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Synchronous-asynchronous mode-locking transition in a hybrid active and passive mode-locked laser is
investigated theoretically. Three distinct mode-locking states are found and their transition diagram under varying
detuning frequency and modulation strength is determined. By examining the steady-state lasing gain as a function
of the detuning modulation frequency, we also clarify why the laser will become unstable near the transition
points and why the nonlinear saturable absorption effect is crucial for the stable asynchronous mode-locking
operation.
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I. INTRODUCTION

Generation of high-repetition-rate optical pulse trains
with short-pulse width is desirable for many new applica-
tions including ultrahigh-bit-rate coherent optical communi-
cation [1,2], optical analog-to-digital conversion [3,4], and
wavelength-swept optical coherence tomography [5,6]. Active
harmonic mode locking via intracavity amplitude modulation
(AM) or phase modulation (PM) is the commonly used
approach for enforcing the laser to operate at a high repetition
rate [7–11]. The modulation frequency for active harmonic
mode locking needs to be equal to the cavity fundamental
repetition frequency multiplied by an integer so that the timing
synchronization between the modulation and the pulse train
circulated inside the cavity can be maintained. In contrast
to the passive mode-locked laser, detuning of the active
mode-locked laser exhibits many interesting laser nonlinear
dynamics. For active AM mode-locked lasers, the laser will
become chaoticlike when the detuning is large enough, mainly
due to the large transient gain seen by the noise perturbations
[12–16]. The laser may switch to the Q-switched mode-
locking operation state as illustrated experimentally in [17].
For active PM (or FM) mode-locked lasers, the behavior of
laser parameter changes in the presence of small modulation
frequency detuning has been investigated theoretically [18].
Additionally, the FM oscillation operation state can be ob-
served when the detuning is large enough [19–25], in which the
light field is more like a cw light with a sinusoidally sweeping
instantaneous frequency. The transition from mode locking to
FM oscillation has been studied [23–25] and excess noises
have been found near the state transition point.

The laser dynamics becomes more profound when the
nonlinear passive mode-locking mechanisms are also involved.
By utilizing the nonlinear polarization rotation effect for im-
plementing equivalent fast saturable absorber action, the asyn-
chronous mode-locking (ASM) operation state [26,27] has
been recently demonstrated on both 10-GHz Er-doped [28,29]
and Yb-doped harmonic mode-locked fiber lasers with active
phase modulation [30]. Analyses based on the variational so-
lution of the master equation have been carried out [28]. Some
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unique characteristics of the ASM operation state include the
improved insensitivity to the detuning, slow periodic oscilla-
tion of the pulse timing and optical center frequency, better
stability, and the possibility to achieve long-term stability
through low-frequency electronics. However, the synchronous
to asynchronous mode-locking transition under varying de-
tuning frequency and modulation depth for this type of hybrid
mode-locked lasers has not been explored carefully. It is the
objective of the present work to carefully characterize the in-
volved mode-locking states as well as their transition diagram.

In this study we begin by investigating the dynamical
behavior of the laser pulse evolution under the modulation
frequency detuning. The starting point for theoretical modeling
is essentially based on the master equation for hybrid active
and passive mode-locked lasers. Besides direct numerical
simulation, the evolution equations of essential laser pulse
parameters are also derived from the variational analysis
[28,31–34] under the single-Gaussian-pulse solution ansatz for
comparison and clarification purposes. The detuning behavior
of the averaged difference between the steady-state gain and
linear loss coefficients is examined to distinguish the transition
of different laser operation states. By comparing the results
under different operation conditions with and without the
nonlinearity, we verify that the equivalent saturable absorption
effect is crucial for the stable asynchronous mode-locking op-
eration. The Kerr nonlinearity alone is not enough to efficiently
achieve this purpose. Furthermore, the phase modulation
strength can also essentially affect the transition of different
mode-locking states. To investigate this correspondence, we
have executed the two-dimensional (2D) parameter scanning
for the modulation strength and the frequency detuning. The
obtained 2D state transition diagram helps to clarify the
scenario of the synchronous to asynchronous mode-locking
transition. The analysis presented here also demonstrates an
effective approach to elucidate the nonlinear mode-locked
laser dynamics caused by the detuning effects and to predict the
performance of the studied mode-locked laser systems under
different operational conditions.

