
APPENDIX 
The analytical model of the large-angle magnetic suspension 

test facility is 

AmX + D,«W 
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(Al) 
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where x= CM, A„ = [;=« X?]- B„ = LT'^ and C,„ = [C, 
Osxs]. The state variable Xp includes pitch and yaw angles and 
three linear displacements of the cylinder's centroid. The matri­
ces A21, A22, S2, and C, are 

The eigenvalues of the system matrix A,„ are ±58.78, ±57.81, 
±9,78, ±;7.97, and ±;'0.96. The matrix C, which relates the 
sensor output voltage to the displacement can be obtained from 
calibration and is assumed known. To recover the displacement 
from the sensor output voltage, one can use Xp = C'i'y. 

The performance index for the state feedback design is chosen 
as 

PI- = Z ylQyk + u'kRu, (A3) 
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Feedforward and Feedback Control 
Strategy for Active Noise 
Cancellation in Ducts 

Jwu-Sheng Hu^ 

This paper presents the theoretical work about active noise 
cancellation in ducts. The proposed control system is designed 
based on the assumption of a one-dimensional sound field. The 
controller consists of a feedforward block which serves as a 
noise observer. The feedback portion of the control algorithm 
is to minimize residual disturbances. Closed-loop stability of 
the MIMO (multiple-input-multiple-output) system is analyzed 
and the result shows that the dynamic influenced by the space-
feedforward and feedback controllers can be decoupled. Both 
semi-infinite and finite-length ducts are considered in this study 
and simulation examples are given to illustrate the effectiveness 
of the proposed controllers. 

1 Introduction 

Active Noise Control (ANC) utilizes the physical principle 
of wave superposition to attenuate unwanted noise. During the 
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past decade, much progress has been reported toward applying 
ANC to attenuate noise in confined spaces. A review by Nelson 
and Elliott (1992) presents the fundamental principles underly­
ing modem techniques for ANC while Gorden and Vining 
(1992) provide an overview of the field. The most successful 
application so far is to cancel noise in ducts, especially cancella­
tion of plane waves. Utilizing the principle of wave propagation, 
the active controller can be synthesized by introducing delay 
elements (Eghtesadi and Leventhall, 1982; Guicking and 
Karcher, 1984). Although the idea is not new, a complete theo­
retical analysis on its performance and closed loop stability has 
not been presented, especially in a finite-length duct without 
prior knowledge of the noise source (Trinder and Nelson, 
1983). The concept of controlling wave propagation is also 
investigated in structural vibration suppression (von Flotow and 
Shafer, 1986; von Flotow, 1986; Pines and von Flotow, 1990; 
Tanaka and Kikushima, 1992). The problem is more compli­
cated because of the distributed-delay dynamic of the plant. 

In this paper, theoretical studies about noise cancellation in 
semi-infinite and finite-length ducts are presented. While many 
ANC research are conducted in the Fourier Transform domain, 
the proposed controllers are designed using the Laplace Trans­
form so as to avoid causality problem (Curtis et al., 1987) and to 
analyze closed loop stability. The plant is derived by assuming a 
one-dimensional sound field in ducts (Hu, 1993). The control­
lers' structures are explained by analyzing the interconnection 
of delay elements in the plant model. For a semi-infinite duct, 
an upstream microphone is used to observe noise propagating 
in the downstream direction. This signal is then fed into the 
controller as a space-feedforward command to attenuate noise 
transmitting downstream. Theoretically, complete cancellation 
can be achieved through this control configuration. An addi­
tional microphone placed at a downstream location to pick up 
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Fig. 1 Schematic diagram of a finite-length duct (all the variable are 
dimensionless) 

any residual noise is used to generate a feedback signal. Closed-
loop stability of the MIMO (multiple-input-multiple-output) 
system is analyzed and the result shows that the dynamic influ­
enced by the space-feedforward and feedback controllers can 
be decoupled. 

For a finite-length duct, the duct's dynamic becomes more 
complicated due to reflection from the downstream boundary. 
Consequently, two upstream microphones are needed to observe 
noise propagating downstream. Unlike the semi-infinite duct, 
only asymptotic cancellation can be achieved in a finite-length 
duct using the proposed control strategy. The error dynamic is 
governed by the characteristic equation of the open loop plant. 
A complete analysis of the closed loop system including a feed­
back microphone is also presented. 

