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ABSTRACT: This study aims to investigate strain rate effect on the mechanical
behaviors of nylon 6-clay nanocomposites. Both dry and wet nylon 6-clay
nanocomposites are examined in this study. To determine the strain rate effect,
the nylon 6 nanocomposites with 5wt% loading of the organoclay are tested in
compression at different strain rates. For strain rates less than 1/s, the experiments
are conducted using a hydraulic MTS machine. However, the high strain rate tests
are performed using a split Hopkinson pressure bar (SHPB). To establish reliable
dynamic stress and strain curves for the nanocomposites, a pulse-shaper technology
is employed in the SHPB tests. Experimental observations reveal that for dry
nanocomposites, the linear portions of the stress and strain curves are not affected
substantially by the strain rates, but the yielding stresses increase with the increment
of the strain rates. On the other hand, for the wet nanocomposites, the stress and
strain curves are almost nonlinear demonstrating significant stiffening behaviors as
the strain rates increase. This stiffening behavior is continuous until the stress and
strain curves are almost linear at the strain rate of 500/s. Comparison of nylon 6—clay
nanocomposites and unfilled nylon 6 indicates that the supplement of 5wt%
organoclay in the dry nylon 6 can enhance the Young’s modulus to 32% within the
tested strain rate ranges. Moreover, for the wet nylon reinforced with organoclay, the
increment of Young’s modulus can be achieved up to 43%.

KEY WORDS: split Hopkinson pressure bar, nylon 6, nanocomposites, strain rate
effect, moisture effect.

INTRODUCTION

OMPOSITES REINFORCED WITH nanoclay platelets have been of great interest to many
researchers [1], with the latest developments in nanotechnology. The nanoclay platelet
is an ultrathin (1 nm) silicate film with lateral dimensions up to 1 pum. Without special
processing, the platelets are held together by weak ionic bonds into clay tactoids. Through
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the ion exchange process, the sodium ions on the surfaces of the platelets are replaced with
organic cations, which can improve the interfacial adhesion between the polymer and the
platelet. After an appropriate process, such as polymerization [2] and melt compounding
[3], the aggregated platelets can be exfoliated and uniformly dispersed in the polymer.
Depending on the degree of exfoliation, three categories of nanocomposites are generated,
i.e., tactoid, intercalated, and exfoliated [4]. Toyota research center carried out a
pioneering study on synthesizing nylon 6—clay nanocomposites using the polymerization
process. The increments of tensile strength, modulus, and heat distortion temperature
relative to pure resin were reported in [5,6]. Cho and Paul [3] demonstrated the
preparation of nylon 6—organoclay nanocomposites through the direct melt compounding
process using a conventional twin-screw extruder. They found that the relative stiffness
and strength of the materials prepared by melt compounding were quite comparable with
those of the nanocomposites formed by in situ polymerization. A similar process for the
fabrication of nanocomposites using a twin-screw extruder was employed by Liu et al. [7].
They found that the nanocomposites were superior to nylon 6 in terms of strength and
modulus. Tsai and Sun [8] developed an analytical approach on the load transfer efficiency
of organoclay platelets in a polymer matrix using a shear lag model with an appropriate
representative volume element (RVE). They demonstrated that well dispersed and
exfoliated platelets in the polymer matrix could significantly enhance the load transfer
efficiency. It is to be noted that in the above studies, the experimental results of
nanocomposites were obtained based on quasi-static tests.

However, polymeric materials, in general, exhibit strain rate sensitivity when subjected
to dynamic loading [9,10]. The high strain rate properties of the polymers, Epon 828—
T-403 and PMMA, were characterized by Chen et al. [9] using a split Hopkinson pressure
bar (SHPB) and higher compressive strengths were observed in their dynamic compression
tests. The experimental results for a variety of polymers at different strain rates can be
found in Walley et al. [10]. Due to the rate-dependent characteristic of the polymeric
material, the associated mechanical behaviors of the polymer-based nanocomposite
may alter in accordance with different loading rates. However, so far, only few studies
concerning the strain rate effect on the organoclay—polymer nanocomposites were
reported.