II. THEORETICAL MODEL

As illustrated in Fig. 1, the considered mode-locked fiber
laser configuration in the present work is a hybrid active
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FIG. 1. (Color online) Schematic of the considered fiber laser
system: LD, laser diode; PC, polarization controller; WDM,
980 − 1550 nm wavelength division multiplexer; EDF, Er-doped
fiber; and BPF, bandpass filter.

and passive harmonic mode-locked Er-doped fiber laser with
10-GHz phase modulation [28,29]. The passive mode-locking
effect is through the nonlinear polarization rotation mech-
anism, while the active mode-locking effect is through the
phase modulation. The net cavity dispersion is anomalous so
that the laser can operate in the soliton regime. For this type
of mode-locked fiber lasers, the pulse width is typically on
the picosecond order with the optical bandwidth on the order
of a few nanometers. Thus both the intracavity dispersive and
nonlinear effects are moderate and the assumption of small
intracavity changes should be reasonably valid. Under this
assumption, the pulse evolution in a hybrid active and passive
mode-locked laser system with a detuned phase modulation
frequency can be modeled by the following master equation
[27,28]:

∂U (T ,t)

∂T
= [g(T ) − l]U (T ,t) + (dr + jdi)

∂2U (T ,t)

∂t2

+ (kr − jki)|U (T ,t)|2U (T ,t)

− jM{cos[ωM (t + RT )]}U (T ,t). (1)

Here U (T ,t) is the slowly varying field envelope, T is the
number of the cavity round-trips for the long-time scale, and t

is the short-time scale. The gain coefficient is given by g(T ) =
g0[1 + ∫ |U (T ,t)|2dt/ES]−1, where g0 is the linear gain and
ES is the gain saturation energy. In addition, l is the linear
loss, dr is the effect of optical filtering, di is related to the net
cavity dispersion, kr is the equivalent fast saturable adsorption
effect, ki is the Kerr nonlinear effect, M is the strength of phase
modulation, and ωM is the angular modulation frequency. The
linear timing walkoff per cavity round-trip due to the detuning
frequency of phase modulation is given by R = df/(fRfM ),
where df is the deviation frequency between the N th cavity
harmonic frequency NfR and the modulation frequency fM .
Here fR is the fundamental cavity repetition frequency. We
have numerically solved the master equation by using the
fourth-order Runge-Kutta in the interaction picture (RK4IP)
algorithm [35–37]. With the interaction picture transformation,
the terms of dispersion and optical filtering can be separated

from the nonlinear and modulation terms for more accurate
numerical evaluation under a higher-order finite-difference
scheme.

The typical simulation parameters used in the present
study are g0 = 5, ES = 0.77 pJ, l = 1, dr = 0.012 ps2,
which corresponds to the Gaussian filtering bandwidth of
13.5 nm (assumed centered at 1.55 μm), di = −0.03 ps2,
kr = 0.003 W−1, ki = 0.045 W−1, M = 0.8, fR = 8 MHz,
and fM = 10 GHz. These values should be reasonably close
to the actual harmonic mode-locked Er-doped fiber lasers that
can be experimentally built. The periodic boundary condition
has been imposed and the simulation window size is set to be
100 ps, which is exactly one period of the 10-GHz pulse train.
The initial condition is a chirpless Gaussian pulse with a pulse
width of 10 ps and a pulse energy of 2 pJ.