It should be noted that the objective of the work is to develop 
a theoretical foundation of noise cancellation based on wave 
propagation principles and close-form solutions in the Laplace 
Transform domain. Other important issues such as the ro­
bustness of the control system and actuator and sensor dynamics 
will be considered in the following studies. 

2 The Dynamic Model of a Finite-Length Duct 
The schematic diagram of a finite-length duct is shown in 

Fig. 1. It is assumed that the noise (primary source) enters the 
duct eA d, & control speaker (secondary source) is placed at a, 
and X represents a point within the duct. The length of the duct 
is L and a, d, and x are dimensionless variables. The specific 
impedance of both ends is denoted as ZQ{S) at J: = 0 and Z\{s) 
aix — \ where .s is the Laplace variable. It is further assumed 
that the boundaries are passive. This implies that the impedance 
functions are positive real (Hu, 1993). Moreover, the pressure 
reflection coefficients for each end can be defined from the 
impedance functions as 

.(*) = 
1 - Zajs) 

1 + Zo(i) 
and ^1(5') = 

1 - z i ( ^ ) 
1 + zAs) 

Denoting the strength of the noise and control source as A'(i') 
and Q{s) respectively, the transfer function of the speaker to 
the source pressure can be derived as 
When rf < X < a, 

+ [Gt,{x, a, s) + G'^x, a, s)]Q{s) 

+ [G^(x,d,s) + Gi(x,d,s)]N{s) (la) 

and when d ̂  a s x, 

p(x, s) = e„(s)0,(s)e~^''-"''^p(x, s) 

+ [Goix, a, s) + Giix, a, s)]Q(s) 

+ [GUx,d,s) + Gh(x,d,s)]N(s) (lb) 

where 
c: speed of sound 

- 6io(j)(9|(j')e-""'''*''-'*"' (Id) 

Gu(x, a, s) = -(?-<'-"'•)("-') - 61,(i)e-""'"•'"-"-"> ( l e ) 

Gtj(x, a, s) = eo(.?)e"*'-'''"'""'" 

+ 6io(.5)6'i(.Oe"''-"''*''''^~"* ( 1 / ) 

The above equations are obtained from Green's function of a 
one-dimensional wave equation (Hu, 1993). The superscripts/ 
subscripts used in the above equations are based on physical 
meanings of the transfer function. Subscript D means down­
stream position, U means upstream position, superscript + 
means pressure wave propagating in the downstream direction, 
and — means pressure wave propagating in the upstream direc­
tion. For example, Gu(x, a, s) represents the influence of the 
source at downstream position but propagating in the upstream 
direction. It is easy to see that GD(X, a, s) consists of a direct 
propagating wave (the first term on the left-hand side) and a 
wave reflected from the boundary x = 0 (the second term). 
Further, the multiplication of &o(s) in the second term shows 
that part of the energy is absorbed by the passive boundary. 
Notice that a delayed superposition appears in Eq. ( l a ) and 
(lb). This term represents the wave traveling twice the length 
of the duct. If no energy is absorbed at both boundaries (^o(*), 
6x(s) = ±1) , the reflected wave will be reinforced and results 
in resonance at certain frequencies. 

The transfer functions defined in Eq. ( I c ) to ( 1 / ) possess 
some interesting properties. Let JT, y be two arbitrary points and 
x,y a a, the following relations can be derived. 

—G'jj(x, a, s)Gu(x, d, s) 

+ Go(x,d,s)Gi(x,a,s) = 0 (PI) 

~Grj(x, a, s)Gi(y, d, s) 

+ GUx,d,s)GUy,a,s) = 0 (P2) 

—Gj}(x, a, s)Gr>(y, d, s) 

+ Gn(x,d,s)GUy,a,s) = 0 (P3) 

These properties will be used later for constructing a noise 
observer and controller. 

3 Noise Cancellation in a Semi-Infinite Duct 
The diagram of a semi-infinite duct is shown in Fig. 2. Its 

dynamic can be derived from Eq. (1) by letting the impedance 
at j ; = 1 equal 1 (i.e., zero pressure reflection coefficient). The 
control signal is derived from the microphone placed upstream 
(at X2). The purpose of putting another microphone downstream 
(xi in Fig. 2) will be explained later. Notice that in a semi-
infinite duct, we can no longer use dimensionless space vari­
ables. Assuming that the effect of noise at X2 is N(s), the 
pressure response can be written as 
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piX2, S) = 2 ( -« *''' + 6)o(5)e-<"'̂ '*^2+''>)!2(*) + N(s) 

(2a) 

