
PHYSICAL REVIEW E 92, 043008 (2015)

Enhanced mixing via alternating injection in radial Hele-Shaw flows
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Mixing at low Reynolds numbers, especially in the framework of confined flows occurring in Hele-Shaw cells,
porous media, and microfluidic devices, has attracted considerable attention lately. Under such circumstances,
enhanced mixing is limited due to the lack of turbulence, and absence of sizable inertial effects. Recent studies,
performed in rectangular Hele-Shaw cells, have demonstrated that the combined action of viscous fluid fingering
and alternating injection can dramatically improve mixing efficiency. In this work, we revisit this important fluid
mechanical problem, and analyze it in the context of radial Hele-Shaw flows. The development of radial fingering
instabilities under alternating injection conditions is investigated by intensive numerical simulations. We focus
on the impact of the relevant physical parameters of the problem (Péclet number Pe, viscosity contrast A, and
injection time interval �t) on fluid mixing performance.
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I. INTRODUCTION

The viscous fingering (or, Saffman-Taylor) instability [1]
occurs in both immiscible and miscible fluids, when a less
viscous fluid displaces a more viscous one in a porous medium,
or in the confined environment of a Hele-Shaw cell [2–4].
Instead of advancing as a uniform front, the fluid-fluid interface
develops peculiar structures in the form of fingers. As time pro-
gresses, the fingers change in size and shape, which leads to the
formation of complex patterns. Experimental and theoretical
studies in this system focus on two principal flow geometries:
(i) rectangular [1–3] and (ii) radial [5–7]. In rectangular (or,
channel) cells the initial unperturbed interface is straight, and
the unperturbed flow is uniform and parallel to cell walls. In
the radial case, the unperturbed interface is circular with the
less viscous fluid pumped into the more viscous one at a point
source, and the flow evolves radially outward.

Viscous fluid fingering plays a key role in a number of
natural and technological processes, including flows in porous
media [2], enhanced oil recovery [8], and microfluidics [9].
Depending on the situation, viscous fingering formation can
be an obstacle or a benefit. For example, in oil recovery it is
mostly undesirable. In fact, the fingering instability is a major
source of poor oil recovery once rapidly evolving injected
water fingers may reach the entrance of the well and mainly
water, and not the more viscous oil, is regained. This type of
important practical difficulty has motivated a number of recent
studies that suggest different strategies intended to inhibit the
emergence of viscous fingering. One particularly successful
controlling technique has been proposed in Refs. [10–14],
where proper control of the shape of the emergent fingered
patterns has been achieved through the employment of time-
dependent injection schemes. In these studies, it has been
shown that time manipulation of the injection flow rate of the
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less viscous fluid can either offer a way to control the number
of the uprising fingers, or to simply suppress their appearance.

However, under other physical circumstances or industrial
applications, the emergence of intense viscous fingering can be
something beneficial. For instance, it has been recently shown
that intense fingering destabilization in rectangular Hele-Shaw
cells does favor fluid mixing in confined systems, such as in
microfluidic devices [15,16]. As these confined fluid systems
typically have a small Reynolds number, inertial effects are
negligible, and turbulence does not set in. Therefore, achieving
enhanced fluid mixing is not really trivial. In a follow-up
paper [17], the same group of researchers has demonstrated
that confined fluid mixing in rectangular Hele-Shaw cells can
be improved further, if one employs an alternating injection
protocol. Within this methodology, one fluid is injected
followed by another one to lower the unfavorable viscosity
ratios between displacing and displaced fluids. In Ref. [17]
it has been found that the combined action of alternating
injection and viscous fingering actually leads to a dramatic
increase in mixing efficiency. It should be noted that previous
studies of viscous fingering in alternating injection analyzed
the spreading of a single slug in radial [18] and rectangular
geometry [19–21]. More recently, a cyclic injection procedure
has also been applied to study reactive displacement in porous
media flows [22].