The objective of this study is to conduct systematic investigation on the rate-dependent
behaviors of nylon 6—clay nanocomposites. To demonstrate the strain rate effect, the
nanocomposite samples were tested in compression at different strain rates. For low strain
rates, the experiments were conducted on an MTS machine, while the high strain rate tests
were performed using the SHPB. Based on the experimental data, the constitutive relations
of the nanocomposites at various strain rates were generated and from which, the Young’s
modulus were determined. In addition, for comparison, unfilled nylon 6 was tested in the
same manner and the effects of the organoclay on the mechanical responses of the
nanocomposites were addressed.

SPECIMEN PREPARATION

The nylon 6—clay nanocomposites (RTP 299AX) and unfilled nylon 6 (RTP 200A) in
the form of pellets are available commercially from RTP Company, USA. According
to the information provided by the manufacturer, the nanocomposite pellets containing
Swt% organoclay are prepared through the melt compounding process [11]. Both unfilled
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nylon 6 and nylon 6-clay nanocomposite pellets purchased from RTP Company were
dried in a vacuum oven at 90°C for 8 h to eliminate the moisture content, if any, and then
injection molded into the cylindrical specimens (10 mm long and 10 mm diameter) for
compression tests. The barrel temperatures in the injection molding machine were 245,
260, and 255°C from hopper to die, and the mold temperature was 120°C. The injection
pressure and the holding pressure were 11.27 and 13.72 MPa, respectively. All specimens
were polished using a lapping machine with 25 um aluminum oxide powder to ensure
smooth and flat loading surfaces.

It is to be noted that since nylon 6 is hygroscopic, even nylon 6—clay is prone to absorb
moisture well and the corresponding mechanical properties could be affected dramatically
by the moisture content. As a result, two environmental conditions, i.e., dry condition and
wet condition were accounted for in the preparation of the specimens. For dry condition,
the specimens were kept in a vacuum oven at a temperature of 45°C to prevent any
moisture absorption. However, for wet condition, the specimens were immersed in water
kept at 45°C for 20 days to accelerate the moisture absorption. The moisture content
(Wt%) was recorded daily and the results are shown in Figure 1. It is shown that after
twenty days, the moisture contents were almost saturated and unfilled nylon 6 specimens
absorbed more water than the nylon 6—clay nanocomposite specimens, which illustrates
that the presence of organoclay retards water absorption capacity of the nylon 6.

The degree of exfoliation and dispersion of the organoclay in the nanocomposites were
evaluated by X-ray diffraction (XRD) and transmission electron microscope (TEM).
For XRD examination, the neat nylon 6 and nylon 6—clay nanocomposite films with
0.8 mm thickness and 10 mm diameter were fabricated from the cylindrical specimen using
precision section saw. The XRD measurement was conducted using a BEDEDI
diffractometer with an X-ray wavelength of 1.54A at a scanning rate of 0.08°/s from
0.3 to 8°. Figure 2 shows the XRD patterns of the nylon 6—clay nanocomposites and the
neat unfilled nylon 6 from which the d-spacing of the clay platelets in the nanocomposites
was estimated as around 9nm. For TEM analysis, samples of 100 nm thickness were
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Figure 1. The moisture content of wet nylon 6 and wet nylon 6-clay nanocomposites.
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Figure 3. TEM micrographs of nylon 6-clay nanocomposites: (a) 100,000 and (b) 50,000.

prepared using a microtome in cryogenic conditions. The TEM observations of nylon 6—
clay nanocomposites were carried out by a JEOL 200CX with an acceleration voltage
of 120KV. The micrographs with 100,000 and 50,000 magnifications are illustrated,
respectively, in Figure 3. The figure shows that most of the platelets distributed in the
matrix are in the form of intercalated clusters and the interlayer spacing is around 7-9 nm
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which is compatible with the results of XRD. Moreover, there are some layers of plate-
lets locally exfoliated and randomly dispersed in the sample. As a result, the material
investigated in this study is a combination of intercalated and partially exfoliated
nanocomposites.

EXPERIMENTAL PROCEDURE

To investigate the strain rate effect, nylon 6-—clay nanocomposites were tested in
compression at various strain rates. High strain-rate experiments were conducted using the
SHPB. However, for low strain rates, the tests were carried out on the hydraulic MTS
machine.

