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BODY FORCE EFFECT ON CONSOLIDATION OF POROUS

ELASTIC MEDIA DUE TO PUMPING

Tung-Lin Tsai*, Kuo-Chyang Chang, and Liang-Hsiung Huang

ABSTRACT

In this study, the linear poro-elasticity theory is applied to examine the body
force effect on consolidation of porous media due to pumping.  The steady-state solu-
tions of displacement and incremental effective stress for a stratum of clay sandwiched
between sandy strata are analytically given.  The effect of body force could be repre-
sented by the body force number that depends on Lame’s constants, porosity, and the
thickness of porous media.  The consolidation of clay is significantly related not only
to the body force number but also to the ratio of water table depression in upper and
lower sandy strata due to pumping.  The neglect of body force will severely underes-
timate the displacement and incremental effective stress when porous media are soft
or thick, or both.  This might lead to potential flaws in engineering practice, such as
the calculation of soil settlement.
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pumping.
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I. INTRODUCTION

The conventional one-dimensional Terzaghi
consolidation theory of porous elastic media has been
widely used to estimate soil consolidation (Das, 1990;
Lambe and Whitman, 1979), but the effect of body
force (i.e., the variation of self weight) is not consid-
ered in it.  This is because of the assumption that the
incremental effective stress is identical to the dissi-
pative pore pressure (i.e., the invariance of total
stress) as consolidation proceeds.  Gibson et al. (1967,
1981) used finite strain theory and Lagrangian coor-
dinates to analyze soil consolidation with body force
effect caused by surface loading.  Mei (1985) em-
ployed small strain theory and Eulerian coordinates
to formulate the consolidation of elastic media with
consideration of the body force effect on a single soil

layer subjected to surface loading.  The results show
that the conventional Terzaghi consolidation theory
should be only valid for a thin or stiff soil layer.

In addition to surface loading, the change of
water table due to groundwater pumping is another
major cause of soil consolidation.  From the view
point of hydrogeology, a soil stratum could be con-
sidered as the composition of alternating layers of
highly porous sand (aquifers) and highly impervious
clay (aquitards).  This is usually called a multiaquifers
system.  Due to significant differences of permeabil-
ity and compressibility between sand and clay, a two-
step procedure (Gambolati and Freeze, 1973) is used
to analyze the soil consolidation in a multiaquifers
system.  In the two-step procedure, a hydrological
model based on the standard groundwater flow equa-
tion is first employed to calculate the variations of
hydraulic head.  With the calculated hydraulic head
in the aquifers as boundary conditions of the
aquitards, one-dimensional Terzaghi consolidation
theory (Terzaghi, 1954) is then applied to compute
vertical deformation of clay.  The two-step procedure,
as compared with the fully three-dimensional consoli-
dation model (Lewis and Schrefler 1978; Ng and Mei
1995) in which the soil deformation and hydraulic
head in the sand and clay are coupled for  calculation,
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has been often used to analyze soil consolidation in
multiaquifers systems, especially for practical
applications, due to its efficiency and convenience
(Helm, 1975; Gambolati et al., 1991; Onta and Gupta,
1995; Larson et al., 2001).

In this study, based on the two-step procedure
concept and the linear poro-elasticity theory (Biot,
1941; Helm, 1987; Gambolati et al., 1991; Fallou et
al., 1992; Gutierrez and Lewis, 2002), the effect of
body force on soil consolidation due to water table
depression in a multiaquifers system is examined.  In
the following sections, the governing equations for
consolidation of porous elastic media, considering the
body force effect, are derived first.  The steady-state
solutions of displacement and incremental effective
stress are then obtained analytically.  Finally, the
comparison studies of results with and without body
force effect are conducted.

II. GOVERNING EQUATIONS

The mass conservation of fluids and solids in
saturated porous media (Bear and Corapcioglu, 1981)
can be respectively written as

∂(nρw)
∂t

+ ∇ ⋅ (nρwVw) = 0 (1)

and

∂[(1 – n)ρs]
∂t

+ ∇ ⋅ [(1 – n)ρsVs] = 0 (2)

where n is porosity.  ρw and ρs represent densities of
fluid and solid.  Vw and Vs denote velocities of fluid
and solid.