Due to the practical and academic relevance of the confined
mixing fluid problem studied by Jha et al. in Refs. [15–17]
for the rectangular Hele-Shaw setup, it is also of interest to
understand the emergence of similar phenomena for miscible
displacements in radial Hele-Shaw cells. It is worth noting that
the radial geometry flow has a close connection to important
single-source applications, namely those related to enhanced
oil recovery. The major goal of this research is to investigate
under what circumstances one can obtain enhanced mixing
via alternating injection in radial Hele-Shaw flows. In order
to do that, we perform intensive numerical simulations of
the system, and examine how alternating injection couples
to fingering effects, particularly during fully nonlinear stages
of mixing pattern evolution.
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II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

A. Governing equations

We study a binary system containing two incompressible
viscous fluids, which are miscible to each other, in a radial
Hele-Shaw cell of constant gap thickness b. The viscosities
of the fluids are denoted as η1 (fluid 1), and η2 (fluid 2), and
we assume that η2 � η1. Initially, the cell is fully occupied by
fluid 2. In the framework of the alternating injection procedure,
equal amounts of fluid 1 and fluid 2 are injected in sequence.
The process continues up to a time t = tf , when the area of
the total injected fluid expands to πDf

2/4 in a stable injection
condition without fingering instability. Here Df denotes the
diameter of the resulting circular domain. At first, the diffusive
fluid-fluid interface is a small circular core of diameter D0,
and a Cartesian coordinate system (x,y) is defined in such a
way that its origin is located at the center of this core region.
Consequently, the areal injection rate can be obtained as Q =
π (Df

2 − D0
2)/4tf , in which the total injection duration for

both fluid 1 and fluid 2 is tf /2 each. In accordance with the
general phenomenology of the Saffman-Taylor problem, since
η2 > η1, the interface becomes unstable during the injection
of the less viscous fluid 1, while it expands in a stable manner
under the injection of the more viscous fluid 2.

The evolution of the system in such a confined Hele-Shaw
cell geometry is governed by the following set of gap-averaged
equations [23]:

∇ · u = 0, (1)

∇p = −12η

b2
u, (2)

∂c

∂t
+ u·∇c = D∇2c. (3)

Equation (1) expresses the incompressibility condition, where
u is the two-dimensional velocity vector with components
(ux,uy). A Darcy’s law for miscible Hele-Shaw flows is
expressed by Eq. (2) where p is the pressure, and η is the
viscosity of the binary system. The concentration equation is
given by Eq. (3), where D is the constant diffusion coefficient.
In Eq. (3) c represents concentration of the less viscous fluid
1, such that c = 1 and c = 0 for the less viscous fluid 1,
and the more viscous fluid 2, respectively. Viscosity η and
concentration c are assumed to be related as [24]

η(c) = η1e
[R(1−c)], R = ln

(
η2

η1

)
. (4)

In order to render the governing equations and rele-
vant variables dimensionless, Df and tf are taken as the
characteristic scales. Furthermore, the pressure is scaled by
(12η1D

2
f )/(b2tf ). Thus, the dimensionless version of the

governing equations (1)–(3) can be expressed as

∇ · u = 0, (5)

∇p = −ηu (6)

∂c

∂t
+ u·∇c = 1

Pe
∇2c. (7)

In the context of our problem, dimensionless controlling
parameters such as the Péclet number Pe (relative measure
of advection and diffusion effects), and the viscosity A

(dimensionless viscosity difference) are defined as

Pe = D2
f

Dtf
, A = eR − 1

eR + 1
.

The entire alternating injection procedure is carried out
by sequentially injecting even amounts of the less viscous
fluid, and the more viscous fluid, for n full cycles till the
completion of the process at time t = 1. Each cycle contains
two alternating injection stages, whose injection duration lasts
�t to yield the same total amount of injection, e.g., n�t = 0.5,
for each fluid. These three dimensionless parameters (Pe, A,
�t) will be used in the rest of this work to investigate how the
alternating injection process and viscous fingering affect fluid
mixing in radial Hele-Shaw flows.

B. Numerical scheme

The numerical methods we employ in this work are similar
to the ones developed in Refs. [14,23,25–28], in which
the governing equations have been conveniently recast into
the well-known stream-function–vorticity (φ-ω) formulation,
yielding

ux = ∂φ

∂y
, uy = −∂φ

∂x
, (8)

∇2φ = −ω, (9)

where the vorticity is related to the gradients in concentration
as

ω = −R

(
ux

∂c

∂y
− uy

∂c

∂x

)
.