High Strain Rate Tests

High strain rate compression tests were performed on nylon 6 and nylon 6-clay
nanocomposites using the SHPB, which is an effective but simple apparatus for
establishing the dynamic constitutive relations [12]. Figure 4 demonstrates a typical
two-gage configuration of a SHPB, where gage A measures both the incident and the
reflected pulses in the incident bar, while gage B measures the transmitted pulse. At each
of these locations, a pair of diametrically opposed gages were mounted to compensate the
bending effect that resulted from the eccentric impact of the striker bar on the incident bar.
The SHPB setup used in this study was made of hardened steel bars with a diameter of
13.3mm. The striker bar had a length of about 90 mm, and the incident bar and the
transmission bar were 91 and 56 cm long, respectively. During the tests, the strain-gaged
cylindrical specimen was sandwiched between the incident bar and the transmission bar.
While the impact pulse propagates along the pressure bars and the specimens, the
corresponding strain signals measured from the gages were converted into voltage signals
by Wheatstone bridge circuits and then amplified using conditioning amplifier. Finally,
the signals were recorded by the digital oscilloscope with a sampling rate of 10 MHz.

It is to be noted that there are two different bar systems, i.e., steel bar and aluminum
alloy (6061-T6) bar, employed for the high strain rate tests. The selection of the bar system
is based on the relative magnitudes of the pulse signals propagating on the transmission
bar to the surrounding noise. For dry nylon 6 and nylon 6-clay samples, since the
amplitudes of the gage signals on the steel transmission bars are high enough to be
recognized, the experiments were conducted using a steel SPHB. On the other hand, for
the wet specimens with lower mechanical impedances, the transmitted gage signals on the

Specimen
Pulse shaper  Gage A Gage B
I {
— = =
Striker bar Incident bar Transmission bar  Throw-off bar

Figure 4. The split Hopkinson pressure bar apparatus.
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steel bars are so weak that the noise prevents the proper interpretation of the measured
signals. Therefore, to effectively enhance the amplitude of the gage signals on the bars, an
aluminum alloy SHPB [8] with the characteristic of lower stiffness was employed instead
of steel SHPB for testing the wet samples. A pulse-shaper technique was utilized to
produce a gently rising loading pulse which would facilitate the stress equilibrium and
homogeneous deformation of the specimens during the high strain rate tests. As a result,
reliable stress and strain curves, especially in the small strain range, can be extracted from
the SHPB tests [13,14]. This pulse shaping can be achieved using a piece of soft material
inserted between the striker bar and the incident bar. In this study, 3 mm thick copper and
Smm thick nylon 6 disks were selected as a pulse shaper for steel and aluminum bar
systems, respectively.

The typical strain gage signals measured from the incident, transmission bars and the
specimen, respectively, of dry nylon 6-clay nanocomposites are shown in Figure 5. The
excitation voltages of the Wheatstone bridge circuits for the gages on the bars and for the
specimen gage were 5 and 3V, respectively, and the corresponding amplifications were set
to be 1000 for the gages on the bars and 25 for the specimen gage. Using the Hopkinson
bar theory [12], the contact stress Py between the incident bar and the specimen, and P»,
the contact stress between the specimen and the transmission bar, can be extracted
from the recorded pulse data. The contact stresses P; and P, of the dry nylon 6-clay
nanocomposite specimen is shown in Figure 6. It is to be noted that P; and P, almost
coincide with each other except that P; exhibits greater oscillations than P,. Hence,
we took P, to calculate the compressive stress in the specimen to generate the dynamic
stress—strain curve.

Conventionally, the strain history of the specimen during loading can also be calculated
using the Hopkinson bar formula with expressions of displacements at the ends of the bars
derived from the strain responses recorded at gage A and gage B [12]. In the present study,
the strain response of the specimen was also measured using strain gage directly mounted
on the specimen. Figure 7 shows the comparison of the strain histories for the
nanocomposite specimen obtained using the Hopkinson bar formula and the strain gage
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Figure 5. Strain gage signals recorded in the SHPB test of dry nylon 6-clay nanocomposites.
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Figure 6. Time histories of the contact stresses of dry nylon 6-clay nanocomposites in the SHPB tests.
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Figure 7. Strain history obtained from the Hopkinson bar formula and the specimen gage signal for dry
nylon 6-clay nanocomposites in the SHPB tests.

directly mounted on the specimen, respectively. It is evident that the strain history
calculated based on the Hopkinson bar theory deviates from that directly measured from
the specimen. In this study, the strain history directly measured from the specimen was
adopted for the determination of the strain rate and for the generation of the dynamic
stress—strain curves as well. The average strain rate measured in the steel SHPB tests was
800/s. Similarly, the high strain rate experiments were performed on the wet specimens
using an aluminum alloy SHPB. The stress curves were calculated based on the contact
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stress between the specimen and the transmission bar and the corresponding strain curve
was obtained from the strain gage adhered on the specimen. The average strain rate in the
aluminum SHPB test for the wet samples was around 500/s.

