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It was recently shown that conventional phonon-electron interactions may induce a triplet pairing state in time-
reversal invariant three-dimensional Dirac semimetals. Starting from the microscopic model of the isotropic Dirac
semimetal, the Ginzburg-Landau equations for the vector order parameter is derived using the Gor’kov technique.
The collective modes including gapless Goldstone modes and gapped Higgs modes of various polarizations are
identified. They are somewhat analogous to the modes in the B phase of He3, although in the present case
quantitatively there is a pronounced difference between longitudinal and transverse components. The difference
is caused by the vector nature of the order parameter leading to two different coherence lengths or penetration
depths. The system is predicted to be highly dissipative due to the Goldstone modes. The time-dependent
Ginzburg-Landau model in the presence of external fields is used to investigate some optical and magnetic
properties of such superconductors. The ac conductivity of a clean sample depends on the orientation of the
order parameter. It is demonstrated that the difference between the penetration depths results in rotation of the
polarization vector of microwave passing a slab made of this material. The upper critical magnetic field Hc2 was
found. It turns out that at fields close to Hc2 the order parameter orients itself perpendicular to the field direction.
In certain range of parameters the triplet superconducting phase persists at arbitrarily high magnetic field like in
some p-wave superconductors.
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I. INTRODUCTION

Recently, three-dimensional (3D) Dirac semimetals (DSM)
such as Na3Bi and Cd3As2 with electronic states described by
Bloch wave functions, obeying the pseudorelativistic Dirac
equation (with the Fermi velocity vF replacing the velocity of
light), were observed [1] and attracted widespread attention.
The discovery of the 3D Dirac materials makes it possible to
study their physics including remarkable electronic properties.
This is rich in new phenomena, such as giant diamagnetism
that diverges logarithmically when the chemical potential
approaches the 3D Dirac point, a linear-in-frequency ac
conductivity that has an imaginary part [2], and quantum
magnetoresistance showing linear field dependence in the
bulk [3]. Most of the properties of these new materials were
measured at relatively high temperatures. However, recent
experiments at low temperature on topological insulators and
suspected 3D Dirac semimetals exhibit superconductivity.
Early attempts to either induce or discover superconductivity in
Dirac materials were promising. The well-known topological
insulator Bi2Se3 doped with Cu, becomes superconducting at
Tc = 3.8 K [4]. At present its pairing symmetry is unknown.
Some experimental evidence [5] point to a conventional
phononic pairing mechanism. The spin-independent part of
the effective electron-electron interaction due to phonons
was studied theoretically [6]. For a conventional parabolic
dispersion relation, typically independent of spin, the phonon
mechanism leads to the s-wave superconductivity. The layered,
noncentrosymmetric heavy element PbTaSe2 was found to
be superconducting [4]. Its electronic properties such as
specific heat, electrical resistivity, and magnetic susceptibility
indicate that PbTaSe2 is a moderately coupled, type-II BCS
superconductor with large electron-phonon coupling constant
of λ = 0.74. It was shown theoretically to possess a very

asymmetric 3D Dirac point created by strong spin-orbit cou-
pling. If the three dimensionality is confirmed, it might indicate
that the superconductivity is conventional phonon mediated.

More recently when the Bi2Se3 was subjected to pressure
[7], Tc increased to 7 K at 30 GPa. Quasilinear temperature
dependence of the upper critical field Hc2, exceeding the or-
bital and Pauli limits for the singlet pairing, points to the triplet
superconductivity. The band structure of the superconducting
compounds is apparently not very different from its parent
compound Bi2Se3, so that one can keep the two-band k · p
description (Sepz orbitals on the top and bottom layer of the
unit cell mixed with its neighboring Bi pz orbital). Electronic-
structure calculations and experiments on the compounds
under pressure [7] reveal a single bulk three-dimensional
Dirac cone like in Bi with large spin-orbit coupling. Moreover
very recently some pnictides were identified as exhibiting
Dirac spectrum. This effort recently culminated in discovery
of superconductivity in Cd3As2 [8]. It is claimed that the
superconductivity is p wave at least on the surface.

The case of the Dirac semimetals is very special due
to the strong spin dependence of the itinerant electrons’
effective Hamiltonian. It was pointed out [9] that in this case
the triplet possibility can arise although the triplet gap is
smaller than that of the singlet, the difference sometimes is
not large for spin independent electron-electron interactions.
Very recently the spin-dependent part of the phonon-induced
electron-electron interaction was considered [10] and it was
shown that the singlet is still favored over the triplet pairing.
Another essential spin-dependent effective electron-electron
interaction is the Stoner exchange among itinerant electrons
leading to ferromagnetism in transition metals. While in the
best 3D Weyl semimetal candidates it is too small to form
a ferromagnetic state, it might be important to determine the
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nature of the superconducting condensate. It turns out that it
favors the triplet pairing [11]. Also a modest concentration of
magnetic impurities makes the triplet ground state stable.

In a multicomponent superconductor collective modes
including gapless Goldstone modes (sound), and gapped
Higgs modes of various polarizations play an important
role in determining thermal and optical properties of the
material [12]. In addition, as mentioned above, generally
the applied magnetic field is an ultimate technique to probe the
superconducting state. In a growing number of experiments,
in addition to magnetotransport, magnetization curves, the
magnetic penetration depth, and upper critical magnetic field
were measured [13]. It is therefore of importance to construct
a Ginzburg-Landau (GL) description [14] of these novel
materials. This allows us to study inhomogeneous order
parameter configurations (junctions, boundaries, etc.), the
collective modes (somewhat analogous to the modes in the B
phase of He3) and magnetic and optical response that typically
involve inhomogeneous configurations (such as vortices) not
amenable to a microscopic description.

In the present paper we derive such a GL-type theory for
triplet superconductor from the microscopic isotropic DSM
model with attractive local interaction. The order parameter
in this case is a vector field and the GL theory of vector field
already considered in literature [15–17] in connection with
putative p-wave superconductors have several extraordinary
features, both quantitative and qualitative.

The paper is organized as follows. The model of the (phonon
mediated or unconventional) local interactions of 3D Dirac
fermion is presented and the method of its solution (in the
Gorkov equations form) including the symmetry analysis of
possible pairing channels and the vectorial nature of the triplet
order parameter is given in Sec. II. In Sec. III the Gorkov
formalism, sufficiently general to derive the GL equations, is
briefly presented. The most general form of the GL energy
of the triplet superconductor in magnetic field consistent with
the symmetries is given in Sec. IV. The coefficient of the
relevant terms are calculated from the microscopic DSM
model in Sec. V. Section VI is devoted to applications of
the GL model. The ground-state degeneracy, the character of
its excitations, and basic magnetic properties are discussed.
The vector order parameter is akin to optical phonons with
sharp distinction between transverse and longitudinal modes.
Transverse and longitudinal coherence lengths and penetration
depths are calculated and the upper critical magnetic field is
discussed. Section VI includes generalizations to include Pauli
paramagnetism, discussion of an experimental possibility of
observation of the excitation and conclusion.