In the present radial injection Hele-Shaw flow, the rotational
component of the velocity is smooth and can be obtained
numerically with high accuracy, while the potential part of the
outward velocity induced by injection is related to a flow singu-
larity at the source origin. The flow singularity makes accurate
computations more difficult near this central location. To avoid
numerical instabilities near the source, we smooth out the point
source by distributing its strength in a Gaussian way over the
initially circular core region, i.e., r � Dc, where r and Dc

denote the dimensionless radial distance away from the point
source and the dimensionless core diameter (Dc = D0/Df ),
respectively. Scaled by a characteristic injection rate Df

2/tf ,
the magnitude of the dimensionless potential radial velocity
satisfying these requirements can be expressed as [23,25,27]

upot = − Q

2πr

[
1 − exp

(−4r2
/
Dc

2
)]

r̂, (10)

where r̂ represents the unit vector along the radial direction.
The dimensionless injection strength Q in the above expres-
sion takes the form Q = π (1 − Dc

2)/4.
The simulations are performed till the completion time

at t = 1 in a square computational domain with length of
3/2, which is sufficiently large to contain the injected fluid
inside. A circular core with a diameter of Dc = 0.15 initially
filled with the less viscous fluid is placed at the center of
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the domain to start the injection process. To proceed with
the alternating injection, fluids inside the circular core will
be swapped when the injected fluid is changed. A small
magnitude random noise is applied to the positions of 0.5
concentration along the core circumference, i.e., r = 0.075,
at the beginning of each alternating injection stage to break
the unphysical, artificial symmetric shape of the fingering
patterns. Since the flux across the boundary is prescribed by
the potential part, the rotational components of velocity are
confined in the computational domain. As a result, a vanishing
stream-function condition can be applied on the boundary.
Moreover, since the computational domain is large enough to
accommodate the injected fluid, the concentration is uniform
on the boundaries, so that vanishing concentration gradient
is used. By incorporating these ingredients, the boundary
conditions are prescribed as follows:

x = ±3/4: φ = 0,
∂c

∂x
= 0, (11)

y = ±3/4: φ = 0,
∂c

∂y
= 0. (12)

To reproduce the extremely fine structures of the fluid
fingers, a highly accurate pseudospectral method is employed.
For implementation of the pseudospectral method, the ac-
tual boundary conditions applied in the numerical code are
∂φ/∂x = 0 at x = ±3/4. However, at the present situation,
where no gradient of the concentration is generated on the
boundaries, the above conditions automatically lead to φ = 0.
Both c, and φ are expanded in a cosine series in the x direction.
In the y direction, discretization is accomplished by sixth-order
compact finite differences. Time integration for the phase
variable is fully explicit and utilizes a third-order Runge-Kutta
procedure. The evaluation of the nonlinearity at each time
level is performed in a pseudospectral manner. Simulations
that used a similar approach [23,27] have been validated by
comparing the growth rates with the respective values obtained
from linear stability theory. For a more detailed account of
these numerical schemes and their validations, the reader is
referred to Refs. [14,23,26–28].

Here, we briefly comment on the fact that the two Cartesian
coordinates are treated differently in our numerical simula-
tions. Considering the circular geometry of the physical prob-
lem under study, a polar coordinate system would obviously
seem more appropriate. Nevertheless, this is not always the
case if the numerical accuracy is a major concern. In order to
successfully produce the extremely fine and intricate structures
emerging in the miscible fingering problems, highly accurate
numerical schemes are essential, e.g., the pseudospectral
method associated with high-order compact finite-difference
schemes. In practice, the implementation of these high-order
schemes impose serious limitations on a polar coordinate
description, but perform much better in a uniform Cartesian
grid. This is the reason why a rectangular coordinate system
is adopted to describe the current injection flow situation. A
detailed discussion regarding the justifications for the use of
the rectangular coordinate system for similar radial Hele-Shaw
flows is provided in Ref. [29].
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FIG. 1. (Color online) Evolution of concentration images for
Péclet number Pe = 3000, viscosity contrast A = 0.922, and different
alternating injection intervals �t = 0.5 (top row), 0.25 (middle row)
and 0,125 (bottom row), taken at times t = 0.5 (left column), 0.75
(middle column), and 1 (right column).