The deformation of porous media is attributed
to the rolling and slipping of grains with respect to
each other.  Hence, ρs in Eq. (2) remains unchanged
in consolidation.  Denoting u and P as the solid dis-
placement and pore pressure, and assuming Vs = ∂u/
∂t and |∂P/∂t| >> Vs . ∇ P, the flow equation of de-
forming porous media without the compressibility of
fluid by combing Eqs. (1)-(2) (Bear and Corapcioglu,
1981) can be written as

∇ ⋅ qr + ∂
∂t

∇ ⋅ u = 0 (3)

where qr = n(Vw − Vs) is Darcy’s flux velocity.
In the absence of inertial force, the equilibrium

of forces for saturated porous media (Biot, 1941;
erruijt, 1969; Bear and Corapcioglu, 1981) can be ex-
pressed as

∇ ⋅ σσ′ + f = ∇P (4)

where σσ′  is the effective stress tensor.  f = [ρwn + (1

− n)ρs]g denotes the body force.  g represents the
gravitational acceleration.

Denoting σσ′ , P, f, and n as the sum of initial

steady values σσ ′0, P0, f 0, n0 and consolidation-pro-

ducing incremental values σσ ′e , Pe, f e, ne, the equa-
tions for equilibrium of forces shown in Eq. (4) can
be divided into initial steady-state equations

∇ ⋅ σσ ′0 + f 0 = ∇P0 (5)

and incremental equations

∇ ⋅ σσ ′e + f e = ∇Pe (6)

where f e = −(ρs − ρw)neg represents the perturbation
of body force due to the variation of porosity as the
porous media deforms.

Similarly, the flow equation shown in Eq. (3)
can also be decomposed into an initial steady-state
equation

∇  . qr
0 = 0 (7)

and an incremental equation

∇ ⋅ qr
e + ∂

∂t
∇ ⋅ u = 0 (8)

The deformation of porous media takes place as a
result of the change in the effective stress.  The con-
stitutive relationship between the effective stress and
displacement for linear poro-elastic media with small
strain can be written as

σσ ij′e = G(
∂ui

∂xj
+

∂u j

∂xi
) + λ(

∂uk

∂xk
)δij  i, j, k = 1, 2, 3

(9)

where G and λ  are the well-known Lame’s constants.
From Eq. (2), the consolidation-producing in-

cremental porosity, i.e., ne, can be represented as

ne = (1 − n0)∇  . u (10)

The detailed derivation of Eq. (10) is shown in the
Appendix.

Substituting Eqs. (9)-(10) into Eq. (6) yields the
equilibrium of forces in incremental state as follows:

G∇ 2u + (G + λ)∇ (∇  . u) − ∆ρ(1 − n0)(∇  . u)g

= ∇ Pe (11)

where ∆ρ = ρs − ρw.
Using Darcy’s law, that is,

qr
e = –

K ⋅ ∇Pe

ρwg
(12)
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the flow equation of deforming porous media in the
incremental state shown in Eq. (8) becomes

∇ ⋅ ( K ⋅ ∇Pe) + ρwg ∂
∂t

∇ ⋅ u = 0 (13)

where K  is the hydraulic conductivity tensor.
Governing Eqs. (1), (2), (4) with constitutive re-

lation Eq. (9) now are rewritten as Eqs. (13), (10),
and (11) for incremental equations.  And Eqs. (11)
and (13) are the governing equations of soil consoli-
dation used herein.

III. ONE-DIMENSIONAL CONSOLIDATION

A stratum of clay sandwiched between sandy
strata that are highly permeable and much stiffer than
the clay is shown in Fig. 1.  In Fig. 1, water table
depression h1 and h2 due to pumping take place in
sandy strata above and below the clay.  Due to sig-
nificant differences of permeability and compressibil-
ity between sand and clay, excessive pore pressure
only exists in the clay as consolidation proceeds.  And
nearly all of the consolidation happens due to the
volume change within the clay, while the sandy strata
may be considered rigid media as compared with the
clay.  In addition, the horizontal dimension is much
larger than the thickness of the consolidation stratum.
Hence, one-dimensional consolidation is well as-
sumed herein.  This leads to the flow and the strain
occurring only in the vertical direction.  Furthermore,
the steady-state solutions, which are usually applied
in engineering practice, will be considered.