II. LOCAL PAIRING MODEL IN DIRAC SEMIMETAL

A. Pairing Hamiltonian in the Dirac semimetal

Electrons in the 3D Dirac semimetal are described by field
operators ψf s(r), where f = L,R are the valley index (pseu-
dospin) for the left/right chirality bands with spin projections
taking the values s =↑ , ↓ with respect to, for example, the z

axis. To use the Dirac (pseudorelativistic) notations, these are
combined into a four-component bispinor creation operator,
ψ† = (ψ†

L↑,ψ
†
L↓,ψ

†
R↑,ψ

†
R↓), whose index γ = {f,s} takes four

values. The noninteracting massless Hamiltonian with Fermi
velocity vF and chemical potential μ reads [18]

K =
∫

r
ψ+(r)K̂ψ(r); (1)

K̂γ δ = −i�vF ∇iαi
γ δ − μδγδ , (2)

where the three 4 × 4 matrices, i = x,y,z,

α =
(

σ 0
0 −σ

)
, (3)

are presented in the block form via Pauli matrices σ . They are
related to the Dirac γ matrices (in the chiral representation,
sometimes termed spinor) by α = βγ with

β =
(

0 1
1 0

)
. (4)

Here 1 is the 2 × 2 identity matrix.
We consider a special case of 3D rotational symmetry

that in particular has an isotropic Fermi velocity. Moreover
we assume time-reversal and inversion symmetries although
the pseudo-Lorentz symmetry will be explicitly broken by
interactions. The spectrum of single-particle excitations is
linear. The chemical potential μ is counted from the Dirac
point.

As usual in certain cases the actual interaction can be
approximated by a model local one:

Veff = −g

2

∫
r
ψ+

α (r)ψ+
β (r)ψβ(r)ψα(r). (5)

Unlike the free Hamiltonian K , Eq. (1), this interaction
Hamiltonian does not mix different spin components.

Spin density in Dirac semimetal has the form

S(r) = 1
2ψ+(r)�ψ(r), (6)

where the matrices

� = −αγ5 =
(

σ 0
0 σ

)
,

(7)

γ5 =
(−1 0

0 1

)
,

are also the rotation generators.

B. Symmetry classification of possible pairing channels

Since we consider the local interactions as dominant, the su-
perconducting condensate (the off-diagonal order parameter)
will be local

O =
∫

r
ψ+

α (r)Mαβψ+
β (r), (8)

where the constant matrix M should be a 4 × 4 antisymmetric
matrix. Due to the rotation symmetry they transform covari-
antly under infinitesimal rotations generated by the spin Si

operator, Eq. (6):∫
r,r′

[
ψ+

α (r)Mαβψ+
β (r),ψ+

γ (r ′)�i
γ δψδ(r ′)

]
= −

∫
r

ψ+
γ (r)

(
�i

γ δMδκ + Mγδ�
t i
δγ

)
ψ+

κ (r). (9)
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Here and in what follows t denotes the transpose matrix. The
representations of the rotation group therefore characterize
various possible superconducting phases.

Out of 16 matrices of the four-dimensional Clifford algebra,
six are antisymmetric and one finds one vector and three scalar
multiplets of the rotation group. The multiplets contain the
following.

(i) A triplet of order parameters:{
MT

x ,MT
y ,MT

z

} = {−βαz, − iβγ5,βαx} = {Tx,Ty,Tz}. (10)

The algebra is

�iTj + Tj�
t
i = 2iεijkTk . (11)

Note that the three matrices Ti are Hermitian.
(ii) Three singlets

MS
1 = iαy ; MS

2 = i�y ; MS
3 = −iβαyγ5. (12)

Which one of the condensates is realized at zero temperature
is determined by the parameters of the Hamiltonian and
is addressed next within the Gaussian approximation. As
was shown in our previous work [11,19], either exchange
interactions or magnetic impurities make the triplet state a
leading superconducting channel in these materials. Therefore
we will consider in the next section only the vector channel.

III. GORKOV EQUATIONS AND THE TRIPLET PAIRING

A. Gorkov equations for Green’s functions in matrix form

Using the standard BCS formalism, the Matsubara Green’s
functions (τ is the Matsubara time)

Gαβ(r,τ ; r′,τ ′) = −〈Tτψα(r,τ )ψ†
β(r′,τ ′)〉;

Fαβ(r,τ ; r′,τ ′) = 〈Tτψα(r,τ )ψβ(r′,τ ′)〉; (13)

F+
αβ(r,τ ; r′,τ ′) = 〈Tτψ

†
α(r,τ )ψ†

β(r′,τ ′)〉,
obey the Gor’kov equations [20]:

−∂Gγκ (r,τ ; r′,τ ′)
∂τ

−
∫

r′′
〈r|K̂γβ |r′′〉Gβκ (r′′,τ ; r′,τ ′)

−gFβγ (r,τ ; r,τ )F+
βκ (r,τ,r′,τ ′) = δγ κδ(r − r′)δ(τ − τ ′);

∂F+
γ κ (r,τ ; r′,τ ′)

∂τ
−

∫
r′′

〈r|K̂t
γβ |r′′〉F+

βκ (r′′,τ ; r′,τ ′)

−gF+
γβ(r,τ ; r,τ )Gβκ (r,τ,r′,τ ′) = 0. (14)

These equations are conveniently presented in matrix form
(superscript t denotes transposed and I is the identity matrix):∫
X′′

[D−1(X,X′′)G(X′′,X′) − �(X)F+(X,X′)] = Iδ(X − X′);∫
X′′

(Dt )−1(X,X′′)F+(X′′,X′) + �t∗(X)G(X,X′) = 0. (15)

Here X = (r,τ ), �αβ(X) = gFβα(X,X) and

D−1
αβ (X,X′) = −δαβ

∂

∂τ
δ(X − X′) − δ(τ − τ ′)〈r|K̂αβ |r′〉.

(16)

In the homogeneous case the Gor’kov equations for Fourier
components of the Green’s functions simplify considerably:

D−1(ω,p)G(ω,p) − �F+(ω,p) = I ;
(17)

D̃−1(ω,p)F+(ω,p) + �t∗G(ω,p) = 0.

The matrix gap function can be chosen as

�βγ = gFγβ(0) = �zMγβ , (18)

with real constant �z. Here D−1(ω,p) = iω + μ − α · p, is
the noninteracting inverse Dirac Green’s function for the
Hamiltonian Eq. (1) and D̃−1(ω,p) = iω − μ − αt ·p, where
ω = πT (2n + 1) is the fermionic Matsubara frequency.