III. RESULTS AND DISCUSSION

A. Fingering and flow patterns

Shown in Fig. 1 are concentration images for a represen-
tative series of numerical simulations considering Pe = 3000
and A = 0.922, for alternating injection time intervals �t =
0.125, 0.25, and 0.5, taken at times t = 0.5, 0.75, and 1.
First, let us examine the situation in which �t = 0.5 (top
row of Fig. 1), where we have just one cycle of alternating
injection (n = 1), and the injection of the less viscous fluid
occurs for 0 � t � 0.5. Under such circumstances, and at
time t = 0.5, the inner region of the simulated domain is
fully occupied by the less viscous fluid (clear fluid). In this
first stage of injection, a typical miscible fingering pattern
is obtained, where some fingers merge and others tend to
split at their tips. Then, in a second stage of injection, the
more viscous fluid (dark fluid) is introduced, characterizing
the expansion of a stable circular blob when 0.5 < t � 1.0.
The development of such a stable circular structure should
not be surprising, since here a more viscous fluid is pushing
a less viscous one, establishing a stable displacement in the
Saffman-Taylor problem. On the other hand, one can see that
the less viscous fingers formed during the previous injection
stage keep evolving. However, due to the lack of a continuous
supply of less viscous fluid during this outward expansion, one
notices that diffusion effects take place within the less viscous
fluid. As compared to the case of the sole injection of the less
viscous fluid up until t = 0.5, a better mixing performance
is achieved by the injection of the additional volume of the
more viscous fluid for 0.5 < t � 1.0. These basic observations
indicate that the alternating injection procedure, i.e., initial
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FIG. 2. (Color online) Interfacial profiles, represented by con-
centration contours with c = 0.1 at t = 1, for A = 0.922, and
Pe = 3000, whose correspondent images are shown in the right
column of Fig. 1. Here the dimensionless radial position of the
outermost interfacial profile rf is plotted as a function of the
polar angle θ . Despite the active interactions amongst the fingering
structures, changes in the alternating injection interval �t do not
significantly alter the ultimate shape of the peripheral fingering
patterns.

injection of the less viscous fluid followed by the injection of
the more viscous one, improves the fluid mixing performance
by effectively increasing the total diffusive interfacial length.
It is worth pointing out that these radial flow findings are in
line with similar results obtained in Ref. [17] for miscible flow
in rectangular Hele-Shaw cells.

Now we turn our attention to the cases in which smaller
alternating injection time intervals �t are used, involving a
larger number (n) of injection cycles. We begin by analyzing
the case in which �t = 0.25 and n = 2 as depicted in the
middle row of Fig. 1. By increasing the number of alternating
injection cycles, more fluid-fluid interfaces are generated,
which tends to enhance fluid diffusive mixing. It is also
evident that the multiple alternating injection cycles form
fluid layers of the less viscous fluids that are separated by
the more viscous fluid, triggering the emergence of fingering
instabilities. While the outermost fingering layer of the less
viscous fluid advances slowly, the less viscous fingers in
the inner layer expand much faster, breaking through the
more viscous fluid layer. These inner fingers eventually reach
the roots of outer fingers, leading to the development of
salient fingering interactions, where the occurrence of finger
interpenetration and finger merging is detected. All these
factors combined conspire to improve fluid mixing.

For even smaller alternating injection intervals, as in the
case where �t = 0.125 and n = 4 (illustrated in the bottom
row of Fig. 1), the fluid layers are thinner and visually
striking fingering patterns arise, so that an improved fluid
mixing performance is obtained. This can be easily verified by
inspecting the final concentration images taken at time t = 1,
shown in the right column of Fig. 1.

It is worthwhile to note that, regardless the values of
the injection intervals �t , the resulting outermost fingering
interface patterns look very similar to one another. This is
more clearly illustrated in Fig. 2, whose interfacial profiles are
represented by the concentration contour with c = 0.1. There,
it can be observed that the overall shapes of the peripheral
interfacial profiles taken for t = 1 are almost identical. Still,
there are some small differences: for instance, for the interface
located farther away from the origin, in particular for the
fingertips of the faster advancing fingers, the interfacial profile
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FIG. 3. (Color online) Evolution of the rotational component of
the streamlines, corresponding to the concentration images depicted
in Fig. 1.

is slightly ahead for larger injection intervals. In contrast, for
the interface closer to the origin, e.g., the roots of the fingers or
tips of slower advancing fingers evolve in an opposite manner,
where the interfacial profiles associated to smaller injection
intervals are ahead. These distinct behaviors can be understood
by the local distribution of vortices generated by fingering
interactions, as discussed in the following paragraph.

To understand the dynamics of fingering interactions, the
rotational component of the streamlines for the cases presented
in Fig. 1 are shown in Fig. 3. In the context of miscible
viscous fingering events, it is well known that each individual
finger is formed by a pair of counter-rotating vortices [23].
The strength of such vortex pairs is measured by the local
density distribution of streamlines. Keeping this in mind, we
examine the situation in which �t = 0.5 (top row of Fig. 3).
For the first injection stage (t � 0.5) one observes the uprising
of numerous vortex pairs, which in turn corresponds to the
initial formation of the various fingers. At the second injection
stage, when the more viscous fluid is injected (0.5 < t � 1),
these vortex pairs are moved in the outward direction. Since
the injection at this second stage corresponds to a stable
Saffman-Taylor situation, the strength of the vortex pairs is
weakened, and the pairs just suffer a relatively mild stretching.