Because we are dealing with one-dimensional
steady-state consolidation, the flow equation of de-
forming porous media shown in Eq. (13) for an iso-
tropic and homogeneous clay can be simplified as

K∂2Pe

∂z2 = 0 (14)

The equations for equilibrium of forces given by Eq.
(11) can also be reduced to

(2G + λ)
∂2uz

∂z2 + ∆ρg(1 – n0)
∂uz

∂z
= ∂Pe

∂z (15)

One can clearly see that these two equations are in
fact decoupled. The incremental pore pressure of the
flow equation can be given first. The displacement is
then obtained by solving the equation for equilibrium
of forces with the known incremental pore pressure.
From Eq. (15), ignoring the body force effect, i.e.,
∆ρg(1 − n0)∂uz/∂z can obtain Pe = (2G + λ)∂uz/∂z.  With
the assumption of one-dimensional consolidation, the
constitutive relationship between the incremental ef-
fective stress and displacement shown in Eq. (9) for
clay becomes σ zz′e = (2G + λ)∂uz/∂z.  It can be seen

from the above that neglecting the body force effect,
Eq. (15) is identical to the conventional one-dimen-
sional Terzaghi consolidation theory in which the
incremental effective stress equals the dissipative pore
pressure, i.e., Pe = σ zz′e.

In Fig. 1, water table depression h1 and h2 due
to pumping happen in sandy strata above and below
the clay.  As mentioned above, the water table de-
pression in the aquifer can be obtained by using a
groundwater model to simulate a miltiaquifers system.
Applying the continuity of pore pressure, the incre-
mental pore pressure at the bottom and top bound-
aries of the clay can be respectively expressed as

Pe|z = 0 = −ρwgh2 (16a)

and

Pe|z = B = −ρwgh1 (16b)

From Eqs. (14) and (16), the incremental pore pres-
sure in the clay stratum is

Pe = – ρwg(h 2 +
h 1 – h 2

B z) (17)

Thus, the equation for equilibrium of forces shown
in (15) becomes

t < 0 t > 0

Ground surface

(a)

Z

h2
h1

B
Clay

Sand

t < 0 t > 0

Ground surface

(b)

Z

h2

h1

BClay

Sand Water table

Sand

Sand

t < 0

t < 0

t > 0

t > 0

Fig. 1 Sketches of soil  consolidation due to water table
drpression: (a) confined case, (b) unconfined case
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(2G + λ)
∂2uz

∂z2 + ∆ρg(1 – n0)
∂uz

∂z
=

– ρwg(h 1 – h 2)
B

(18)

The bottom boundary of the clay is connected to the
nearly rigid sandy stratum.  The displacement of clay
at z = 0 can be expressed as

uz|z = 0 = 0 (19)

If the overlaying sandy stratum shown in Fig. 1(a) is
confined, the top boundary of the clay z = B is sub-
jected to an incremental effective stress of −ρwgh1

due to water table depression, i.e.,

(2G + λ)
∂uz

∂z z = B
= – ρwgh 1 (20)

However, for the unconfined overlaying stratum
(i.e., the existence of free water surface) shown in
Fig. 1(b), considering the decrease in weight by re-
leasing pore water (Corapcioglu, and Bear, 1983), the
incremental effective stress at the top boundary of
the clay becomes

(2G + λ)
∂uz

∂z z = 0
= – ρwgh 1

* (21)

where h1
* = (1 − n)h1 represents effective water table

depression and n is porosity in the overlaying sandy
stratum.  In the following derivation, the unconfined
case could be easily determined by replacing h1 shown
in Eq. (20) with h1

*, hence considering only the con-
fined case is enough.

