
cause of FAR rising is that this model classifies the normal connections into two
or three clusters. To solve the problem in actual intrusion detection system, we
can use a anomaly-based classifier to separate the intrusions from normal first,
then this model can be used to categorize those filtered attack data to avoid
relative high false alarm rate.

Generally, supervised learning methods significantly outperform the unsuper-
vised ones if the testing data contain no unknown attacks. But the performance
of unsupervised learning is not impacted by unknown attacks. The following
experiments demonstrate this standpoint. Some data of new type intrusion are
added (700 new intrusive connections like teardrop) into the testing data, which
never appears in the previous training. The model can group them as a new clus-
ter (but not all other types of intrusion like this). The detection rate is 94.286%
(660 of 700). The result shows that our model is adapted to novel intrusion
detection with high accuracy.

In our experiments with different unit setup, the satan type intrusion cannot
be separated from neptune. Maybe these tow type connections are too similar
to separate by using this model. Hence, the distance measure methods deserve
a more detail analysis. Another good way is using hybrid neural network [12].
These are all our future works.

5 Conclusions

The PCASOM is used in this paper to study the network-based intrusion detec-
tion. This model can cluster the input data as SOM with competition process
based on principal components analysis. Unlike supervised learning algorithm,
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this model has the ability to learn from unlabeled training data. It’s helpful
for data preparation, because it is difficult to label the network connections as
normal or not in the real network environment.

The simulations shown that this model is adapted to both anomaly detection

and misuse detection. Different unit number setup will impact the performance
of ADR and IDR little. It can achieve high detection rate and relative low false
alarm rate.
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