Low Strain Rate Tests

For strain rates less than 1/s, the compression tests were performed on nylon 6 and
nylon 6—clay nanocomposites using the hydraulic MTS machine. The uniaxial compressive
loading was applied on the cylindrical specimens through the end surfaces, as shown in
Figure 8. For consistency, the samples used for the low strain rate tests were the same as
those in the SHPB tests. A self-adjusting device was applied to eliminate potential bending
moments and also to ensure the specimen to be in full contact with the loading surfaces.
During the tests, the contact surfaces of the specimens and the loading fixture were
lubricated to reduce the contact friction (Figure 8).

Two different nominal strain rates of 0.0001/s and 0.1/s were performed at stroke
control mode. The nominal strain rate is the stroke rate of the loading frame divided by
the original specimen length. The corresponding true strain rates were measured using
strain gages directly mounted on the specimens. The applied load, displacement, and gage
signals for each test were recorded using LabVIEW. Figure 9 shows the nominal strain
curve and the true strain curve for a dry nylon 6—clay specimen tested at the nominal strain
rate of 0.0001/s. It is evident that the true strain curve is quite different from the nominal
strain curve and thus the true strain rate is also different from the nominal strain rate.
This discrepancy could be ascribed to the use of the self-adjusting device (Figure 8) for the
compression test. In this study, the true strain curve was adopted for the generation
of the stress and strain curves and for the calculation of the axial strain rate as well. For
the experiments conducted at the nominal strain rate of 0.0001/s, the average true strain
rate measured was 8 x 107°/s. In addition, the average true strain rate was 8 x 107%/s
corresponding to the tests at the nominal strain rate of 0.1/s.

Specimen
Hardened steel /

Self-adjusting
device

gy

Applied displacement

Figure 8. Apparatus for low strain rate tests.
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Figure 9. Strain history obtained from stroke and strain gage of dry nylon 6—clay nanocomposites at a nominal
strain rate of 0.0001/s.

RESULTS AND DISCUSSION
Strain Rate Effect

The stress and strain curves of the dry nylon 6—clay nanocomposites at true strain rate
ranges from 8 x 107> to 800/s are shown in Figure 10. The constitutive relations exhibit an
apparently linear elastic range followed by nearly perfect plastic behavior. It is shown that
the slopes of the linear portions are almost the same within the strain rate ranges tested,
which indicates that the Young’s modulus of the dry nanocomposites is not affected
apparently by the strain rates. The Young’s modulus for the dry nylon 6-clay
nanocomposites measured is around 4.1 GPa. However, the linear elastic ranges of the
stress and strain curves increase when the strain rate increases.

The stress and strain curves of wet nylon 6—clay nanocomposites at three different strain
rates, 8 x 107>, 8 x 1072, and 500/s are shown in Figure 11. It is shown that for the wet
samples, the constitutive curves are almost nonlinear except at the strain rate of 500/s. The
stiffening behavior becomes more significant as the strain rate increases. Theoretically, the
Young’s modulus of the material should be determined from the initial slope of the stress
and strain curves. However, due to the nonlinearity, it becomes a challenging task to
decide a suitable initial strain range for the evaluation of the Young’s modulus. In this
study, for a true strain rate up to 0.08/s, the experimental data within a strain range of
0.2% was selected for the determination of the Young’s modulus of the nanocomposites.
If the initial strain range selected is too small, the corresponding experimental data will be
scarce and scattering, which is not suitable for the correct interpretation of the Young’s
modulus. By curve-fitting the experimental data with a linear function, the corresponding
value of the Young’s modulus was evaluated as shown in Figure 12.