The exact solution for Eqs. (18)-(20) is

uz =
– ρwgB
2G + λ {h 2z′ + (h 1 – h 2)z ′2

2

+ h 1[ z′
M – z ′2

2 + (M – 1)
M 2 (eM – eM(1 – z′))]

+ h 2[– z′
M – z′ + z ′2

2 + 1
M 2 (eM – eM(1 – z′))]}(22)

where

M =
∆ρg(1 – n0)B

(2G + λ)
(23)

in which M represents the body force number and z′  =
z/B is the nondimensional coordinate in the z direction.
One can clearly observe from Eq. (23) that the body
force number becomes large when the soil is soft or
thick, or both.  For example, a soft and thick clay stra-
tum with B = 40 m, ∆ρg = 1.62 × 104 N/m3, n0 = 0.15,
and (2G + λ) = 1.5 × 106 N/m2 yields M = 0.2754,
which is not small.  However, in the following discussion,
it is quite safe to let 0 ≤ M ≤ 1

Taking z′  = 1 and using L’Hopital’s rule for M
→ 0 in Eq. (22), the vertical deformation at the top
boundary of the clay, without body force effect, i.e.,
(∆z)nb = – uz M → 0

z′ = 1
 can be represented as

(∆z)nb =
ρwgB(h 1 + h 2)

2(2G + λ)
(24)

The nondimensional displacement in the clay can be
obtained by introducing uz

* = uz/[−(∆z)nb] as follows:

uz
* = r

1 + rz ′2 + 1
1 + r(2z′ – z ′2)

+ 2r
1 + r[ z′

M –
z ′2

2 + M – 1
M 2 (eM – eM(1 – z′))]

+ 2
1 + r[ – z′

M – z′ +
z ′2

2 + 1
M 2 (eM – eM(1 – z′))]

(25)

where r = h1/h2 represents the ratio between the wa-
ter table depression in upper and lower sandy strata.

Taking z′  = 1 in Eq. (25), the nondimensional
displacement at the top boundary of the clay, i.e.,
(∆z)* = uz

*|z′  = 1, is

(∆z)* = 1 + 2r
1 + r[ 1

M – 1
2 + M – 1

M 2 (eM – 1)]

+ 2
1 + r[ – 1

M – 1
2 + 1

M 2 (eM – 1)] (26)

From Eqs. (9) and (22), the incremental effective
stress in the clay stratum can be written as .

σ zz′e = – ρwg{h 1z′ + h 2(1 – z′)

+ h 1[eM(1 – z′) – 1
M (eM(1 – z′) – 1) – z′]

+ h 2[ 1
M (eM(1 – z′) – 1) – 1 + z′]} (27)

Applying L’Hoptial’s rule for M → 0 in Eq. (27), the
incremental effective stress without the body force
effect, i.e., (σ zz′e)nb = σ zz′e M → 0

, can be written as

(σ zz′e)nb = – ρwg[h 1z′ + h 2(1 – z′)] (28)

One can see from Eq. (28) that the incremental effec-
tive stress agrees with the incremental pore pressure
shown in Eq. (17) due to the ignorance of body force
effect (i.e., the invariance of total stress), which is
used in the conventional Terzaghi consolidation
theory of porous elastic media.

If h1 is larger than h2 the nondimensional incre-
mental effective stress can be obtained by introduc-
ing (σ zz′e)

* = σ zz′e /(–ρwgh1) as follows:
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(σ zz′e)
* = z′ + 1 – z′

r + [eM(1 – z′) – 1
M (eM(1 – z′) – 1)

– z′] + 1
r [ 1

M (eM(1 – z′) – 1) – 1 + z′] (29)

On the contrary, when h2 is larger than h1 the
nondimensional incremental effective stress can be
given with the introduction of (σ zz′e)

** = σ zz′e/(–ρwgh2)
as follows:

(σ zz′e)
** = rz′ + (1 – z′) + r[eM(1 – z′) – 1

M (eM(1 – z′) – 1)

– z′] + [ 1
M (eM(1 – z′) – 1) – 1 + z′] (30)

IV. DISCUSSIONS

The nondimensional displacements of the clay
stratum shown in Eq. (25) for the body force num-
bers of 0, 0.2, and 0.6 are displayed in Figs. 2(a)-(c),
respectively.  The nondimensional displacement at the
top boundary of the clay shown in Eq. (26) is depicted
in Fig. 3.  One can observe from Figs. 2 and 3 that
the consolidation of clay is significantly related to
not only the body force number but also the ratio of
water table depression.  Without the body force effect,
the nondimensional displacement is a quadratic poly-
nomial distribution

uz
*

M → 0 = r
1 + rz ′2 + 1

1 + r(2z′ – z ′2) (31)

