Intrusion Detection Using PCASOM Neural
Networks

Guisong Liu and Zhang Yi

Computational Intelligence Laboratory,

School of Computer Science and Engineering,
University of Electronic Science and Technology of China,
Chengdu 610054, P.R. China
{1gs, zhangyi}@uestc.edu.cn

Abstract. This paper proposes a method to detect network intrusions
by using the PCASOM (principal components analysis and self-organizing
map) neural networks. A modified unsupervised learning algorithm which
is more suitable for intrusion detection is presented. Experiments are
carried out to illustrate the performance of the proposed method by
using DARPA 1998 evaluation data sets. It shows that the proposed
method can cluster the network connections into proper clusters with
high detection rate and relatively low false alarm rate.

1 Introduction

Building of intrusion detection systems (IDSs) has been widely studied since the
early 1980’s. The challenges faced by designers increase as the targeted systems
become more diverse and complex [I]. Intrusion detection has been proven to
be a very valuable and powerful approach for network management as well as
network security. Generally, there are two fundamental approaches used in in-
trusion detection technology: misuse detection and anomaly detection [2]. The
misuse detection uses a signature-based database of well known intrusions and
use a pattern matching scheme to detect intrusions. The anomaly detection, on
the other hand, tries to quantify the normal operation of the host, or the network
as a whole, with various parameters and looks for anomalous values for those
parameters in real-time [3].

Artificial neural networks (ANNs) provide the potential to identify and classify
network activity based on limited, incomplete, and nonlinear data sources [I].
The goal in using ANNs for intrusion detection is to be able to generalize from
incomplete data and to be able to classify online data as being normal or intrusive
[4]. Principal components analysis (PCA) [5,6] and Self Organizing Feature Map
(SOFM) [7] are wildly used for intrusion detection. Ezequiel Lépez-Rubio et al.
[8] proposed a new self-organizing neural network model that performs principal
components analysis named PCASOM. In this paper, we use the PCASOM
neural networks to to build an intrusion detection model.

This paper is organized as follows. Some basic knowledge of PCASOM algo-
rithm is described in Section 2. The proposed algorithm for intrusion detection is

J. Wang et al. (Eds.): ISNN 2006, LNCS 3973, pp. 240-245] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Intrusion Detection Using PCASOM Neural Networks 241

given in Section 3. In Section 4, some experiments are carried out to validate the
performance of the proposed method. Finally, conclusion is given in Section 5.

2 The PCASOM

It is known that in SOM the neurons are trained to model the input space and the
information are stored in the weight connections of the neurons. PCASOM uses
convariance matrix to store the information [§]. For the purpose of locating the
winning neuron given by the data sample, PCASOM uses principal components
analysis (PCA) to give the distance measure by computing the projection errors
among all the neurons.

The covariance matrix of the input sequence vector {z} is defined by R =
E[(x — E(z))(z — E(z))'] [9]. Suppose we have M input samples at time ¢, the
covariance matrix and expectation can be given as

1M
R)= 3w~ B@) — B@), 1)

i=1
M
e(t)=E(x) =]\14 Z% (2)

For online computing, the covariance matrix cannot be calculated in advance.
An iterative method for computing R(t) and e(t) is proposed in [8]. Suppose one
new input connection z;y1 is given at time instant ¢ + 1, then,

R(t+1) = (xits — BE@))(viq1 — E(2))’, 3)
et+1)=xiq1. (4)
It follows from (I),(2),(3) and (@) that,
M+1 1

Rt+1) =, Y (xi— B))(z; — B(x)) = (M = DR() + R (t +1))(5)
i=1
M

1 1 ,
e(t+1)= M+1;(x¢+xi+1)— A o 1 (Me@®) + €+ 1)), (6)
Define learning rate 7, =]\14 and n, = M1+1’ the iterative equations can be given
by:
R(t+1) = R(t) +n-(R'(t + 1) = R(t)), (7)
e(t+1) =e(t) +ne(e'(t +1) — e(t)). (8)

Clearly, M (t+ 1) = M(t) + 1, so the learning rate 7, and 7, are approaching to
zero as time goes on.