III. LASER DYNAMICS

A. Pulse evolution under frequency detuning

As illustrated in Fig. 2, when the laser is operating under
the synchronous mode-locking condition with zero detuning
(df = 0 kHz), the calculated solution is with the steady full
width at half maximum (FWHM) pulse width τFWHM ≈ 1.6 ps
and the pulse energy EP ≈ 3 pJ under the assumed 10-GHz
repetition frequency. Since the pulse is synchronized with the
modulation phase, the evolution plot in Fig. 2 for the df = 0
case is not moving when the steady state is reached. With
a slight detuning of df = 4 kHz, the modulation phase is
now slowly moving with respect to the simulation window.
Synchronous mode locking can still be maintained for this
small detuning. In the evolution plot of Fig. 2(a) for this case,
the pulse is moving with a constant timing drift per round-trip
with respect to the simulation window and synchronized with
the moving of the modulation phase. Physically this is achieved
through the central wavelength shift of the pulse as shown in
Fig. 2(b), such that the group velocity of the pulse can be
changed sequentially to maintain the appropriate synchronous
condition. When the detuning is increased to df = 10 kHz, the
synchronous mode locking is still maintained but the apparent
intensity and spectral oscillation appear in the evolution plots.
This indicates that the single-pulse mode-locking state now
become not exactly stable. By examining the time evolution
plot carefully, we believe that this oscillating behavior is
essentially attributed to the growth of adjacent perturbation
induced by the transient gain in the presence of detuning.
With large enough detuning, the perturbation adjacent to the
pulse has the chance to grow through the large transient gain
and eventually becomes a new pulse with the simultaneous
vanishing of the original pulse due to gain competition. This
shows up in Fig. 2(a) as the quasiperiodic breakup of the
evolution line. The slight timing shift near the breakup points
can also be clearly observed. A more clearer evolution plot is
shown in Fig. 3. In comparison to AM mode-locked lasers, a
different kind of instability occurs under detuning.

At df = 12 kHz, the synchronous mode-locked pulse is
obtained again but the pulse width is longer, the pulse chirp
is higher, and the shift of the center frequency is moved to
the opposite site. This suggests that the laser is switched to
a new synchronous mode-locking state. When the detuning
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FIG. 2. (Color online) Calculated power distribution (a) in the time domain and (b) in the frequency domain under different detuning
conditions with df = 0, 4, 12, 30, and 50 kHz.

frequency is further increased, similar oscillating behavior be-
gins to show up before entering the ASM operation, indicating
that this single-pulse mode-locking state is also not exactly
stable. When the detuning is increased to df = 20 kHz, the
ASM operation is observed. The short-pulse solution with clear
sinusoidal timing position and center frequency oscillation can
be observed as shown in Fig. 2 for the df = 30 kHz case. The
laser is asynchronously mode locked in the sense that the pulse
is not synchronized with the modulation and actually travels
across the whole modulation phase slowly. One can see that the
pulse still exhibits a much smaller but nonzero linear timing
drift with respect to the simulation window, which is due to
the repetition frequency pulling effect studied in [29]. The
effect is dependent on the detuning frequency as illustrated
in Fig. 4. Near the transition point the linear timing drift
is larger. It decreases to be near zero when the detuning is
increased. In Fig. 2, when the detuning is further increased

FIG. 3. (Color online) Occurrence of oscillation for a short pulse
at df = 10 kHz. The blue line shows the short pulse and the black
line the phase modulation curve. The time coordinate is transformed
to be synchronized with the modulation phase to better illustrate the
effect.

to df = 50 kHz, the solution eventually becomes not mode
locked. Transient pulse breakup can be observed in the time
domain, while spectral oscillation can be clearly observed in
the frequency domain.

To more clearly demonstrate the mode-locking state tran-
sition, the fundamental pulse parameters including the center
angular frequency ω, the FWHM spectral bandwidth λFWHM,
the pulse width τFWHM, the peak power |U |2peak, and the pulse
chirp C are plotted in Fig. 5 as a function of the detuning
df . These pulse parameters are calculated from the pulse
envelope solution by using the moment expressions derived in
[38] and then averaged over a sufficient amount of round-trip
time since the pulse envelope solution may be oscillating in
general. From the plots it can be clearly seen that there are
three distinct mode-locking states: synchronous short-pulse,
synchronous long-pulse, and asynchronous short-pulse states.

FIG. 4. (Color online) Calculated power distribution in the time
domain under the asynchronous mode-locking operation with
df = 20, 25, 30, and 35 kHz.
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FIG. 5. (Color online) Averaged pulse parameters under different
detuning: (a) the center angular frequecy ω of the optical spectrum,
(b) the FWHM bandwidth of the optical spectrum λFWHM, (c) the
FWHM pulse width τFWHM, (d) the pulse peak power |U |2peak, and (e)
the pulse chirp C.

The two short-pulse states are with a low chirp, while the
long-pulse state is with a high chirp. The center frequency shift
of the synchronous short-pulse state is linearly increased when
the detuning effect is increased. The center frequency shift is
switched to the opposite sign when entering the synchronous
long-pulse state and relaxed back to be near zero when entering
the ASM state. In contrast, the spectral bandwidth only exhibits
a significant jump between the synchronous and asynchronous
mode-locking operations. These distinct characteristics clearly
indicate that the three mode-locking states are fundamentally
different.