Moreover, the pressure response at any downstream position x 
> a is 

p(x, s) = i(e-("'^«^-'" + 0o(^)e"''"'"*""'"')Q(^) 

+ e -(.sIcXx-x.) N(s) {2b) 

The objective is to block the transmission of noise, i.e., p{x, 
s) = 0. Solving Qis) by letting Eq. (2b) equal zero, we have 

Q(s) 
_'2Q-islc){x-x^) 

-islc)(.x-a) + Oa(s)e- 7^^i') 

Substituting Eq. (2a) into the above equation, the control signal 
can be shown as 

G(*) = 
_2g-(.5/c)(a-Xj) 

1 + 
i;^/'^^^,^) (3) 

The control law can also be derived by combining Eq. (2a) 
and (2b): 

p(x, s) — e ~(,SIC)(X-X,) P(X2, S) 

An interesting observation of Eq. (3) is that the control signal 
is independent of the impedance at the boundary. In fact, the 
result is the same as the case of an infinite duct (Eghtesadi and 
Leventhall, 1982). From Fig. 2, it is obvious that the purpose 
of placing a microphone upstream is to detect the noise before 
it arrives at the position of the cancellation speaker. Therefore, 
it is characterized as a space-feedforward control signal. Never­
theless, in time domain, it is still a feedback control system and 
the closed-loop response at X2 can be derived as 

1 + g-(2.r/c)C<.-X2) 

p(x2, s) = T^rrr N(s) 
^ , 1 + 9o(s)e^'-^"'^" ^ 

(5) 

Equation (5) shows that the cancellation speaker acts like a 
hard-walled boundary (impedance equals infinity). Since Oo(s) 
is derived from a passive boundary, the closed-loop system is 
stable (Hu, 1993). 

To accommodate the model uncertainty, a "true" feedback 
signal should be used in the overall control system. Since the 
target area is the downstream area of the duct, the error signal 
measured at Xi(>a) is included in the controller as 

Q(s) 
-2e 

1 + e 

-(slc)(a-x,) 

-i2.s/cna-x^)P(^^' •^) 

~2C(s) 

1 + e (2.,/c.)(„-.„)/'(-«l"*) ( 6 ) 

where C(s) is the feedback compensator. The block diagram 
of the overall control system is shown in Fig. 3. Suppose some 
bounded uncertainty S(s) (Fig. 3) is presented at Xi, the re­
sponse of p(X[, s) can be shown as 

p(xi, s) = 
6(s) 

1 + C{s)e -(s(,x.-a)/c) (7) 

The controller C{s) can be designed to minimize the effect of 
the disturbance. Since the control system is a multiple-input-
multiple-output (MIMO) system, it is essential to analyze the 
global stability. As will be shown later, the stability is guaran­
teed if and only if both Eqs. (5) and (7) are stable. Substituting 
Eq. (6) into Eq. (2) , the closed-loop transfer function can be 
derived as 

gn(.0 8i2(s) 

82i(s) g22(s) 

p(Xi, S) 

_P(X2, S) 

N(s) 
g-(2.,/c)U,-,,)^(^) + 6{S) (8) 

where 

g-uic)u,-x^) _ 0 (s)e-'-"'^'-"^'^'> ^, , 
«n( j ) = 77-—^n.i.-M,.^r,. C(s) 

(1 + e~ "T)) 

g\l(s) = 

g2x(s) = 1 + 

gn(s) = 

(\J^ g-(2s/c)(<"-J;2)\ 

I _|_ g-(2j /c)(<i- j : j ) 

g-( . ,WU,- . , ) _̂  Q^^^^y-i,lc,(x^*^a~x^^ 

(1 + e-(2"0(<.-'2)) 

C(s) 

It is straightforward to verify that the characteristic equation of 
the above equation is 

(1 + 9o(i)c"*''"'*'')(l + C(s)e -(.s(x,-a)/c) ) = 0 (9) 

The condition on C{s) to guarantee stability of the system 
can be checked by using various frequency domain methods 
(Marshall, 1979). This condition depends on the value of xj -
a. An obvious choice of x, to simplify the design is Xi = a 
(collocated sensor and actuator). 