For high strain rate tests, the initial portions (strain <0.5%) of the stress and strain
curves are quite oscillating and inappropriate for the determination of the Young’s
modulus. However, the constitutive curves demonstrate an apparently larger linear range
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Figure 10. Stress and strain curves of dry nylon 6-clay nanocomposites at three different strain rates.

e Wet nylon 6—clay (500/s)
m Wet nylon 6—clay (8x10%/s)
A Wet nylon 6-clay (8x10°%/s)

0.06 0.09 0.12
Strain

Figure 11. Stress and strain curves of wet nylon 6-clay nanocomposites at three different strain rates.

than those in the lower strain rate tests. Thus, we resort to the stress and strain data with
the strain level up to 0.5% for evaluating the Young’s modulus. Again, a linear function
was employed to fit these experimental data and the results are shown in Figure 13. The
Young’s modulus determined by the above-mentioned procedures is summarized in
Table 1. It can be seen that for wet nylon 6-clay nanocomposites, the Young’s modulus
increases with the increment of the strain rate, which is contrary to the dry nylon 6—clay
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Figure 12. Determination of Young’s modulus of wet nylon 6-clay nanocomposites at a true strain rate of
8x107s.
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Figure 13. Determination of Young’s modulus of wet nylon 6-clay nanocomposites at strain rate of 500/s.

nanocomposites. In addition, for each strain rate, the wet nylon 6—clay nanocomposites
always demonstrate inferior mechanical response, such as stiffness and yielding stress than
the dry ones. Therefore, it should be of concern that the rate dependency as well as the
corresponding mechanical properties of nylon 6-clay nanocomposites would be affected
dramatically by the moisture absorption.
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Table1. Young’s modulus of wet nylon 6 and nylon 6-clay nhanocomposites
at three different strain rates.
High Intermediate Low
Material (500/s) (8 x107%/s) (8 x1075/s)
Nylon 6 1.2GPa 1.0GPa 0.73GPa
(moisture) (8.27%) (8.52%) (8.49%)
Nylon 6-clay nanocomposite 1.6 GPa 1.24GPa 1.05GPa
(moisture) (7.48%) (7.64%) (7.65%)
Enhancement ratio (%) 33% 24% 43%
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Figure 14. Stress and strain curves of unfilled dry nylon 6 specimens at three different strain rates.

Organoclay Effect

To examine the effect of organoclay on the mechanical responses of the nylon 6
nanocomposites, the unfilled nylon 6 was also tested in the same manner. Figure 14
shows the stress and strain curves of unfilled dry nylon 6 at different strain rates. The
constitutive behavior of the unfilled dry nylon 6 is quite similar to those in dry nylon 6—clay
nanocomposites except that the yielding stress and the Young’s modulus are lower. From
the quantitative comparison, it is revealed that the supplement of 5 wt% organoclay in the
dry nylon 6 can enhance the Young’s modulus up to 32%.

The experimental results for the unfilled wet nylon 6 samples are illustrated in Figure 15,
and again by following the same procedure described earlier, the corresponding Young’s
modulus was determined. The results are also summarized in Table 1. Similar to the dry
samples, the wet nylon 6—clay nanocomposites exhibit higher stiffness than the wet nylon 6.
Moreover, the enhancement can be achieved up to 43% when the strain rate is 8 x 10™7/s.
It is interesting to mention that the enhancement ratio seems to be not affected
significantly by the strain rate. This enhancement in the wet nylon 6—clay nanocomposites
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Figure 15. Stress and strain curves of unfilled wet nylon 6 specimens at three different strain rates.

can be attributed to the addition of the organoclay and its effect on the relative moisture
content. For the wet unfilled nylon 6 and nylon 6-clay nanocomposites immersed in
water for 20 days, the moisture contents are different. Apparently, the nylon 6—clay
nanocomposites contain less moisture than nylon 6. As a result, the inclusion of the
organoclay can retard the moisture absorption and effectively improve the stiffness of the
wet nylon 6 in both linear and nonlinear ranges.

CONCLUSIONS

The following conclusions are obtained from the present study on the strain rate effect
on the mechanical behavior of nylon 6—clay nanocomposites:

e For dry nylon 6—clay nanocomposites, the Young’s modulus is not affected significantly
by the strain rate at the strain rate up to 800/s. However, the linear elastic limit
increases when the strain rate increases.

e For wet nylon 6-clay nanocomposites, the constitutive curves are almost nonlinear and
the Young’s modulus increases with the increase of strain rate. In addition, moisture
content dramatically reduces the stiffness of nylon 6—clay nanocomposites and
significantly affects the rate sensitivity of the Young’s modulus of the nylon 6—clay
nanocomposites.

e The supplement of Swt% organoclay in the dry nylon 6 can enhance the Young’s
modulus to 32% within the tested strain rate ranges. Moreover, the enhancement can
be up to 43% in the wet nylon 6 samples.
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