B. Variational single-pulse solution

To clarify theoretically the mode-locking pulse properties
of the studied laser, we also reformulate the master equation (1)
as a variational equation problem and then solve it approx-
imately under the single-pulse solution ansatz [28,31–34].
Based on the variational principle, the Lagrangian function
corresponding to Eq. (1) can be defined as follows:

L = j

2

(
U

∂U ∗

∂T
− U ∗ ∂U

∂T

)
+ di

∣∣∣∣∂U

∂t

∣∣∣∣
2

+ ki

2
|U |4 − m2[t − t0(T )]2|U |2

+jdr

(
∂2U0

∂t2
U ∗ − ∂2U ∗

0

∂t2
U

)
+ j [kr |U0|2 + (g − l)]

×(U0U
∗ − U ∗

0 U ) − m1[t − t0(T )](U0U
∗ + U ∗

0 U ). (2)

Here the sinusoidal phase modulation function of Eq. (1) has
been expanded by a Taylor series at the pulse center to second

order

M cos[ωM (t+RT )] ≈ m0−m1[t−t0(T )] − m2[t − t0(T )]2.

(3)

The functions m1 and m2 are given by

m1 = MωM sin{ωM [t0(T ) + RT ]}, (4)

m2 = M

2
ω2

M cos{ωM [t0(T ) + RT ]}. (5)

This approximation is appropriate when the laser pulse width
is much shorter than the modulation time period. The master
equation (1) can be derived from the Lagrangian function
by taking the variation of the functional I = ∫∫

LdT dt with
respect to U and U ∗,

δI = δ

∫∫
L

(
U,U ∗,

∂U

∂T
,
∂U ∗

∂T
,
∂U

∂t
,
∂U ∗

∂t

)
dT dt = 0, (6)

which should reproduce the master equation through the
implied Euler-Lagrange equation

∂L

∂U ∗ − ∂

∂t

∂L

∂(∂U ∗/∂t)
− ∂

∂T

∂L

∂(∂U ∗/∂T )
= 0. (7)

It should be noted that the functions U0 and U ∗
0 in Eq. (2)

should be handled as fixed functions and should not participate
in the variational procedure. However, they should be replaced
by the steady state solution and its complex conjugate,
respectively, after accomplishing the variational derivation.
This is a standard technique for dealing with loss terms under
the variational formulation since all the nonconserved terms
cannot be handled directly in the Lagrangian formulation. To
analyze the mode-locked lasers, one reasonable pulse solution
ansatz is the Gaussian pulse shape

U (T ,t) =
(

2

π

)1/4

a(T ) exp

(
−[1 + jC(T )]

[t − t0(T )]2

τ (T )2

)

×ej{ω(T )[t−t0(T )]+θ(T )}. (8)

The physical meanings of the introduced parameters are as
follows: a(T ) is the pulse amplitude, τ (T ) is the pulse width,
t0(T ) is the pulse timing, C(T ) is the chirp, ω(T ) is the
pulse center frequency, and θ (T ) is the phase. The evolution
equations for all the pulse parameters can be derived from
the approximate variational equation defined by the reduced
Lagrangian 〈L〉,

δ

∫
〈L〉dT = 0, (9)

where

〈L〉 =
∫ ∞

−∞
Lansatzdt. (10)

Here Lansatz is derived from the Lagrangian function L by
substituting the solution ansatz for the functions U and U ∗.
Thereafter, one can find the evolution equations of the pulse
parameters from the corresponding Lagrange equations

∂〈L〉
∂xi

− ∂

∂T

∂〈L〉
∂(∂xi/∂T )

= 0. (11)
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Here xi represents different pulse parameters in the solution
ansatz. The derived evolution equations for the amplitude
a(T ), the pulse width τ (T ), the center frequency ω(T ), the
timing t0(T ), and the chirp C(T ) are given by

da(T )

dT
= [g(T ) − l]a(T ) − dr

[
ω(T )2 + 2

τ (T )2

]
a(T )

+ 2diC(T )