4 Noise Cancellation in a Finite-Length Duct 
The dynamic of sound in a finite-length duct (Section 2) is 

more complicated than the semi-infinite one. Unlike the semi-
infinite duct, the noise travels in the upstream direction due to 
reflection from the boundary (x = 1 in Fig. 1). As a result, the 
space-feedforward signal can not be constructed by a single 
microphone only. To better explain the proposed control system, 
we first examine the following control law: 

G(.)=^gf^iV(.) 
GD(X, a, s) 

(10) 

where x > a is a downstream location. Substituting Eq. (10) 
into Eq. (lb) and using (PI ) , the pressure response atx satisfies 

p(x, s) - 0o(s)di(s)e -(2L,t/c) 'p(x,s) = 0 (11) 

This means that the pressure will go to zero asymptotically. 
The proposed control law (Eq. (10)) is derived by letting the 
controlled sound propagating downstream cancel the noise 
propagating downstream. Once the downstream-propagating 
noise is canceled, the upstream-propagating noise will vanish 
automatically as demonstrated by Eq. (11). The same result 
can also be obtained at other downstream location y > a. Ac­
cording (P2) and (P3), the response at y can be derived. 

p(y,s)-eo(s)9,(s)e" '^p(y,s) 

= [GUy, a, s) + GTAy, a, s)] i ^^^"" ' ' ^ ' f N(s) 
Go(x, a, s) 

+ [Gi(y, d, s) + Gi{y, d, s)]Nis) = 0 

In order to implement Eq. (10), a noise observer based on 
microphone measurements has to be constructed. Let two micro­
phones be placed at x, and X2 (Fig. 1), from Eq. ( l a ) , the 
following relation can be derived. 
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Fig. 3 Block diagram of active noise control system in a semi-infinite duct 

X [GJ(x, , a, s)Qis) + GUxu d, s)N{s)] (12a) 

where 

p, = p{xu s) - e,{s)6,(s)e'''^''''^pixu s) {Mb) 

and 

P2 = Pix2, s) - eois)e,is)e^'''^'''>p(x2, s) (12c) 

Further, the noise propagating downstream satisfies the follow­
ing equation. 

Gt(x, d, s)Nis) = e-"'~"i'"->^G;(;c,, d, s}N{s) 

As a result, the downstream noise observer can be designed as 

Qis) = 
- ( p ( x , , s) - p(xi, i)e-(('2-^,)'=)-^')e-(«""'i)'')^' 

1 ~i2(x,~i,)/c)U 

C(s)p(x3, s) 

1 - e,(s)e<'^'^'<'-'3' 
(16) 

where x^ is a downstream position as indicated in Fig. 1. The 
complete block diagram of the control system is depicted in 
Fig. 4 where 5(i) is a bounded uncertainty presented at x^. As 
shown in the Appendix, the pressure response at x, is 

p{Xi, S) = 
6(s) 

[1 -t- C(i')e~<'^''><^5"'"][l - 6»o(*)6'i(.s)e-'^'"'''] 

(17) 

Gi(x, d, s)N{s) = -(2(x^-x,)/c)U 

Giixu a, i)e-"-'--'i'"^'^(2(j) (13) 

\ — e ' " ' 2 ' I ' 

-{ix-x.)lc)L!i f 

Substituting Eq. {\2b), (12c), and (13) into Eq. (10), the 
control law becomes 

-{p{xu s) - p{x2, ,)e-<(^2-^.v-)^)e-«'--^.)^^)^ 

It is interesting to see that the control law is independent of the 
impedance functions at both boundaries. By applying Eq. (14), 
the pressure response at upstream location is altered. As shown 
in the Appendix, the pressure response ?Ay,d<y<a,\s 

piy, s) 

1 + 9o(s)e -(2Lslc)a 
Nis) 

(15) 

As clearly shown in the denominator of Eq. (15), the secondary 
source acts like a hard-walled boundary. The space-feedforward 
controller in Eq. (14) is combined with a feedback signal as 

Similar to the case of semi-infinite duct, an obvious choice of 
^3 is a . 

Finally, we examine the closed-loop characteristic equation 
of the overall system. As shown in the Appendix, the character­
istic equation can be derived as 

[1 -t- flo(*)e""^''""'][l + C(i)e~<'"'''><-'3-''>] 

X [1 - Oo(s)e,(s)e'^^'-'"^] = 0 (18) 

which consists of the dynamics appeared in Eqs. (15) and (17). 

5 Simulation Examples 
The following parameters are used to simulate the control 

system for a semi-infinite duct (Fig. 2) . 

a = 0.7m, d = O.lm, Xi - 0.7m, Xt = 0.4m, and qo = 0.5. 