Solving these equations one obtains (in matrix form)

G−1 = D−1 + �D̃�t∗;
(19)

F+ = −D̃�t∗G,

with the gap function to be found from the consistency
condition

�t∗ = −g
∑
ωp

D̃�t∗G . (20)

Now we find solutions of this equation for each of the possible
superconducting phases.

B. Homogeneous triplet solution of the gap equation

In this phase rotational symmetry is spontaneously broken
simultaneously with the electric charge U (1) (global gauge
invariance) symmetry. Assuming z direction of the p-wave
condensate the order parameter matrix takes a form:

� = �zTz = �zβαx, (21)

where �z is a constant. The energy scale will be set by
the Debye cutoff TD of the electron-phonon interactions, see
below.

The spectrum of elementary excitations at zero temperature
was discussed in Ref. [11]. There is a saddle point with energy
gap 2�z on the circle p2

⊥ ≡ p2
x + p2

y = μ2/v2
F , pz = 0. The

gap �z as a function of the dimensionless phonon-electron
coupling λ = gN , where N being the density of states (all
spins and valleys included), increases upon reduction in μ. At
large μ 
 TD , as in BCS, the gap becomes independent of μ

and one has the relation

1

g
= N

12
sinh−1 TD

�z

; N = 2μ2

π2v3
F �3

, (22)

leading to an exponential gap dependence on λ when it is
small: �z = TD/ sinh (12/λ) � 2TDe−12/λ.

The critical temperature is obtained from Eq. (20) with dis-
crete ω by substituting �z = 0. To utilize the orthonormality
of Ti , Tr(TiT

∗
j ) = 4δij , one multiplies the gap equation by the

matrix Tz/g and takes the trace:

1

g
Tr(TzT

∗
z ) = 4

g
= TcBzz. (23)
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The bubble integral is

Bij =
∑
ωp

Tr
(
TiD̃T ∗

j D
) = 4δijTc

×
∑
np

v2
F (p2

⊥ − p2
z ) + μ2 + ω2

n

ω4
n + (

v2
F p2 − μ2

)2 + 2ω2
n

(
v2

F p2 + μ2
) . (24)

Performing first the sum over Matsubara frequencies and then
integrate over q one obtains, similarly to the singlet BCS, (see
Appendix A for details):

Tc = 2γE

π
TDe−12/λ, (25)

where log γE = 0.577 is the Euler constant.

IV. GENERAL GL DESCRIPTION OF A TRIPLET
SUPERCONDUCTOR IN A MAGNETIC FIELD

In this section the effective description of the supercon-
ducting condensate in terms of the varying (on the mesoscopic
scale) order complex parameter vector field �i(r) is presented.

A. GL description for a vector order parameter

The static phenomenological description is determined by
the GL free-energy functional F [�(r),A(r)] expanded to sec-
ond order in gradients and fourth order in �. In a magnetic field
B, as usual, space derivatives of the microscopic Hamiltonian
become covariant derivatives ∇ →D= ∇+i e∗

�c
A, e∗ = 2e due

to gauge invariance under �i → eiχ(r)�i,Ai → Ai − �c
e∗ ∇χ .

Naively the only modification of the GL energy is in the gra-
dient term, Eq. (26); the most general gradient term consistent
with rotation symmetry and the U (1) gauge symmetry is

Fgrad = N

∫
r
{uT {(Dj�i)

∗(Dj�i) − (Di�j )∗(Dj�i)}

+uL(Di�j )∗(Dj�i)}. (26)

Here uT ,uL are the phenomenological parameters that will
be calculated in Sec. IV B. The factor N, the density of states,
is customarily introduced into energy [11]. It was noted in
Ref. [16] that, unlike in the usual scalar order parameter
case, the longitudinal and transverse coefficients are in general
different, leading to two distinct coherence lengths, see Sec. V.
Possibilities for the local terms are [15]

Floc = N

∫
r

{
α(T − Tc)�∗

i �i + β1

2
(�∗

i �i)
2 + β2

2
|�i�i |2

}
.

(27)

The magnetic part, Fmag = B2/8π , completes the free energy.

B. Set of time-independent GL equations
for triplet order parameter

The set of the GL equations corresponding to this energy
are obtained by variation with respect to �∗

j and Ai . The first
is:

−{
uT

(
δijD2 − 1

2 {Di ,Dj }
) + 1

2uL{Di ,Dj }
}
�j

+α(T − Tc)�i + β1�i�
∗
j�j + β2�

∗
i �j�j = 0. (28)

The anticommutator appears due complex conjugate terms
in Eq. (26) [21]. The Maxwell equation for the supercurrent
density is:

Ji = ie∗

�
N (uT �∗

jDi�j + u�∗
jDj�i) + c.c., (29)

where u = uL − uT .
Having defined coefficients uT,L, β1,2 and α, our aim in

Sec. V is to deduce them from the microscopic Dirac semimetal
model.

V. GL COEFFICIENTS FROM THE GOR’KOV EQUATIONS

For the calculation of coefficients of the local part, the
homogeneous Gor’kov equation, Eq. (20) suffices, while for
calculation of the gradient terms a general linearized equation,
Eq. (15) is necessary.

A. Local (potential) terms in Gor’kov

Iterating once the equation Eq. (20) with help of Eq. (19)
one obtains the local terms to third order in the gap function:

1

g
�∗t +

∑
ωp

{D̃(ω,p)�∗tD(ω,p)

− D̃(ω,p)�∗tD(ω,p)�D̃(ω,p)�∗tD(ω,p)}. (30)

Using �t∗ = �∗
i Ti , multiplying by T t

i and taking the trace,
one gets the linear local terms

Nα(T − Tc)�∗
i = 4

g
�∗

i , (31)

where the bubble integral was given in Eq. (24). Expressing g

via Tc, see Eq. (25) allows us to write the coefficient a of �∗
i

in the Gorkov equation Eq. (20) is

α(T − Tc) = 8μ2

3π2v3
F �3N

log
T

Tc

≈ 4

3

T − Tc

Tc

. (32)

The cubic terms in Eq. (30), multiplied again by T t
i and traced

take the form

N (β1�
∗
j�j�

∗
i + β2�

∗
j�

∗
j�i)

= −�∗
j�k�

∗
l

∑
ωp

Tr
{
T t

i D̃T t∗
j DTkD̃T t∗

l D
}
. (33)

The calculation is given in Appendix A and results in:

β1 = 7ζ (3)

20π2

1

T 2
c

; β2 = −1

3
β1. (34)

The Riemann ζ function is ζ (3) = 1.2.