We initialize the unit number as m in the model. For the unit j at time
instant t, based on the theory of principal components analysis and subspace

242 G. Liu and Z. Yi

decomposition [9], the K main components directions of the input vector z;
(network connection data) along which z; has the largest deviation can be
obtained (This means every unit has K neurons.The weights of the neurons
represent the K principal components directions.). Those orthogonal vectors
B = {b;li = 1,..., K} consist the feature space of the input network connec-
tions. The input vector error on the unit j can be easily defined by projecting
it on the basis vector B; as follows [8]:

K

zit) — el (1) = Y (0 (i(t) — € (1))b})

h=1

#(t) =

: 9)

The winning unit has the minimum value #/(t) . For simplicity we assume the

degree of neighborhood of the winning unit as one. The winning unit C' can be
obtained through competition process as follows:

C:argmjn{:%g(t)},j:1,~-~,m. (10)
J

For every unit j, two small constants u, and p. are defined. If at time ¢, the new
input x;41 satisfies

IR (t+1) = R@)|| < peor, (11)
le'(t+ 1) —e()]] < pe, (12)

we can ignore the influence of the new input to the winning unit and need not
update the weights of the neurons in the unit. The training process of that unit
will be stopped.

3 Algorithm Description

The proposed algorithm can be described as follows:

1. Preparing training and testing data. Decide the unit number m according
to particular applications. Set the initial principal components number K.

2. For every unmit j, initialize R7(0) and €7(0). R/(0) is a random symmetric
nonnegative matrix by setting the main diagonal element near to one and
all the others near to zero. Initial the vector ¢7(0) by using small random
values near to zero [§].

3. Training process: at time ¢, input the training data. For every unit j, ac-
cording to ([B]) and), compute R'(t+ 1) and €'(t + 1) .

4. Competition and updating: according to @)and(I0), find the winning unit
Jj, then update R’ (t + 1) and €’(t + 1) according to () and (&).

5. For the winning unit j, if (IT)) and (I2)) are satisfied, stop training process.
Otherwise go to step 3. Until all the units satisfy (II]) and (2]), stop the
whole training process.

Intrusion Detection Using PCASOM Neural Networks 243
4 Experiments

We use KDD Cup 1999 Data in our experiments [10]. It is a subversion of DARPA
project [11]. The available database is made up of a large number of network
connections related to normal and malicious traffic. Each connection includes
forty-one feature values. We discard protocol-type, service and flag three pure
symbolic features. Then we obtain the dataset with thirty-eight feature values.

We select 5, 760 (1, 740 normal and 4, 020 intrusions) labeled connections ran-
domly to test our IDS model. Besides normal, the other five popular type of
attacks are included (such as smurfneptune,back,guess-password and satan).
The labeled value (data type) in the connections is discarded in our training
process but just for experimental result evaluation. Gopi K. Kuchimanchi et al
[5] use traditional PCA to reduce the dimensionality from forty-one to nineteen.
We select the principal components number as twenty and the unit number as
ten. The experimental results are shown in Table 1.

Table 1. The clustering results of PCASOM (20 PCs, 10 units)

clusters 1 2 3 4 5 6 7 8 9 10 detection
type — smurf — — gpwd — neptunenormal — back rate(%)

normal 3 26 0 0 1 1 32 1676 1 0 96.32

neptune 0 0 0 0 0 0 992 0 0 28 97.26
smurf 0 1000 O 0 0 0 0 0 0 0 100
gpwd 3 9 0 13 693 1 0 181 0 0 77
back 0 0 0 0 0 0 0 1 0 799 99.87
satan 0 1 4 0 0 0 295 0 0 0 0

accuracy(%) — 9653 — — 99.86 — 75.21 90.20 — 96.61 -

Obviously, the selection of learning rate in the training process is very impor-
tant for every unsupervised algorithm. In our experiments, the learning rate is
defined as follows:

- - 1
M (t) = () = 1+ WinTimes(t,j)/p’

For the winning unit j at time ¢, the winning times is recorded in WinTimes(t, j).
The parameter p is an integer type constant. The learning rate can be adjusted
through varying p. In the above experiment, we selected p as 8 to obtain the
best performance.

Table 1 shows that all the training data are clearly clustered into five clusters
which have been labeled with type name using our label machine. The last row is
named accuracy. For example,cluster two (smurf, 96.53%) means our model has
detected 1,036 connections as smurf, but only 1,000 connections are real smurf
(accuracy = 1,000/1,036 * 100%). We can calculate total intrusion detection
rate (IDR, as the view of two types, normal or intrusions), average detection
rate (ADR) and false alarm rate (FAR), where

244 G. Liu and Z. Yi

IDR =1 - (1+ 181)/4020 x 100% = 95.47%,
ADR = (1676 + 992 + 1000 + 693 + 799) /5760 * 100% = 89.58%,
FAR = (1-1676/1740) x 100% = 3.68%.

The second step of the experiment is to test the performance of this model in
different unit setup. We select the unit number as 6, 8, 10, 12, 15 respectively.
Table 2 shows the results under different scenarios.