τ (T )2 a(T ) + 5kra(T )2

4
√

π
a(T ), (12)

dτ (T )

dT
= 2dr [1 − C(T )2]

τ (T )
− 4diC(T )

τ (T )
− kra(T )2

2
√

π
τ (T ),

(13)

dω(T )

dT
= m1 − 4dr [1 + C(T )2]

τ (T )2 ω(T ), (14)

dt0(T )

dT
= 2drC(T )ω(T ) + 2diω(T ), (15)

dC(T )

dT
= −m2τ (T )2 − 4[drC(T ) + di][1 + C(T )2]

τ (T )2

− [krC(T ) + ki]a(T )2

√
π

. (16)

The evolution equation for the phase θ (T ) is irrelevant to the
following analysis and thus is omitted. The detuning effect is
introduced in the functions of m1 in Eq. (4) and m2 in Eq. (5),
where a linear drift term has been included.

As an application of the theory, under the synchronous
mode-locking assumption, Eq. (15) for the pulse timing t0(T )
should satisfy the relation dt0/dT = −R, which requires the
steady-state value of ω to be

ω = −R

2drC + 2di

. (17)

This equation can be used to physically explain how the center
wavelength of the laser will be shifted in the presence of
detuning. Furthermore, from Eq. (14), in order for ω(T ) to
have a constant steady-state value, the following inequality
needs to be satisfied:

|MωM | �
∣∣∣∣2dr (1 + C2)R

τ 2(drC + di)

∣∣∣∣. (18)

This is the required condition for the synchronous mode-
locking solution to exist. It can be used to physically explain
why synchronous mode locking cannot be maintained when
the detuning R is large enough. Further comparison of the
variational solution with the direct simulation results will be
described in the next section.

IV. STATE CHANGE ANALYSIS AND DISCUSSION

A. Mode-locking state transition under fixed
modulation strength

As shown by the direct simulation results, the mode-
locked laser exhibits different operation states under different
detuning values. The laser may also become not exactly
stable near the transition boundaries. To explain the observed
stability of different mode-locking states, we also calculate
the averaged steady-state lasing gain g with respect to the

FIG. 6. (Color online) Averaged g − l as a function of df .
The red line shows the nonlinear case with ki = 0.045 W−1 and
kr = 0.003 W−1, the green line the nonlinear case with ki =
0.045 W−1 and kr = 0, and the blue line the linear case with ki =
0 and kr = 0 (for the long-pulse state).

constant linear loss l and plot it as a function of the detuning
in Fig. 6. Physically, the state that has the lowest steady-state
gain should be the most stable one. However, if the required
gain differences with respect to other solution states are not
large enough, these higher-order solution states may not be
damped out quickly enough. Under this situation they can grow
significantly due to the transient gain and the stable operation
of the original state may be destroyed. Therefore, judging from
the gain difference between the operating mode-locked state
with respect to the second lowest mode-locked state or the
unmode-locked solutions, one should be able to reasonably
predict the stability of the mode-locked state [12,27,39,40].
Based on this insight, the results for the case without any
nonlinearity (kr = 0, ki = 0) and for the case only without the
saturable absorption effect (kr = 0) are also plotted in Fig. 6
for comparison.

For the cases without nonlinearity (kr = 0, ki = 0) and
without detuning (R = 0), from Eq. (13) two steady-state solu-
tions for the pulse chirp can be easily found: C = −(di/dr ) ±
[(di/dr )2 + 1]1/2. The two chirp values correspond to the
two single-pulse solutions at the valley (M > 0) and at the
peak (M < 0) of the modulation phase, respectively [38]. The
steady-state value of the pulse width can also be found from
Eq. (16) as

τ =
[−8(drC + di)(1 + C2)

Mω2
M

]1/4

. (19)