B. Linear gradient terms

To calculate the gradient terms, one first linearizes the
Gor’kov equations, Eq. (15)∫

X′′
D−1(X,X′′)G(X′′,X′) = Iδ(X − X′) → G = D−1;

F+(X,X′) = −
∫

X′′
Dt (X − X′′)�∗t (X′′)D(X′′ − X′).

(35)
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In particular,

1

g
�∗t (X) = F+(X,X)

= −
∫

X′
Dt (X − X′)�∗t (X′)D(X′ − X). (36)

The anomalous Green’s functions are no longer space trans-
lation invariant, so that the following Fourier transform is
required: The (time-independent) order parameter is also rep-
resented via Fourier components �∗(X) = ∑

P e−iP·r�∗(P).
The linear part Gor’kov equation (this time including nonlocal
parts) depending on the external momentum P reads:

1

g
�∗t (P) +

∑
ωp

D̃(ω,p)�t∗(P)D(ω,p − P). (37)

To find the coefficients of the gradient terms, one should
consider contributions quadratic in P from the expansion of
both �t∗(P) and D(ω,p − P). In view of the gap equation (23),
(24), the expansions of �t∗(P) cancel each other up to small
corrections of order T − Tc. So that multiplying by T t

i and
taking the trace

1

2
PkPl

∑
ωp

Tr
{
T t

i D̃(ω,p)T t∗
j D′′

kl(ω,p)
}
�∗

j , (38)

where D′′
kl(ω,p) ≡ ∂2D(ω,p)

∂pk∂pl
. Comparing this with the gradient

terms in the GL equation, (28), see Appendix B for details,
one deduces

uT = 28ζ (3)

15π2

v2
F �

2

T 2
c

; uL = 1

32
uT . (39)

Note the very small longitudinal coefficient, uL � uT . As we
shall see in the following section it has profound phenomeno-
logical consequences.

VI. BASIC PROPERTIES OF THE TRIPLET
SUPERCONDUCTOR

A. Ground-state structure and degeneracy

A ground state is characterized by three independent
parameters corresponding to three Goldstone bosons. The
GL energy is invariant under both the vector O(3) space
rotations, �i → Rij�j , and the superconducting phase U (1),
�i → eiχ�i . In the superconducting state characterized by
the vector order parameter � (|�| = �, energy gap) the U (1)
is broken: U (1) → 1, while the O(3) is only partially broken
down to its O(2). There are therefore three Goldstone modes.
Here we explicitly parametrize these degrees of freedom by
phases following Ref. [15]. Generally a complex vector field
can be written as

� = �(n cos χ+im sin χ ), (40)

where n and m are arbitrary unit vectors and 0 < χ < π/2,
see Fig. 1.

FIG. 1. A complex vector field can be written as � =
�(n cos χ+im sin χ ), where n and m are arbitrary unit vectors and
0 < χ < π/2.

Using this parametrization the homogeneous part of the
free-energy density, Eq. (27), takes the form

floc

N
=

{
α(T − Tc)�2 + 1

2
β1�

4

+ 1

2
β2[cos2(2χ ) + (n · m)2 sin2(2χ )]�4

}
. (41)

This form allows us to make several interesting obser-
vations. The crucial sign is that of β2. In previous studies
[15,22] only β2 > 0 (so-called phase A) was considered. In our
case however β2 < 0 and different ground-state configurations
should be considered. In phase B the minimization gives,
n = ±m. (The notation is coming from He3. The phase A
appears for β2 < 0, while the phase B at β2 > 0.).

We do not have a general argument for negative value of
this coefficient in possible generalizations of our microscopic
Hamiltonian. Our point here was to try to calculate the
coefficients in the vector case that, as far as we know, was
not done even for such a well-known system like He3. To have
an explicit calculation of that sort is valuable for estimates
of the values of the coefficients of real materials. Note two
different solutions so that the vacuum manifold is

� = �0neiχ . (42)

Here the range of χ was enlarged, −π/2 < χ < π/2, to in-
corporate n = ±m. The ground-state energy density therefore
is achieved at

�2
0 = α(Tc − T )

β1 + β2
= α(Tc − T )

β
. (43)

Mathematically the vacuum manifold in phase B is isomorphic
to S2 ⊗ S1/Z2. This determines the thermodynamics of the
superconductor very much in analogy with the scalar super-
conductor with β = β1 + β2. However, the collective modes,
the ac conductivity and the magnetic properties are markedly
different [23].
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FIG. 2. (Color online) Fluctuations of the order parameter in the
unitary gauge can be parametrized by the five real fields � =
�0(1 + ε)(R1 + iI1,R2 + iI2,1).

B. Collective excitation modes

Here the response of the superconductor in phase B to
an external perturbation, such as boundary or magnetic field,
is considered. The basic excitation modes are uncovered
by the linear stability analysis very similar to the so-called
Anderson-Higgs mechanism in field theory applied to (scalar
order parameter) superconductivity a long time ago [24].
Two basic scales, the coherence length (scale of variations
of the order parameter) and magnetic penetration depth (scale
of variations of the magnetic field), are obtained from the
expansion of the GL energy to second order in fluctuations
around superconducting ground state at zero field. In the
superconducting state the most convenient gauge is the unitary
gauge in which the U (1) phase of the order parameter is set
to zero, so that we are left with three massive vector potential
fields A1,A2,A3. Choosing the ground state as � = �0(0,0,1),
see Fig. 2, the order parameter in the unitary gauge can be
parametrized by five real fields

� = �0(1 + ε)(R1 + iI1,R2 + iI2,1). (44)

The spontaneous breaking of the space rotation symmetry
O(3) into its O(2) subgroup of rotations within the x-y plane
according to the Goldstone theorem leads to two gapless
modes Rα , α = 1,2. Due to the residual symmetry the Fourier
components of the fluctuation fields can be generally written
as combination of the radial and the tangential components:

Rα = (Rrkα + Rtεαβkβ)/k⊥; (45)

Iα = (Irkα + Itεαβkβ)/k⊥ (46)

aα = e∗u1/2
T

�c
(Arkα + Atεαβkβ)/k⊥,

(47)

a3 = e∗u1/2
T

�c
A3

with k⊥ = (k2
x + k2

y)
1/2

. The GL energy to quadratic order in
eight fluctuation fields η = {ε,Ir ,It ,Rr,Rt ,ar ,at ,a3},

f = N�2
0

2

∑
k

η∗
kMηk, (48)

TABLE I. Parameters of the various collective modes.

mode mixed �2 C2
⊥ C2

‖

Ir Ir ,ar 2|β2|�2
0 uL uT + (uT −uL)2

uT

ar Ir ,ar 1 0 λ2
T

a3 a3
uL

uT
λ2

T 0

It It ,at 2|β2|�2
0 uT uT − (uT −uL)2

uT

at It ,at 1 λ2
T λ2

T

Rt Rt 0 uT uT

ε ε 1
2 β�2

0 uL uT

Rr Rr 0 uT uL

decomposes into three independent sectors, where M is
dimensionless fluctuation matrix.