Table 2. The performance comparison using different unit number setup (20 PCs)

unit number 6 8 10 12 15

main clusters 5 5 5 7 7
IDR(%) 95.57 95.52 95.47 94.60 95.52
ADR(%) 84.97 82.69 89.58 87.80 84.30
FAR(%) 3.68 23.68 3.68 2.70 17.70

In PCASOM model, the different unit setup will impact the performance as
other clustering algorithms do. But Table 2 shows that the ADR and IDR vary
little and maintain a high performance value under different scenarios. The main
cause of FAR rising is that this model classifies the normal connections into two
or three clusters. To solve the problem in actual intrusion detection system, we
can use a anomaly-based classifier to separate the intrusions from normal first,
then this model can be used to categorize those filtered attack data to avoid
relative high false alarm rate.

Generally, supervised learning methods significantly outperform the unsuper-
vised ones if the testing data contain no unknown attacks. But the performance
of unsupervised learning is not impacted by unknown attacks. The following
experiments demonstrate this standpoint. Some data of new type intrusion are
added (700 new intrusive connections like teardrop) into the testing data, which
never appears in the previous training. The model can group them as a new clus-
ter (but not all other types of intrusion like this). The detection rate is 94.286%
(660 of 700). The result shows that our model is adapted to novel intrusion
detection with high accuracy.

In our experiments with different unit setup, the satan type intrusion cannot
be separated from neptune. Maybe these tow type connections are too similar
to separate by using this model. Hence, the distance measure methods deserve
a more detail analysis. Another good way is using hybrid neural network [12].
These are all our future works.

5 Conclusions

The PCASOM is used in this paper to study the network-based intrusion detec-
tion. This model can cluster the input data as SOM with competition process
based on principal components analysis. Unlike supervised learning algorithm,

Intrusion Detection Using PCASOM Neural Networks 245

this model has the ability to learn from unlabeled training data. It’s helpful
for data preparation, because it is difficult to label the network connections as
normal or not in the real network environment.

The simulations shown that this model is adapted to both anomaly detection

and misuse detection. Different unit number setup will impact the performance
of ADR and IDR little. It can achieve high detection rate and relative low false
alarm rate.

References

10.
11.

12.

. Cannady, J.: Artificial Neural Networks for Misuse Detection. Proceedings, Na-

tional Information Systems Security Conference (NISSC’98), Arlington VA (1998)
443-456

. Anderson, D., Frivold, T., Valdes, A.: Next-generation Intrusion Detection Expert

System(NIDES): A Summary. SRI International Technical Report, SRI-CSL-95-07
Ramadas, M., Ostermann, S., Tjaden, B.: Detecting Anomalous Network Traffic
with Self-organizing Maps. Lecture Notes in Computer Science, Vol. 2820. Springer-
Verlag GmbH (2003) 36-54

. Ghosh, A., Schwartzbard, A.: A Study in Using Neural Networks for Anomaly

and Misuse Detection. In Proceedings of the Eighth USENIX Security Symposium
(1999) 141-151

Kuchimanchi, G.K., Phoha, V.V., Balagami, K.S., Gaddam, S.R.: Dimension Re-
duction Using Feature Extraction Methods for Real-time Misuse Detection Sys-
tems. Proceedings of the 2004 IEEE Workshop on Information Assurance and
Security (2004) 195-202

Labib, K., Vemuri, V. R..: Detecting and Visualizing Denial-of-Service and Network
Probe Attacks Using Principal Component Analysis. Third Conference on Security
and Network Architectures, La Londe, France (2004)

Lei, J.Z., Ghorbani, A.: Network Intrusion Detection Using an Improved Com-
petitive Learning Neural Network. Second Annual Conference on Communication
Networks and Services Research (2004) 190-197

Rubio, E.L., Prez, J. M., Antonio, J., Ruiz, G.: A Principal Components Analysis
Self-organizing Map. Neural Networks 17(2) (2004) 261-270

Haykin, S.: Neural Networks: A Comprehensive Foundation. 2nd edn. Tsinghua
University Press, Beijing (2001)

KDD Cup 1999 Data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
DARPA Intrusion Detection Evaluation Project:http://www.ll.mit.edu/LST/
ideval/

Pan, Z.S., Chen, S.C., Hu, G.B., Zhang, D.Q.: Hybrid Neural Network and C4.5 for
Misuse Detection. Proceedings of the Second International Conference on Machine
Learning and Cybernetics (2003) 2463-2467

	Introduction
	The PCASOM
	Algorithm Description
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