If water table depression only appears in the upper
stratum, i.e., r → ∞, the nondimensional displacement
becomes

uz
*

r → 0 = (2z′ – z ′2) + 2[ – z′
M – z′ +

z ′2

2

+ 1
M 2 (eM – eM(1 – z′))] (32)

On the contrary, when water table depression only ex-
ists in the lower stratum, i.e., r → 0, the nondimensional
displacement is

uz
*

r → ∞ = z ′2 + 2[ z′
M –

z ′2

2 + M – 1
M 2 (eM – eM(1 – z′))]

(33)

The nondimensional incremental effective stresses in
the clay stratum for h1 ≥ h2 shown in Eq. (29) is de-
picted in Fig. 4 when the body force parameters are
0, 0.2, and 0.6.  Without the body force effect, Eq.
(29) becomes

(σ zz′e)
*

M → 0 = z′ + 1 – z′
r (34)

In addition, Fig. 5 shows the nondimensional

0 0.2 0.4 0.6

M = 0

(a)

0.8 1

1

0.8

0.6

0.4

0.2

0

z′

0 0.2 0.4

r = 0
r = 0.1
r = 0.5
r = 1.0
r = 10.
r = 100.
r = infinity

0.6

M = 0.2

(b)

10.8 1.2

1

0.8

0.6

0.4

0.2

0

uz
*

0 0.3 0.6

M = 0.6

(c)

1.20.9 1.5

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

2

1.8

1.6

1.4

1.2

1

r = 0
r =0.1
r =0.5
r =1.0
r =10
r =100
r =infinity

M

( 
 z

)*

Fig. 2  The nondimensional displacement of clay

Fig. 3 The nondimensional displacement at the top boundary of
the clay
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incremental effective stress in the clay stratum for h2

≥ h1 given by Eq. (30).  The nondimensional incre-
mental effective stress in the clay without body force
effect is

(σ zz′e)
**

M → 0 = rz′ + (1 – z′) (35)

Figs. 4 and 5 show again that the consolidation of
clay is strongly dependent on the effect of body force
and the ratio of water table depression.  In addition,
one can clearly see that the incremental effective
stress in the clay stratum shown in Eqs. (34)-(35) is
linearly distributed when the effect of body force is
neglected. However, the incremental effective stress,
in general, is nonlinear due to the effect of body force.

In this study, the derived analytic solutions of
displacement and incremental effective stress, simple
to compute, are easy to use in engineering practice.
For example, they can be applied to calculate the
settlement of soil.  If the water table depression h1

and h2 are known from using the groundwater model
for a multiaquifers system, the settlement of clay

without body force effect, i.e., (∆z)nb, can be obtained
from Eq. (24).  Then, equation (26) could be used to
calculate the nondimensional displacement at the top
boundary of the clay (∆z)* with known ratio of water
table depression, i.e., r = h1/h2, and body force num-
ber M shown in Eq. (23).  The settlement of clay con-
sidering body force effect is then obtained from the
product of (∆z)nb and (∆z)*.

In addition, the linear poro-elasticity theory
along with Eulerian coordinates is applied to investi-
gate the body force effect on soil consolidation.  The
limit of small strain for soil consolidation, i.e., ∂u/∂z
< 0.1, has to be satisfied.  Using equations (24) and
(26), the small strain could be expressed as

∂u
∂z

≈ (∆z)nb(∆z)*

B < 0.1 (36)

For a critical case M = 1 and r → ∞, i.e., (∆z)* = 2,
shown in Fig. 3, Eq. (36) could become

ρwg(h 1 + h 2)
(2G + λ)

< 0.1 (37)

Fig. 4  The nondimensional incremental effective stress of clay for h1 ≥ h2
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Fig. 5  The nondimensional incremental effective stress of clay for h2 ≥ h1
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From Eq. (37), for a soft clay with ρwg = 9.81 × 103

N/m3 and (2G + λ) = 1.5 × 106 N/m2 as mentioned
above, we get (h1 + h2) < 15.3 m.  It seems to be quite
safe to apply the results derived in this study to engi-
neering practice.  It must be pointed out that the steady
state solution, as derived above, is for the maximum
effect of body force which seems to take a long time
to develop.  From Eq. (15), one can obtain

uz ≈ B
2G + λ Pe (38)

From Eqs. (13) and (38), the characteristic time to
steady state T needs to satisfy

T >>
ρwgB2

(2G + λ)K
(39)

For a soft and thick clay stratum with B = 40 m, ρwg
= 9.81 × 103 N/m3, (2G + λ) = 1.5 × 106 N/m2, and K
= 1.0 × 10−6 m/s, it will take many years for the pore
pressure to be transmitted.