(i) Three massive fields Ir ,ara3 can mix due to kinetic
terms:

M1 =

⎛⎜⎜⎜⎜⎝
2�2

0|β2|+
+uT k2 + uk2

⊥
−i u

u
1/2
T

k3 0

i u

u
1/2
T

k3 1 + λ2
T k2

3 −λ2
T k3k⊥

0 −λ2
T k3k⊥ uL + λ2

T k2
⊥

⎞⎟⎟⎟⎟⎠, (49)

where λ2
T = �

2c2/8πuT e∗2N�2
0.

To order k2 the eigenvalues are,

E(k2)/V = N�2
0

(
�2 + C2

⊥k2
⊥ + C2

‖k
2
3

)
. (50)

The values of the gaps in the spectrum �2 and and corre-
sponding velocities in directions perpendicular and parallel to
the vector order parameter (taken to be z), C⊥,C‖ are given in
Table I.

(ii) The tangential massive, It ,at , sector

M2 =
(

2|β2|�2
0 + uT k2 i u

u
1/2
T

k3

−i u

u
1/2
T

k3 1 + λ2
T k2

)
. (51)

(iii) The Goldstone transverse mode Rt does not mix, M3 =
uT k2, so that E6/V = N�2

0uT k2.
(iv) Higgs and Goldstone radial collective modes ε,Rr form

a 2 × 2 matrix:

M4 =
(

uT k2 + uk2
⊥ uk⊥k3

uk⊥k3 uT k2 + uk2
3 + �2

0
β

2

)
. (52)

C. Coherence length and penetration depth for massive
collective modes

The six massive fields, ε,Iα and A with different longitu-
dinal and transversal characteristic lengths: l⊥ = C⊥/�; l‖ =
C‖/�, and the same for ξ and λ, see Table I.

This is different compared with the one component (singlet)
superconductor in two respects. First, the number of Higgs
modes is larger since in addition to the superfluid density
determined by ε, there are two additional components Ir and
It . Second, as mentioned above, since the superconducting
condensate is oriented, one has two different velocities. As
far as (massive) photon modes are concerned, the number of
modes remains the same but the anisotropy persists. Let us
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TABLE II. Screening lengths λ in directions perpendicular and
parallel to the order parameter direction (z).

mode λ2
⊥ λ2

‖

Ar 0 λ2
T

At λ2
T λ2

T

A3 λ2
L 0

start with magnetic excitations. The six screening lengths are
given in Tables II and III (in the physical units).

Here definitions of the coherence lengths (of fluctuation
of the superfluid density ε perpendicular and parallel to the
direction of the order parameter n), correlation lengths of the
relative weights between different components of the vector
order parameter (Ir , It ) and screening lengths (vector potential
A fluctuations):

ξ 2
⊥ = 2uL

β�2
0

; ξ 2
‖ = uT

uL

ξ 2
⊥;

l2
⊥ = uT

2|β2|�2
0

; l2
‖ = uL

uT

l2
⊥; (53)

λ2
T = �

2c2

8πuT e∗2N�2
0

, λ2
L = uT

uL

λ2
T .

In the isotropic superconductor one recovers the standard
formulas since uT = uL

Our calculation in the previous section for the Dirac
semimetal, see Eq. (39), demonstrate that both are quite
different since uL/uT = 1/32 � 1. This is obviously of
great importance for large magnetic field properties of such
superconductors and will be discussed below.

VII. MAGNETIC AND OPTICAL PROPERTIES

A. Strong magnetic fields: Is there an upper critical field Hc2?

In strong homogeneous magnetic field H (assumed to be
directed along the z axis) superconductivity typically (but
not always, see an example of the p-wave superconductor
that develops flux phases [23]) disappears at certain critical
value Hc2. This bifurcation point is determined within the
GL framework by the lowest eigenvalue of the linearized GL
equations. This is an exact requirement of stability of the
normal phase [14,25]. The linearized GL equation Eq. (28)
reads:[

(α(Tc − T ) − uTD2)δij − u

2
{Di ,Dj }

]
�j = 0, (54)

TABLE III. Coherence lengths characterizing different collective
modes ξ,l.

mode perpendicular parallel (z )

ε ξ 2
⊥ ξ 2

‖
Ir l2

‖ l2
⊥(1 + u2/u2

T )

It l2
⊥ l2

⊥(1 − u2/u2
T )

FIG. 3. (Color online) Superconductivity arises from the normal
state when the order parameter is formed in direction perpendicular
to the magnetic field.

where coefficients are in Eq. (39), and u = uL − uT . We
use the Landau gauge, Ax = Hc2y; Ay = Az = 0. Assuming
translation symmetry along the field direction, ∂z�i = 0, the
operators of the eigenvalue problem depend on x and y only.

Since we have three components of the order parameter,
there are three eigenvalues. It is easily seen from Eq. (54)
that the z component of the order parameter �z parallel to the
external field direction is independent of the other two, �x,�y ,
leading to the ordinary Abrikosov value:

− uTD2�z = −α(Tc − T )�z → H
‖
c2 = �0α(Tc − T )

2πuT

.

(55)

To avoid confusion with customary notations for layered
materials (such as high-Tc cuprates), the material that is
modeled here is isotropic and parallel, perpendicular and refer
to the relative orientation of the magnetic field to the vector
order parameter rather than to a layer. The orientation of the
order parameter in isotropic material considered here, due to
degeneracy of the ground state, is determined by the external
magnetic field as we exemplify next.

The two remaining eigenvalues involving only the order
parameter components �x and �y perpendicular to the field
(see Fig. 3) are obtained from diagonalizing the Hamiltonian:

H
(

�x

�y

)
= −α(Tc − T )

(
�x

�y

)
;

(56)

H = −
(

uTD2
y + uLD2

x
u
2 {Dx,Dy}

u
2 {Dx,Dy} uTD2

x + uLD2
y

)
.

This nontrivial eigenvalue problem fortunately can be solved
exactly, see Appendix C. The lowest eigenstate being a
superposition of just two lowest even Landau levels, |0〉 and
|2〉 are given. The lowest of these eigenvalues is

e∗H⊥
c2

�c

⎛⎝ 3
2 (uT + uL)

−
√

3
(
u2

T + u2
L

) − 2uT uL

⎞⎠ = α(Tc − T ). (57)

The corresponding critical field H⊥
c2 (perpendicular refers

to the order parameter direction with respect to that of the
magnetic field, see Fig. 3) is

H⊥
c2 = (

3
2 (1 + r) −

√
3r2 + 3 − 2r

)−1
H

‖
c2. (58)
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FIG. 4. (Color online) Magnetic phase diagram of the vector
superconductor. Ratio of two upper critical fields,H⊥

c2/H
‖
c2, is plotted

as function of r = uT /uL. The parallel phase is separated from two
perpendicular phases (dashed lines). At two values rc and 1/rc the
parallel upper critical field diverges.