If the injection interval is reduced to �t = 0.25 (middle
row of Fig. 3), the fingering formation up to time t = 0.5 is
similar to the previous case for which �t = 0.5, since it has
gone through just a full cycle of injection. This explains the
resemblance of the streamline patterns at t = 0.5 for these two
cases (�t = 0.5 and �t = 0.25). Notice that the strength of
the vortex pairs is reduced for �t = 0.25 because only a half
amount of the less viscous fluid has been injected. Afterwards,
injection of the less viscous fluid is resumed (0.5 < t � 0.75)
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to generate an additional inner layer of vortex pairs. These
inner vortex pairs are of larger magnitude, and expand faster
than those associated to the outer fingers. As a consequence,
these two layers of vortex pairs interact very intensively.
By inspecting the streamlines at t = 0.75 one verifies the
formation of two distinguishable layers of vortex pairs, in
which the strength of the inner layer vortex pair is much
stronger. The vortex pairs of these two distinct layers are not
entirely separated, and can merge. These vortex pairs’ merging
phenomena continue for 0.75 < t � 1, when the injection is
alternated again, to allow insertion of the more viscous fluid.
In this case, closely located streamlines are further stretched,
and contain multiple vortices.

The phenomena described in the two previous paragraphs
are even more evident for a smaller injection interval, e.g.,
for �t = 0.125 (bottom row of Fig. 3). Stretched streamlines
containing multiple vortices are fully formed at t = 0.5, when
two full cycles of alternating injection have been completed.
This trend, associated with active vortex merging, keeps
developing till the end of injection process at time t = 1,
when the resulting streamline patterns are quite complicated.
These complex patterns are related to enhanced convective
mixing effects between the staggered fluid layers of the two
fluids, as exemplified in the bottom row of Fig. 1. In addition,
the significant vortex interactions in the innermost layer also
explains the faster advance of the interfacial profile closer
to the origin for a smaller injection interval, as identified in
Fig. 2. In summary, the material presented in Figs. 1–3 supports
the idea that, for radial Hele-Shaw flows, smaller alternating
injection intervals �t do favor greater mixing in the bulk,
while keeping the shape of the outermost interface profile
nearly unchanged.

From the results and discussions presented so far in this
section, one can list two main causes for the enhanced mixing
obtained in radial Hele-Shaw flows through an alternating
injection method: (i) the formation of a longer diffusive
interface, and (ii) the existence of conspicuous fingering
interactions. Nevertheless, with respect to the influence of
the Péclet number Pe on mixing, these two factors seem
to be somehow conflicting. On one hand, smaller values of
Pe do improve diffusive mixing through the formation of
longer diffuse interfaces. But, on the other hand, smaller
Péclet numbers also weaken the fingering interactions, which
are preferred under stronger convective conditions. In order
to investigate these two distinct roles played by the Péclet
number, in Fig. 4 we present representative simulations
considering that �t = 0.1 and t = 1, for three increasingly
larger values of the Péclet number: 1000, 3000, and 6000.
This is done for two values of the viscosity contrast A: 0
and 0.848. The series for viscosity matched fluids A = 0
(top row of Fig. 4) illustrates the purely diffusive cases,
while the sequence for A = 0.848 (bottom row of Fig. 4)
represents the conditions associated with strong fingering
interactions.

When A = 0, the fluids have equal viscosities (stable
Saffman-Taylor situation), so that fingers are not formed.
Instead, the alternating layers of viscous fluid 1 (clear fluid) and
of fluid 2 (dark fluid) evolve as multiple, concentric circular
layers. By examining the top row of Fig. 4 one clearly sees that
these circular annuli are more strongly diffused for Pe = 1000,

Pe=1000

A
=

0

Pe=3000 Pe=6000

A
=

0.
84

8

FIG. 4. (Color online) Concentration images obtained for
�t = 0.1 at time t = 1, A = 0 (top row), A = 0.848 (bottom row),
and for three values of the Péclet number: 1000 (left column), 3000
(middle column), and 6000 (right column).

and much better preserved for Pe = 6000. As expected, fluid
mixing is more effective for lower values of the Péclet number.