The speed of sound is assumed to be 350 m/s. It is noted that 
the feedback microphone is placed at the speaker's position 
(collocated). Figure 5 shows the pressure response of a pure 
space-feedforward control (assuming S(^s) = 0) . The response 
is measured at x = 2.3m. It can be seen that once the controller 
is turned on, the pressure at downstream position becomes zero 
as explained in Section 3. Figure 6 shows the pressure response 
at A;, when d{s) is not zero and the feedback control law is 
included. The feedback controller is selected as 
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Fig. 7 Pressure response of a pure space-feedforward control in a 
finlte-lengtin duct 

Figure 7 shows the result of pure space-feedforward control 
when 6(s) = 0. The pressure goes to zero asymptotically as 
indicated by Eq. (11). The same controller C(s) (Eq. (19)) is 
used to simulate the feedback control. Figure 8 shows the pres­
sure response at x^. 

6 Conclusion 
Active noise cancellation in ducts based on delay relations 

of wave propagation is discussed. The proposed controllers use 

0.2 0.4 0.6 0.8 1 

time (second) 

Fig. 6 Pressure response of space-feedforward and feedback control 
in a semi-infinite duct (non-zero disturbance S{s) as shown in Fig. 3) 

C(s) 
500 

i + 100 
(19) 

The case of sound cancellation in a finite-length duct is also 
simulated by using the following parameters, 

L = 3.13m, a = 0.379, d = 0.076, xi = 0.228, 

X2 = 0.176, Xj = 0.379, and qa = q\ = 0.5. 

! ' « * * * * *« * * ^^ 

0.5 1 

time (second) 

1.5 

Fig. 8 Pressure response of space-feedforward and feedback control 
In a flnlte-iengtfi duct (non-zero disturbance S(s) as shown In Fig. 4) 
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both space-feedforward and feedback sound measurements. It 
is shown that by carefully selecting the delay elements in the 
controller, prior information of noise can be observed. Most 
importantly, the design results in simple closed-loop transfer 
functions which are easy to analyze. More theoretical develop­
ment as well as experimental verification will be conducted in 
future research work. 
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A P P E N D I X 

Proof of Eq. (15): 
Defining py as the following 

From Eq. ( l a ) , we have: 

Py = p{y, s) - eois)dds)e-^''^"^p(y, ,s) (A-1) 

Py = [Gtiy, a, s) + Gu(y, a, s)]Q(s) + [GUy, d, s) + G^iy, d, s)]N(s) 

Using control law of Eq. (10), the following equation can be derived. 

Py = -[Gi(y, a, s) + Gd(y, a, s)] ^l^^""' ''' 'l N(s) + [GtAy, d, s) + Goiy, d, s)]N{s) 
GD(X, a, s) 
G^(v d c'le-f'-^X''' ' ')' 

= -[Gaiy, a, s) + Guiy, a, s)] 1Y' ' _,,_,»,;,), N(s) + [GUy, d, s) + Goiy, d, s)]N(s) 
Gh(y, a, s)e ' yx^'-"-)' 

_ [Gi(y, d, s)GUy, a, s) + Gojy, d, s)Gi{y, a, s)]N{s) [Gt(y,a,s)Giiy, d, s) + Gd(y, a, s)Gi(y, d, s)]N{s) 
Giiy,a,s) Giiy,a,s) 

Expanding the numerators in the above equation and rearranging the all terms, we obtain: 

[1 - eo(.s)6'i(j')e"<^'-'"'*][e"<'-"'*'''~'" + 6'o(s)e""-"'>*""''''*][l + e-(2i.7c>(^-„)j 

Giiy, a, s) 

Equation (15) can be derived by substituting Eq. (Al ) into the above equation. 

Proof of Eq. (17): 
Substituting Eq. (I2a) into Eq. (14), we have: 

Q(s) = 
C(s)p{x, s) -IGtJy, a, s)Q(s) + Gjjy, d, s)N(s)]e-''-"'^''->' 

1 - 6'o(.?)6»,(*)e"<'^''^> 1 - 6l|(j)e-'"^' ' '«'-"' 

^ -[6'o(.;)e''"^'"^" + 9ois)eds)e-^^'-"'']Q(s) - Gjjy, d, s)Nis)e-^'-"'^"'-'^ 

1 - 9ois)e,(s)e-^^'^'''> 1 - 6l|(.s)e-<'^'''^><'-'' 

The above equation can be rearranged as follows. 