It is always larger than H
‖
c2, and therefore is physically

realized. The upper field H⊥
c2 becomes infinite at r ≡ uL/uT =

rc and r = 1/rc, where rc = (13 − 4
√

10)/3 � 0.117. The
magnetic phase diagram, Fig. 4, therefore has two transition
lines with reentrant perpendicular phase. This means that for
superconductivity persists at any magnetic field like in some
p-wave superconductors. The two critical fields as function of
r are given in Fig. 4.

It was found in Sec. IV that for the simplest Dirac
semimetal, r = 1/32 < rc see Eq. (39). Thus there is no upper
critical field in this case. Of course, different microscopic
models that belong to the same universality class, might have
an arbitrary r . In any case the Abrikosov lattice is expected
to be markedly different from the conventional one and even
from the vector order parameter model studied in Ref. [15].

B. Dissipative dynamics

The set of the GL equations corresponding to this energy
are obtained by variation with respect to �∗

j and Ai . The first
is the time-dependent GL equation (the covariant derivative
is replaced by partial since in a superconductor the scalar
potential can be taken to be zero on the mesoscopic scale):

− �∂t�i = δF

δ�∗
i

. (59)

This should be supplemented by the Maxwell equation includ-
ing the normal metal contribution the the current Jn = J − Js ,
J s

i = ie∗N
�

(uT �∗
jDi�j + u�∗

jDj�i) + c.c. This determines
the dynamics of the vector potential:

σn

c
∂tAi = J s

i − c

4π
(∂2δij − ∂i∂j )Aj = Ji. (60)

In the small fluctuations approximation the dominant
role is played by the two Goldstone modes, Rt,Rr , due to
spontaneous breaking of the 3D rotation symmetry. The Rt

mode is still isotropic, while Rr is not. Neglecting the massive
excitations the dissipative dynamics of the diffusion type is

governed by

∂tRt = DT k2Rt ;
(61)

∂tRr = (
DT k2

⊥ + DLk2
3

)
Rr,

where DT,L = N
�
uT,L. The diffusion coefficient of this equa-

tion is anisotropic and is discussed in Sec. VIII. This
would lead to increase in thermal conductivity inside the
superconducting state even at low temperature.

C. ac conductivity

In external ac field represented by (no spatial dispersion),
A = ic

ω
E(ω)eiωt , one obtains in linear response

Ji = −2ie∗2N�2
0

ω�2
(uT Ei + uE3δ3i) + σnEi. (62)

Therefore the conductivity tensor reads:

[σ (ω)]ij =
⎛⎝σn − σ s

T 0 0
0 σn − σ s

T 0
0 0 σn − σ s

L

⎞⎠, (63)

where σ s
T ,L(ω) = 2ie∗2N�2

0
ω�2 uT,L. The ac conductivity this is dif-

ferent for the order parameter and the perpendicular directions.
One of the interesting consequences of this phenomenon is
rotation of the polarization of microwave that passes the DSM
film.

D. Rotation of the polarization of the microwave

The material becomes optically active, i.e., the polarization
of the electromagnetic wave rotates. The dispersion relation
is:

− ic2k2

4πω
σ−1(ω)B = B. (64)

The perpendicular to the order parameters are eigenvectors
with eigenvalue − ic2k2

4πω(σn−σ s
T ) , while the third eigenvector

(0,0,1) has the eigenvalue is − ic2k2

4πω(σn−σ s
L) . Assume that the

incident electromagnetic wave described on the surface of
DSM by the magnetic field B0 is perpendicular to the order
parameter direction taken as z (see Fig. 5).

Without loss of generality it can be taken as x [due to the
residual O(2) rotation symmetry]. The Fourier component of

FIG. 5. (Color online) The polarization vector of the incident
beam (x direction) rotates while passing a film of thickness d by
angle φ tan φ = |Bz(d)/By(d)| = exp [(λ−1

T − λ−1
L )d].
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the magnetic field in the y-z plane are

By = B0 exp(ik(2)x)
(65)

Bz = B0 exp(ik(3)x).

The complex wave vectors are

k(2) =

√√√√1 +
√

λ4
T /δ4 + 1

2

(
− 1

λT

+ i
λT

δ2

)
(66)

k(3) =

√√√√1 +
√

λ4
L/δ4 + 1

2

(
− 1

λL

+ i
λL

δ2

)
.

Here the screening length is defined as usual δ =
(c/4πωσn)1/2.

The penetration of the microwave radiation into the sample
surface demonstrates differences for ac component parallel and
perpendicular to the direction of the order parameter resulting
in effective rotation of the incident wave vector like at Faraday
effect.

VIII. DISCUSSION AND CONCLUSIONS

A. Vector nature of the order parameter

The physical properties of the triplet superconductivity
appearing in 3D Dirac semimetals were considered. Starting
from the microscopic model of the isotropic Dirac semimetal,
the Ginzburg-Landau energy for this field is derived using
the Gor’kov technique. The properties of the triplet supercon-
ductor phase of the Dirac semimetal has extremely unusual
features that we would like to associate qualitatively with
the characteristics of the Cooper pair. The superconducting
state generally is a Bose-Einstein condensate of composite
bosons—Cooper pairs, classically described by the Ginzburg-
Landau energy as a functional of the order parameter. In the
present case the Cooper boson is described by a vector field
�i(r). In this respect it is reminiscent to phonon and vector
mesons in particle physics [24].

Vector fields generally have both the orbital and internal
degrees of freedom often called polarization. The internal
degree of freedom might be connected to the valley degree
of freedom of constituents of the composite boson. We have
provided evidence that the Cooper pair in DSM has finite
orbital momentum, albeit, as will be shown shortly, the spin
magnetic moment is zero. Microscopically the unusual nature
is related to the presence of the valley degeneracy in Dirac
semimetal. While in a single-band superconductor the Pauli
principle requires a triplet Cooper pair to have both odd angular
momentum and spin, it is no longer the case in the Dirac
semimetal.

A massive bosonic vector field in isotropic situation (the
case considered here) generally have distinct transversal and
longitudinal polarizations (massless fields like photons in
dielectric do not possess the longitudinal degree of freedom).
The results for collective modes in triplet superconductor in
DSM demonstrate pronounced disparity between dispersion of
various polarizations, see Table I. In particular we have found
sound velocity of the two Goldstone modes and, screening
lengths of three gapped photon modes and three coherence

lengths of the other (Higgs) gapped modes. These all have an
impact on transport, optical and magnetic properties of these
superconductors.