When substituting in the parameters of our example, the value
of C is estimated to be −0.19 or 5.19. The low-chirp short pulse
is found with τ ≈ 3.04 ps at the valley of the modulation phase,
while the high-chirp long pulse is with τ ≈ 6.92 ps at the peak
of the modulation phase. It should be noted that the FWHM
pulse width is related to τ by τFWHM ≈ (2 ln 2)1/2 τ . At zero
detuning, the short-pulse state exhibits a smaller steady-state
lasing gain and thus is the globally stable state. The laser will
tend to operate on this short-pulse state. Under small detuning,
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the short-pulse state can remain synchronously mode locked
by shifting the center frequency linearly with respect to the
detuning frequency as predicted by Eq. (17). This gives rise
to a quadratic increasing term for the steady-state lasing gain
through the bandpass filtering effect. The above picture is still
true in the presence of the nonlinear effects, except that the
pulse width can be even shorter. This will be identified as
the first mode-locking state in the present study. In Fig. 6 the
steady-state lasing gain for the longer pulse in the linear case
is also plotted for comparison. This is because it can act as
an upper bound for the steady-state lasing gain of the first
mode-locking state. When the lasing gain of the first mode-
locking state is approaching this limit, the laser pulse train will
tend to become unstable as seen from direct simulation. After
passing the first transition point around 12 kHz in Fig. 6, it
is found that only a new chirped long-pulse state can exist.
It is identified as the second mode-locking state. The sign of
the center frequency shift switches to the opposite side due to
the large chirp value. When the detuning is further increased,
synchronous mode locking is still maintained by the linear
increasing of the pulse width and chirp as shown in Fig. 5.
The magnitude of the center frequency shift is actually de-
creasing. This explains the decreasing of the lasing gain in this
regime.

When the detuning is further increased, the nonlinear
saturable absorption effect begins to show its importance in
forming the stable ASM state. The steady-state lasing gain is
significantly lower in the presence of the saturable absorption.
This explains why the ASM operation state is found to be very
stable both numerically and experimentally. The pure Kerr
nonlinearity does not have the same effect, as also shown in
Fig. 6. This explains why the ASM operation state was not
found experimentally in a pure fiber soliton laser without the
equivalent fast saturable absorption. The detuning dependence
of the steady-state lasing gain for the ASM state can also be
explained physically. In Eq. (14), if the t0(T ) in the expression
of m1 can be ignored when compared to the linear timing drift
RT , then the m1 term is simply a sinusoidal driving term for
ω(T ). This gives rise to the sinusoidal oscillation of ω(T ) as
given by the approximate solution

ω(T ) = M sin(ωMRT − φd )√
(4dr )2/(ωMτ 2)

2 + R2

,

φd = cos−1

[
4dr√

(4dr )2 + (τ 2ωMR)2

]
. (20)

This sinusoidal center frequency oscillation will produce a
loss term through the bandpass filtering effect. Its magnitude
can be estimated to be equal to the average value of drω(T )2

in Eq. (12). It is thus expected that for the ASM state, the
averaged steady-state lasing gain should exhibit the following
trend:

A(g − l) ≈ dr (MfRfM )2

2[(2drfR)2/(πτ 2)2 + df 2]
+ c. (21)

This equation explains the decreasing of the ASM lasing gain
when the detuning is increasing. Eventually, when the detuning
is increased up to the point where the ASM steady-state lasing

FIG. 7. (Color online) Comparison of the averaged g − l as
a function of df between the variational solution (solid lines)
and the RK4IP numerical solution (dashed lines) in the (a) first
mode-locking region for the long-pulse state (blue) and the short-
pulse state (black) without nonlinearity (ki = 0 and kr = 0) and for
the short-pulse state (red) with nonlinearity (ki = 0.045 W−1 and
kr = 0.003 W−1), (b) second mode-locking region for the chirped
long-pulse state (blue) without nonlinearity (ki = 0 and kr = 0), and
(c) third (asynchronous) mode-locking region for the short-pulse state
(red) with nonlinearity (ki = 0.045 W−1 and kr = 0.003 W−1).

gain is approaching the upper bound set by the linear case as
shown in Fig. 6, the ASM state ceases to exist. This explains
why there is a detuning upper bound for the stable ASM
operation. Instability has also been observed near the transition
point between the synchronous long pulse and the ASM states
for the same reason.