V. CONCLUSIONS

The effect of body force is not considered in the
conventional Terzaghi consolidation theory.  This
study applies Biot’s theory of linear poro-elasticity
and the two-step procedure concept to investigate the
consolidation of porous media with the effect of body
force under the assumption of small strain.  A case of
clay stratum sandwiched between two sandy strata
subjected to the water table depression due to pump-
ing is used to conduct this examination.  Closed-form
solutions of one-dimensional steady-state displace-
ment and incremental effective stress in the clay with
the body force effect have been found.  The consoli-
dation of clay strongly depends on two dimension-
less parameters, i.e., body force number M and the
ratio of water table depression r.  The body force num-
ber is a function of Lame’s constants, porosity, and
the thickness of soil.  The body force significantly
affects the magnitude of the displacement and incre-
mental effective stress when the soil is soft or thick,
or both.

NOMENCLATURE

B thickness of clay
f body force
f 0 initial steady value of body force
f e consolidation-producing incremental value of

body force
g gravitational acceleration
G Lame constant
h water table depression
h* effective water table depression

K hydraulic conductivity
M body force parameter
n porosity
n0 initial steady value of porosity
ne consolidation-producing incremental value of

porosity
P pore pressure
P0 initial steady value of pore pressure
Pe consolidation-producing incremental value of

pore pressure
qr Darcy’s velocity
qr

0 initial steady value of Darcy’s velocity
qr

e consolidation-producing incremental value of
Darcy’s velocity

r ratio of lowering of water tables
t time
u displacement of solid
uz displacement of solid in z direction
uz

* nondimensional displacement of solid
Vw velocity of fluid
VS velocity of solid
z coordinate
z′ nondimensional coordinate
ρw density of fluid
ρs density of solid
∆ρ difference in density between solid and fluid
β compressibility of fluid
σ i, j′ effective stress tensor

σ i, j′0 initial steady value of effective stress tensor

σ i, j′e consolidation-producing incremental value of
effective stress tensor

σ zz′e incremental effective stress in the clay stra-
tum

(σ zz′e)nb incremental effective stress in the clay stra-
tum without body force effect

(σ zz′e)
* nondimensional incremental effective stress

for h1 > h2

(σ zz′e)
** nondimensional incremental effective stress

for h2 > h1

λ Lame constant
(∆z)nb the vertical deformation at the top boundary

of the clay without body force effect
(∆z)* nondimensional displacement at the top

boundary of the clay
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APPENDIX : DERIVATION OF
CONSOLIDATION-PRODUCING

INCREMENTAL POROSITY

The mass conservation of solid in saturated po-
rous media can be written as

∂[(1 – n)ρs]
∂t

+ ∇ ⋅ [(1 – n)ρsVs] = 0 (A1)

where n is porosity, ρs is the density of solid, Vs rep-
resents velocity of solid.

The deformation of porous media is manifested
by variation of porosity due to the rolling and slip-
ping of the grains with respect to each other.
Therefore, ρs remains unchanged in the consolidation
process.  As mentioned above, Eq. (A1) becomes

ds(1 – n)
dt = – (1 – n)∇ ⋅ Vs

(A2)

where ds/dt represents the material derivative, i.e.,
∂/∂t + Vs . ∇ .  Assuming linear variation, i.e., |∂(1 −
n)/∂t| >> |Vs . ∇ (1 − n)| we have

∂(1 – n)
∂t

= – (1 – n)∇ ⋅ Vs (A3)

Dividing n into steady initial values n0 and consoli-
dation-producing incremental values ne, Eq. (A3) can
be linearized as follows:

– ∂ne

∂t
= – (1 – n0)∇ ⋅ Vs (A4)

Denoting u as the solid displacement and letting Vs =
∂u/∂t, Eq. (A4) can be reduced to

ne = (1 − n0)∇  . u (A5)
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