B. Estimates of the characteristics of the collective modes and
Faraday effect in a typical Dirac semimetal

Substituting the values of parameter of the vector GL
equation found in Sec. IV into formulas for various collective
modes, coherence lengths, described in Sec. VI, one obtains,

ξ 2
0⊥ = 7ζ (3)

80π2

v2
F �

2

T 2
c

; ξ 2
0z = 32ξ 2

⊥;

l2
0⊥ = 32ξ 2

⊥; l2
0z = ξ 2

⊥; (67)

λ2
0T = 3π

32

�
3c2vF

e∗2μ2
, λ2

0L = 32λ2
0T ,

where ξ 2
⊥(T ) = ξ 2

0⊥/(1 − T/Tc), etc.
For a typical DSM one estimates the Fermi velocity and

chemical potential [1] vF = c/200, μ = 0.2 eV, and with the
expected critical temperature [7,10] Tc = 5 K, one obtains for
ξ0⊥ = 230 nm and λ0T = 220 nm.

Let us estimate the characteristics of the two Goldstone
modes, arising in the triplet superconducting state due to
spontaneous breaking of the rotational O(3) symmetry. The
isotropic transverse mode Rt defined in Sec. III is isotropic and
its dynamics is described by Eq. (61) with diffusion constant
DT = NuT /�, while the anisotropic mode Rr involves both
the transverse and the longitudinal constant that is different,
DL = NuL/�. To estimate these, let us exploit the relation
[14] the time constant as � = π�N

8Tc
. Thus

DT = 25 × 7ζ (3)

15π3

v2
F �

Tc

= 2 × 104 cm2

s
, (68)

DL = 7ζ (3)

15π3

v2
F �

Tc

= 620
cm2

s
. (69)

These considerations were made for superconductor without
significant pinning—disorder on the mesoscopic scale. Re-
cently the ac response of the disordered superconductor was
utilized to probe Goldstone modes [26]. We have demonstrated
that they are abundant in the triplet DSM superconductor.
Therefore it would be interesting to look for effects of the
Goldstone modes including damping resulting in strong sound
absorption in these systems. For experimental verification and
observation of the Higgs collective modes complex terahertz
transmission and tunneling density of states might be a
useful tools [27]. Heat capacity measurements demonstrating
a significant increase is another method to fix the collective
modes effect.

We have calculated the ac conductivity of DSM, see
Eq. (64), and applied it to describe an intriguing effect of
optical activity of DSM. According to Eq. (66), the polarization
vector of the incident beam rotates while passing a film of
thickness d by, see Fig. 5,

tan φ = |Bz(d)/By(d)| = exp
[(

λ−1
T − λ−1

L

)
d
]
, (70)

under the assumption the skin depth δ = (c/4πωσn)1/2 is much
larger than both λT and λL. In particular for λL = 32λT ,λT =
220 nm, and d = 1 mm, φ → π/2 significantly deviation from
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the initial π/4 value. Let us stress that the effect is due to the
difference between the two penetration depths.

C. DSM superconductor under constant magnetic field

Several new features appear when an external field is
applied. The Ginzburg-Landau model was used to determine
upper magnetic field Hc2. The magnetic phase diagram is
presented in Fig. 4. For r = uL/uT < 1 and r > 11/3 it
turns out that the order parameter of the texture orients
itself perpendicular to the field direction. In between 1 <

r < 11/3 the reorientation phase transition takes place. We
have shown that the upper field becomes infinite for r = rc

or 1/rc, where rc = (13 − 4
√

10)/3 � 0.117. In particular it
is obeyed within our microscopic model. This means that in
such material superconductivity persists at any magnetic field
like in some p-wave superconductors. The expression for the
Hc2 for uL/uT > 0.117 is given by Eq. (58). Experimentally
the phases can be identified by measuring attenuation of
electromagnetic waves. The attenuation is different for linear
polarization waves with respect to direction of the order
parameter, Eq. (66).

The vortex physics of strongly type II triplet supercon-
ductors of this type is very rich and some of it has already
been investigated in connection with heavy fermion and
other superconductors suspected to possess p-wave pairing.
In particular, their magnetic vortices appear as either vector
vortices or so-called skyrmions [15]—coreless topologically
nontrivial textures. The magnetic properties like the mag-
netization are very peculiar and even without a magnetic
field the system forms a spontaneous flux state. The material
therefore can be called a ferromagnetic superconductor. The
superconducting state develops weak ferromagnetism and a
system of alternating magnetic domains [22]. It was noted
[15] that the phase is reminiscent to the phase B of superfluid
He3 [14] (with an obvious distinction that the order parameter
in the later case is neutral rather than charged and tensorial
rather than vectorial).

Since the prediction of the FFLO effect [14] in low-Tc super-
conductors it is well known that at very high magnetic fields
the direct spin-magnetic field coupling on the microscopic
level might not be negligible. The singlet channel Cooper pair
is effectively broken by the splitting since the spins of the two
electrons are opposite (Pauli paramagnetic limit). It is not clear
what impact it has on Dirac semimetals. If the impact is large
it could be incorporated as an additional paramagnetic term
in the GL energy. In an isotropic Dirac superconductor one
has only one possible term in the GL energy term linear in
paramagnetic coupling and consistent with symmetries:

Fpar = Nμp

∫
r
i(�∗×�) · B, (71)

where μp is the effective spin of the Cooper pair sometimes
called Zeeman coupling [15,25]. The single particle Hamilto-
nian in magnetic field has the Pauli term μB� · B, where the
Bohr magneton, μB = e�/2 mc, determines the strength of the
coupling of the spin to magnetic field, with m being the free
electron mass. The direct calculation, see Appendix A, shows
that μp = 0.
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APPENDIX A: LOCAL TERMS IN GL
FREE ENERGY

1. Critical temperature calculation

Starting from equation Eq. (23) the angle integrations result
in (for μ 
 TD,Tc)

1

g
= T

∑
np

μ2 + ω2
n

ω4
n + (

v2
F p2 − μ2

)2 + 2ω2
n

(
v2

F p2 + μ2
)

= μ2

12π2�3v3
F

∫ TD

ε=−TD

tanh (ε/2T )

ε

≈ μ2

6π2�3v3
F

log
2TDγE

πTc

, (A1)

where ε = vF p − μ. See the last (BCS) integral in Ref. [20].