Cis)pix, s) 

^ _ Gi(y,d,s) ^^^^ C(s)[l - eo(i)fl,(i)e"<^'^"^']e^<'^"«'-'"V(^- s) 
Gt(y, a, s) 

Gijx, d, s) 

GD(X, a, s) 

Gi(y,a,s)n -d,is)e ~(,2Ulc)(l~x)-i 

N{s) 
C(s)[l - 6lo(«)^i(*)e~<''-"'']e"<'""""""V(Jc, .$) 

Gi{x,a,s)[l - ei{s)e -(,2U/c)([-x)-\ 
(A-2) 

Substituting the above controller into Eq. (1^), and considering that there exists a disturbance 6{s) at downstream position x, 
the pressure response can be shown as 

p, = p(x, s) - eo(s)e,(s)e-^^'-'"'^p{x, s) = [G!Ax, a, s) -H GB(x, a, s)]Q{s) + [Gi{x, d, s) + Goix, d, s)'[N{s) + 6{s) 

= [Gtix, a, s) + Gnix, a, s)] ~ ^ ° ^ ' ^ ' '^' '^ N{s) - [GUx,a,s) 
GD(X, a, s) 
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C(s)e-
+ GD(X, a, s)] • 

= - [ 1 - 6>i(j)e-<2'^"'>"^''i 

'[1 - eois)eiis)e-'^''"'] 

GUx, a, s)[l - e i ( i )e-< '^ ' ' '« ' -" j 

1̂ ,)-, C(s)[l - eo(s)ei(s)e-^^''"'^]e-^'^"'^^'-^p(x,s) 

= -C(s)[l - 0o(«)6ii(i)e^"^'"']e-<'""^'<"-'"p(^. •s) + ^C-?) 

Therefore, 

6(s) 

p(x, s) + [Gt(x, d, s) + GB(x, d, s)]N{s) + 6(s) 

+ 6is) 

p(x, s) 
[1 - C(i)e^<'"''"'-"*][1 - 6'o(5)6ii(i)e-''^"^'] 

(A-3) 

Proof of Eq. (18): 
Substitute Eq. (A-2) into Eq. (1^) for x = AIJ, we have: 

Pi = [Gt,(xu a, s) + Gu(xi, a, s)] J' ^' ' N(s) - [Gi(x,, a, s) 
Gl(Xi, a, s) 

+ G-,(x„ a, s)] ^ ^ \' aX Xc,u-.u P^^^' '^ + C^^^^" ^ ' '^ + G ° ( ^ " ^ ' ^)]^(^> 
Gl(xx, a, s)[\ - 9i(s)e ^^"""' ^3'] 

GS(A;I, a, i ) 
A r ( ^ ) - [G^(xua,s) 

^-, M C ( j ) e - ( Z j / c ) ( j ; . ~ ( i ) r i __ [1 - eo(i)e,(*)e-*''^'^>] 
G S t e , a, ^)[1 - e,(i)e-'^^'^><'-'3)] ^^ ' ' ' ' ^^ 

The above equation can be rearranged as follows 

A,i / j (x i , s) + Ai3p(.x;3,.?) = Af(.y) 

where. 

and 

A„ = 
G D ( X I , a , i ) 

[GJ(A: I , a, *) + Gu(jc,, a, ^)]C(i)e-<^'' '<' '- ' ' ' 
-(Ls/cWo-d) + ^o(i')e - ( I j / cXo+d) ][1 + e -(2/.v/c)(jr,-<i)-i 

Similarly, for x = X2, 

Where 

and 

From Eq. (A-3), we have: 

where 

A22 = 

A23 = • 

A22P(JC2, S) + A23P(.«3, s) = Af(.s) 

G D ( X 2 , a , .s) 

[G?;(X2, a, *) + GZ;(A:2, a, s)\C(s)e~'-'^''^^'^-'^ -(.U/c)(_a-d) + Oo(s)e -(Ulc)(a+d) "irl 1 „-(.2U/c)I.X2~a)-i 

A 3 3 / ? ( X 3 , S) = S(S) 

A33 = [1 - 6lo(s)0,(*)e"<"'"'''][l + C(5)e^<'"''=«'3-'»] 

So, the whole closed-loop system can be expressed by: 

A„ 
0 
0 

0 
A22 

0 

A,3 
A23 
A33 

p(xu s) 
pixi, s) 
P(Xi, S) 

= 
N(s) 
N(s) 
6(s) 

The characteristic equation of above equation is 

which is equivalent to Eq. (18). 
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A,iA,2A33 = 0 
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