In Fig. 7 we perform a quantitative comparison between the
variational solution and the direct numerical solution for the
same set of equation parameters. In general, the approximate
variational solution can correctly predict the dependence of
the steady-state lasing gain on the frequency detuning at least
qualitatively. This justifies the physical understanding based
on the analytic variational pulse parameter equations. For
the synchronous short-pulse state, the agreement of the two
models is actually very good. This suggests that the assumed
single-Gaussian-pulse solution ansatz and the second-order
Taylor expansion of the phase modulation function are
appropriate in this regime. In contrast, for the synchronous
chirped long-pulse state, there are obvious discrepancies in
the predicted steady-state gain values and the state transition
points. By examining the pulse shape and phase profile
example as shown in Fig. 8 from direct numerical solution, one
can see that the pulse solution in this regime is obviously with
significant higher-order chirps, which are not included in the
assumed single-Gaussian-pulse solution ansatz. The origin of
these higher-order chirps may be due to the higher-order Taylor
expansion terms of the phase modulation function, which are
not included in the variational formulation and are expected to
become more significant when the pulse width is long. For the
asynchronous mode-locking state, the agreement of the two
models is better. Since the pulse width of the asynchronous
mode-locking state is shorter than that of the synchronous
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FIG. 8. (Color online) Example of the pulse shape (blue line) and
phase profile (black line) from direct numerical solution with the
detuning df = 14 kHz.

chirped long-pulse state, the impacts of the higher-order
Taylor expansion terms for the phase modulation function are
expected to be smaller. However, some higher-order chirps
can still be observed in the phase profile of the pulse solution
and small distortion of the pulse shape occurs when the
timing oscillating direction is switched. These explain the
medium discrepancies seen in this regime. Because of these
discrepancies, direct numerical solution is still needed in order
to obtain accurate results.

B. Two-dimensional state transition diagram

The mode-locking state transition of the studied laser is
also affected by another important control parameter: the phase
modulation strength M . To illustrate this point, we have plotted
the two-dimensional transition diagram as illustrated in Fig. 9.
It can be clearly seen that the synchronous mode-locking

FIG. 9. (Color online) Mode-locking state transition diagram for
varying detuning frequency df and modulation strength M: dark gray
circles, stable synchronous short-pulse state; gray up-pointing trian-
gles, synchronous short-pulse state with oscillations; blue crosses,
synchronous chirped long-pulse state; red stars, asynchronous mode-
locking (ASM) state; and bright green down-pointing triangles,
non-mode-locked region.

boundaries for both the short- and long-pulse states are moving
to larger detuning values almost linearly when the modulation
depth is increased. This relation can be physically explained by
using the synchronous mode-locking condition in Eq. (18). If
the involved pulse parameters remain unchanged, then Eq. (18)
predicts the exact linear dependence on the modulation depth.
In contrast, the asynchronous to non-mode-locked boundary
is only increased with saturation when the modulation depth
is increased. The ASM regime is thus reduced when the
modulation depth is large. To more physically elucidate this
relation, one can estimate the decay rate of the linear long-pulse
solution under no detuning and use it to represent the time scale
for the laser perturbation to be damped out [27]. Physically
this perturbation decay rate should be much faster than the
detuning frequency in order for the laser operation state to be
stable in the presence of detuning. Thus, an analytic criterion
can be derived as shown below, which gives an upper bound
for the detuning frequency:

fR

√√√√ |M|ω2
M

(√
d2

r + d2
i + |di |

)
4

� |df |. (22)

One can see that the square-root dependence on the mod-
ulation depth is predicted, which explains more physically
the observed trend exhibited in the numerical results. When
substituting in the parameters, the estimated decay rate is
around 56.1 kHz. The calculated upper limit of detuning for
the ASM state is 
flim ≈ 42 kHz, which agrees reasonably
well with the criterion. Such a mode-locking state transition
diagram as illustrated in Fig. 9 can provide many useful
insights to understand the operation of the studied laser
system.

V. CONCLUSION

We have investigated theoretically the laser dynamics of
a hybrid mode-locked laser with active phase modulation
and passive saturable absorption. The emphasis is on the
mode-locking state transition characteristics under the modu-
lation frequency detuning effect. Three distinct mode-locking
states (synchronous short-pulse, synchronous long-pulse, and
asynchronous short-pulse states) have been identified. The
steady-state lasing gain has been utilized to understand and
estimate the stability of the mode-locking states. Additionally,
their two-dimensional state transition diagram under varying
detuned frequency and modulation strength has been calcu-
lated and plotted. The obtained results should be very helpful
for designing better hybrid mode-locked lasers of this type.
Moreover, the theoretical concepts and techniques developed
here should also be useful to study other types of mode-locked
lasers.
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Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J.
Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner,
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