2. Cubic terms coefficients calculation

To fix the two coefficients, β1 and β2 in Eq. (28) we use
only two components. The particular case j = k = l = 1 (the
coefficient of ψ∗2

1 ψ1) gives after angle integration

N (β1 + β2) = 2T

15π2�3

∑
n

∫ ∞

p=0
S(p,n), (A2)

where

S(p,n)

= v2
F p2

[
v4

F p4 + 10v2
F p2

(
ω2

n − 5μ2
) − 15

(
μ2 + ω2

n

)2][
v4

F p4 + 2v2
F p2

(
ω2

n − μ2
) + (

μ2 + ω2
n

)2]2 .

Performing finite integration (the upper bound on momen-
tum, μ + TD , can be replaced by infinity), one obtains

N (β1 + β2) = 8μ2

15π4T 2v3
F �3

s3, (A2)

where the sum is

s3 =
∑
n=0

1

(2n + 1)3 = 7ζ (3)

4
. (A3)

Similarly taking j = l = 2,k = 1 (the coefficient of �∗2
2 �1)

gives after the angle integration

Nβ2 = 2T

15π2�3

∑
n

∫ ∞

p=0

v2
F p2

[
7v4

F p4 + 10v2
F p2

(
ω2

n + 3μ2
) + 15

(
μ2 + ω2

n

)2][
v4

F p4 + 2v2
F p2

(
ω2

n − μ2
) + (

μ2 + ω2
n

)2]2

= − 4μ2

15π4v3
F �3T 2

s3. (A4)

resulting in Eq. (34).
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3. Effect of the Pauli interaction term

The single-particle Hamiltonian in magnetic field is

K̂ = −ivF �D·α − μ + μB� · B, (A5)

In order to fix the coefficient of the paramagnetic term linear
in both the order parameter and Pauli coupling it is enough to
expand the linearized Gorkov equations Eq. (31) to the first
order in the spin density. Normal Green’s functions have the
following corrections:

DZ ≈ D − μBD(� · B)D;
(A6)

D̃Z ≈ D̃ + μBD̃(�t · B)D̃.

The Pauli term in Gor’kov equation (after multiplying by T t
i

and taking the trace as usual), Eq. (28), therefore is obtained
from expansion of Eq. (31),∑

ωp

Tr{TiD̃�∗D} = −iμZεijk�
∗
jBkN = μBBZ

ijk�
∗
jBk,

BZ
ijk =

∑
ωp

Tr
{
TiD̃

(
�t

kD̃T ∗
j − T ∗

j D�k

)
D

}
,

(A7)

The bubble sum is directly evaluated and vanishes BZ
ijk = 0.

APPENDIX B: CALCULATION OF GRADIENT TERMS
IN THE GL

Rotational invariance allows to represent the sum in Eq. (38)
terms of coefficients uT and uL:

−N [uT (P 2δmj − PmPj ) + uLPmPj ]

= PkPl

∑
ωq

Tr
{
T t

mD̃(ω,q)T t∗
j D′′

kl(ω,q)
}
, (B1)

where

D′′
ij = 2

(q2 − (iω + μ)2)2 {qjαi + qiαj

+ δij (iω + μ + α · q) + 2qiqjD}. (B2)

In particular

NuL = −
∑
ωp

Tr{TzD̃(ω,p)T ∗
z D′′

zz(ω,p)}

= μ2

15π4T 2vF �
s3

= 7ζ (3)

60π4

μ2

T 2vF �
= 7ζ (3)(vF �)2N

120π2T 2
(B3)

and

NuT = −
∑
ωp

Tr{TxD̃(ω,p)T ∗
x D′′

zz(ω,p)} = 32uL. (B4)

APPENDIX C: COLLECTIVE MODES

Here details of the calculation of free energy in harmonic
approximation are given. The expansion of order parameter

Eq. (44) to quadratic order is

�/�0=(1+ε)(δ1,δ2,1)=(0,0,1) + (δ1,δ2,ε) + (δ1ε,δ2ε,0).

(C1)

The gradient terms that do not involve the vector potential A
are:

F
(1)
grad

�2
0

= uT [∂jRα∂jRα + ∂j Iα∂j Iα + (∂j ε)2]

+u{∂1R1∂1R1 + ∂1I1∂1I1 + ∂2R2∂2R2 + ∂2I2∂2I2

+ (∂3ε)2 + 2((∂2R1)(∂1R2) + (∂2I1)(∂1I2)

+ (∂αε)(∂3Rα))}. (C2)

The terms involving A read

F
(2)
grad

�2
0

= 2
e∗u
�c

(∂3Iα)Aα +
(

e∗

�c

)2(
uT A2 + uA2

3

)
. (C3)

Potential terms result in

Fpot

�2
0

= �2
0

{
β1 + β2

2
ε2 − 2β2

(
I 2

1 + I 2
2

)}
, (C4)

while the magnetic energy is:

Fmag

�2
0

= �
2c2

8πe∗2N�2
0

A∗
i (k2δij − kikj )Aj . (C5)

The fluctuation matrix M in Eq. (48) thus was constructed.

APPENDIX D: EXACT SOLUTION FOR UPPER CRITICAL
MAGNETIC FIELD

In this Appendix the matrix H defined in Eq. (56) deter-
mining the perpendicular upper critical field is diagonalized
variationally.

1. Creation and annihilation operators

Using Landau creation and annihilation operators in units
of magnetic length e∗B

c
= l−2 for the state with kx = 0

(independent of x), so that covariant derivatives are

Dx = ∂x + iy = iy = i√
2

(a + a+);

(D1)
Dy = ∂y = 1√

2
(a − a+).

In terms of these operators the matrix operator H takes a form:

H = uT + u

2
+ V;

V11 = 2uT a+a + u

2
(a2 + a+2 + 2a+a);

(D2)
V12 = V21 = iu

2
(a+2 − a2);

V22 = 2uT a+a − u

2
(a2 + a+2 − 2a+a).

The exact lowest eigenvalue is a combination of two lowest
Landau levels. Indeed applying the operator V on a general
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vector on the subspace gives

V
(

α|0〉 + β|2〉
γ |0〉 + δ|2〉

)
=

(
u√
2

(iδ − β)|0〉 −
(

u

(
α√
2

+ iγ√
2

+ 2β

)
+ 4uT β

)
|2〉 + u

2
(−β − iδ)|4〉 + u√

2
(iβ + δ)|0〉

+
(

u

(
− iα√

2
+ γ√

2
− 2δ

)
− 4uT δ

)
|2〉 + u

2
(−iβ + δ)|4〉

)
. (D3)

For δ = iβ, higher Landau levels decuple and one gets eigenvalue equations∣∣∣∣∣∣
−v −√

2u 0
− u√

2
−4uT − 2u − v − iu√

2

0 ui
√

2 −v

∣∣∣∣∣∣ = 0, (D4)

resulting in three eigenvalues of H

h(1) = uT + u/2, h(±) = 3uT + 3

2
u ±

√
4u2

T + 4uT u + 3u2.
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