However, things are not that straightforward for the high
viscosity contrast case (A = 0.848), when significant fingering
formation is present. In this situation a nontrivial coupling
between A and Pe takes place. As depicted in the bottom row
of Fig. 4, the occurrence of fingering is evidently restrained
for lower values of Pe. In fact, interfacial expansion is more
evenly distributed for Pe = 1000. The strong diffusive effects
associated with this low value of Pe lead to significant
mixing, especially at more external fluid layers that have
been generated by the earlier injection cycles. Nonetheless,
higher values of the Péclet number (e.g., Pe = 6000) lead
to intense fingering interactions also resulting in strong and
complex dispersive mixing. This behavior is in stark contrast
with the case for A = 0 and Pe = 6000 where the integrity of
the multiple circular layers of fluids is much better retained. In
the following section we will show that this dispersive mixing
for higher Péclet number is slightly more efficient than the
diffusive mixing under lower Pe. As we will see, the interplay
of diffusive and convective-dispersive mixing, which depends
on the coupling between A, Pe and �t , plays a central role in
determining the effectiveness of the mixing process.

B. Quantitative measures

In the previous section, we have qualitatively verified that
the mixing performance can be boosted by employing an
alternating injection scheme, associated with smaller injection
intervals. It turns out that the mixing efficiency can be more
quantitatively measured by the variance of the concentration
distribution which is calculated by [15,17,30]

σ 2 =
∑

i

Ai(ci − cm)2

A0
. (13)

Here, cm is the instantaneous mean concentration of the entire
computational domain excluding the core area, denoted as A0.
Ai and ci are the area of every discretized mesh, and the local
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FIG. 5. (Color online) Time evolution of the concentration vari-
ance σ 2 for several values of the control parameters Pe, A, and �t .
Lower values of the variance imply enhanced mixing efficiency.

concentration in the mesh, respectively. A smaller value of the
variance indicates better fluid mixing, so that in a perfectly
mixed state σ 2 = 0. The temporal mean concentration can be
written as cm(t) = Q1/A0, where Q1(t) is the instantaneous
injected area of the less viscous fluid 1. Under these conditions,
injection of the fluid 1 always increases the variance, while the
variance remains constant if injection is switched to the fluid 2.

For the sake of clarity, at this point we briefly discuss
a special condition associated with stable injection of an
immiscible fluid, e.g., sharp interface without diffusion. In
such circumstances, the variance is given by σ 2(t) = Q1(A0 −
Q1)/A2

0. A representative case, showing as the variance
evolves with time for �t = 0.5, is plotted in Fig. 5 (solid
curve). In this case, the concentration variance presents a rapid
increase during the first injection stage of fluid 1 for t � 0.5,
then reaches a maximum value (σ 2

m = 0.1424). Subsequently,
when (0.5 < t � 1), the variance remains constant when the
injection is alternated to fluid 2. By the way, under this
immiscible sharp interface condition, the maximum variance
at the completion time t = 1 is kept unchanged, regardless the
injection time interval. So, it can be used as a reference value
to determine the enhancement of mixing.

We proceed with our examination of Fig. 5, and now
focus on the impact of the alternating injection interval �t

on the time evolution behavior of σ 2. First, we consider the
situations in which �t = 0.5, 0.25, and 0.1, for Pe = 3000 and
A = 0.922. For the miscible and unstable injection scenario,
one readily observes that the curve for �t = 0.5 significantly
deviates from the reference immiscible sharp interface curve.
In fact, the variance growth during the unstable injection
interval of the less viscous fluids at the first stage, i.e.,
t � 0.5, is considerably smaller for the present condition
where �t = 0.5. In addition, one can see that the variance
decays even during the second stable injection stage of the
more viscous fluid, i.e., when 0.5 < t � 1. We have verified
that the variance at the completion time (t = 1) is reduced
more than 35% as compared to the reference case. These more

quantitative findings further support the idea that alternating
injection is a suitable method to achieve enhanced mixing in
radial flows.

The behaviors described above can be more physically
explained by considering the contribution of two key factors
mentioned in Sec. III A: diffusive mixing and convective
fingering interactions. The decrease of the variance growth rate
in the first unstable injection stage can be mainly attributed to
the fingering interactions, when vigorous fingering instabilities
take place. On the other hand, the decline of the variance
during the stable injection is mostly related to diffusive
effects, since no extra fingers evolve at this second stage.
If the alternating injection interval is reduced to �t = 0.25
in Fig. 5, the evolution of the variance in the first full cycle,
i.e., 0 � t � 0.5, is somewhat similar to the previous case
in which �t = 0.5, except for the fact that the time periods
for the two stages are shorter. Despite this, both the variance
growth rate of the unstable injection and the variance decline
of the stable injection are more significant in the second
cycle (0.5 < t � 1). Similar dynamical responses are found
if the injection interval is reduced further to �t = 0.1. All
these data offer quantitative indications that a better mixing
performance is achieved through the utilization of shorter �t ,
i.e., via the employment of more alternating injection cycles.

To evaluate more perceptibly the influence of the Péclet
number, whose antagonistic roles regarding mixing have been
qualitatively discussed in the previous section, we plot the
temporal evolution of the variance for the pattern-forming
images illustrated in Fig. 4, whose related parameters are also
presented in Fig. 5: Pe = 1000, 3000, and 6000; A = 0, and
0.848, and �t = 0.1. For the stable Saffman-Taylor cases in
which A = 0, where the major contributor to mixing is fluid
diffusion, smaller Péclet numbers always lead to lower values
of variance. The prevalence of the diffusive effects can be
clearly verified from the almost identical growth rates, i.e., the
curves evolve in an almost parallel fashion during the injection
stage of fluid 1 for all cycles, in spite of the value of the
Péclet number. On the contrary, the decrease of the variance
during the injection stages of fluid 2 is more intense for lower
values of the Péclet number. For instance, the variance for the
case in which Pe = 6000 almost remains constant during the
injection stage of fluid 2 in the first cycle, i.e., 0.1 < t < 0.2,
which indicates little influence of diffusion. The variance
drops off more evidently at this stage for the case in which
Pe = 1000. Consequently, at these diffusion dominated stages
larger decreases in the variance for cases of smaller Péclet
number accumulate throughout all the injection cycles, and
results in a greater mixing performance at t = 1, as shown in
Fig. 5.

The situation for the unstable Saffman-Taylor cases in
Fig. 5 for which A = 0.848 is a bit different. Although the
concentration images shown in the bottom row of Fig. 4
are qualitatively distinct, the influence of the Péclet number
to fluid mixing is not quantitatively significant. This is
supported by the fact that in Fig. 5 the three variance curves
for Pe = 1000, 3000, and 6000, A = 0.848 and �t = 0.1
practically overlap. The minor differences among these curves
point to a compromise between the strong dispersion effects
induced by vigorous fingering interactions under high Péclet
number conditions, and strong diffusion in the cases of low
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FIG. 6. (Color online) Behavior of the normalized variance σ 2
n

as the Péclet number Pe is changed, for t = 1, and several values of
the control parameters A and �t . Note: the cases for A = 0.922 and
Pe � 6000 are numerically unstable, so they are not presented.

Péclet number. Despite these observations, by inspecting Fig. 5
one can see a slight better mixing performance for the higher
Péclet number situation (Pe = 6000). Finally, from Fig. 5
(see the cases A = 0, 0.848, and 0.922 for Pe = 3000 and
�t = 0.1) one can also tell that better mixing performance
can always be achieved by larger viscosity contrast, due to the
occurrence of more intense fingering interactions.

We continue our discussion by studying Fig. 6, which
plots the normalized variance σ 2

n = σ 2/σ 2
m in terms of the

Péclet number Pe at the completion time t = 1, for several
combinations of the control parameters A, and �t . The general
trends of better mixing performances for shorter alternating
injection interval �t , and for higher viscosity contrast A are
confirmed by the data shown in Fig. 6. However, the mixing
efficiency related to the action of the Péclet number depends
on the coupling with fingering interactions. For stable cases in
which A = 0, stronger diffusion at lower Péclet number always
leads to a better mixing performance. However, this is not
true when fingering instabilities are triggered for sufficiently
large viscosity contrasts, e.g., A = 0.848 and 0.922. For
shorter alternating injection intervals (�t = 0.05 and 0.1),
the normalized variance decreases slightly for higher Péclet
number, which is in line with the discussion we had earlier.
On the other hand, this monotonic trend is not followed for
longer alternating intervals, e.g., for � � 0.25.

The nontrivial competition between diffusion and fingering
interactions can be better visualized in Fig. 7, which shows
the concentration images of typical cases for A = 0.922 at
t = 1. For a shorter alternating injection interval (�t = 0.05),
the fluid layers formed in different cycles of fluid injection are
extremely thin. Consequently, diffusive effects in the case of
Pe = 1000 and fingering interactions for the case of Pe = 3000
are both very significant, and smear off the concentration
variation. Most of the regions present significant diffusion
or dispersion to form circular mixing cores in both cases.
The slightly better overall mixing performance for higher
Pe = 3000 indicates extremely intense fingering interactions
among the numerous thin layers of the injected fluid.

Pe=1000

Δt
=

0.
05

Δt
=

0.
25

Pe=3000

FIG. 7. (Color online) Fingering patterns for A = 0.922 at t = 1,
�t = 0.05 (top row), �t = 0.25 (bottom row), Pe = 1000 (left
column), and Pe = 3000 (left column).

A completely different scenario is obtained in Fig. 7
for a longer injection time interval �t = 0.25, where the
concentration images reveal very different types of patterns, in
which the widths of the staggered fluid layers are considerably
thicker. These thicker fluid layers allow more independent
growth for the long fingers, before they start to interact with
each other. Therefore, when �t = 0.25 most of the inner
fingers penetrate into the outer layer, rather than expanding as
a circular mixing core, as happened in the case for �t = 0.05.
This absence of active fingering interactions is consistent with
the poorer mixing performance for higher Péclet numbers.

The results extracted from the data displayed in Figs. 5–7
indicate, now more quantitatively, that the action of the
Péclet number is not monotonic, but couples with A and
�t . Diffusive effects are the dominant mechanism for fluid
mixing under situations of weak fingering instability. In
this case, lower Péclet numbers tend to enhance mixing
efficiency. On the other hand, if intense fingering is triggered
at larger viscosity contrasts, the results do not follow the same
trend. For cases associated with shorter alternating injection
intervals, fluid mixing performance is enhanced for higher
Péclet numbers because of prominent interactions between the
fingers generated by different injection cycles. Nevertheless,
mixing efficiency is found to be unaltered or even decreased
for conditions of sufficiently high viscosity contrast at longer
alternating injection intervals, e.g., A = 0.922 and �t � 0.1.
This somewhat unexpected behavior can be mainly attributed
to the formation of the long highly branched fingers induced by
sufficiently high viscosity contrast. The emerging fingers tend
to penetrate deeper toward the surrounding fluid under higher
viscosity contrast, so that longer fingers evolve after a period
of time, as recently revealed experimentally in Ref. [31]. If the
injecting time interval is also long enough for the emergence
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of these long fingers, the fluid interactions will be constrained
to occur within these few long fingers, as shown on the bottom
row in Fig. 7. This constrained fingering interaction will
be more significantly coupled under more unstable fingering
conditions associated to a higher Péclet number. As a result,
the overall mixing efficiency will not be improved, and may
even be reduced if both the viscosity contrast and injecting
time interval are sufficiently large.

IV. CONCLUDING REMARKS

In this work, intensive numerical simulations have been
used to study enhanced mixing induced by viscous fingering
and alternating injection in confined radial Hele-Shaw flows.
As in the rectangular flow case studied by Jha et al. [15–17], we
have verified that the alternating injection method significantly
improves the mixing performance in radial geometry. An
inspection of the complex concentration images for the mixing
patterns reveals the following general dynamic scenario: on
one hand, alternating injection generates multiple fluid layers,
and effectively increases the interfacial contact area between
the fluids, leading to more diffusive mixing. On the other hand,
the thin fluid layers produced during different injection cycles
result in strong fingering interactions, which greatly enhances
dispersive fluid mixing.

A more quantitative assessment of the problem was
provided by the concept of concentration variance, which

quantifies the mixing efficiency. With the help of this useful
statistical quantity, we could better substantiate our qualitative
findings regarding fluid mixing. First, we verified that the
overall mixing performance is indeed considerably improved
by the shortening of the alternating injection intervals.

The interplay of the alternating injection interval �t with
other key control parameters of the system (namely, the Péclet
number Pe, and the viscosity contrast A) have also been
investigated. As expected, we have found that larger A triggers
more vigorous fingering instability, leading to a better mixing
performance.

However, the role played by Pe is a bit more subtle:
for the cases in which fingering interactions are intense,
e.g., large A associated with shorter �t , a higher Péclet
number result in a better mixing. Differently, a lower Péclet
number performs a better job for mixing either for diffusion-
dominated conditions without active fingering instability, or
when fingering interactions are less intense, for sufficiently
low A. This also happens for sufficiently high A, but associated
to longer alternating injection intervals.
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