Available online at www.sciencedirect.com

SCIENCE dDIRECT@ ENGINEERING
@ QTRUCTURES

LSl
ELSEVIER Engineering Structures 28 (2006) 43-53

www.elsevier.com/locate/engstruct

Optimal design theories and applications of tuned mass dampers

Chien-Liang Le*, Yung-Tsang Chéh Lap-Loi Chung, Yen-Po Wan§

3Natural Hazard Mitigation Research Center, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC
bDepartment of Civil and Environmental Engineering, University of California, Davis, 1 Shields Avenue, CA 95616, USA
CNational Center for Research on Earthquake Engineering, 200, Section 3, HsinHai Road, Taipei 106, Taiwan, ROC
dDepartment of Civil Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

Received 20 August 2004; received in revised form 14 June 2005; accepted 21 June 2005
Available online 19 August 2005

Abstract

An optimal design theory for structures implemented with tuned mass dampers (TMDSs) is proposed in this paper. Full states of the
dynamic system of multiple-degree-of-freedom (MDOF) structures, multiple TMDs (MTMDs) installed at different stories of the building,
and the power spectral density (PSD) function of environmental disturbances are taken into account. This proposed method allows for a more
extensive application and successfully releases the limitations based on simplified models. The optimal design parameters of TMDs in terms
of the damping coefficients and spring constants corresponding to each TMD are determined through minimizing a performance index of
structural responses defined in the frequency domain. Moreover, a numerical method is also proposed for searching for the optimal design
parameters of MTMDs in a systematic fashion such that the numerical solutions converge monotonically and effectively toward the exact
solutions as the number of iterations increases. The feasibility of the proposed optimal design theory is verified by using a SDOF structure
with a single TMD (STMD), a five-DOF structure with two TMDs, and a ten-DOF structure with a STMD.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction the CN Tower (535 m) in Canada, the John Hancock
Building (sixty stories) in Boston, Center-Point Tower
A tuned mass damper, consisting of a mass, damping,(305 m) in Sydney, and the tallest building in the world,
and a spring, is an effective and reliable structural vibration Taipei 101 Tower (101 stories, 504 ng] in Taiwan. From
control device commonly attached to a vibrating primary the field vibration measurements, it has been proved that a

system for suppressing undesirable vibrations induced by TMD is an effective and feasible system to use in structural
winds and earthquake loads. The natural frequency of theyipration control against high wind loads.

TMD is tuned in resonance with the fundamental mode  Frahm B] proposed the TMD system in 1909 for

of the primary structure, so that a large amount of the reducing the mechanical vibration induced by monotonic
structural vibrating energy is transferred to the TMD and harmonic forces. It is found that if a secondary system
subjecteq to_ (_::xternal disturbances. Consequently, the Safet){mplemented on a primary structure and its natural frequency
and habitability of the structure are grgatly enhqnced. The s tuned to be very close to the dominant mode of the primary
TIE/ID system has been successfully mstr?lled in slender g,ctyre, a large reduction in the dynamic responses of the
SKyscrapers ano! towers (o s.uppress the WIr!d"nd'“'cedprimary structure can be achieved. Although the basic design
structural dynamic responsek]; such structures include concept of the TMD is quite simple, the parameters (mass,
damping, and stiffness) of the TMD system must be obtained

* Corresponding author. Tel.: +886 3 5731936, fax: +886 35713221, (hrough optimal design procedures to attain a better control
E-mail address: link.cv92g@nctu.edu.tw (C.-L. Lee). performance. Therefore, the determination of optimal design
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Sww(w) PSD function matrix of the external distur

Syy (w)

Su(w)
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Si

Lo

location vector of the mass for theh TMD

location vector of the damping and stiffnesgs

for thei-th TMD

damping matrix of the passive controlle
structure

damping matrix of the structure

damping of the-th TMD

damping of the SDOF structure

location matrix of the partial responses

difference of the upper bound and lower bound

of the incremental step

the location matrix of the external distur
bances (with a TMD)

location matrix of the external disturbances
the location matrix of the external distuf
bances for the SDOF structure

frequency (Hz)

optimal frequency ratio of the TMD (TMD’s
frequency/structure’s frequency)

frequency response function (transfer fun
tion)

identity matrix

performance index

V-1

stiffnress matrix of the passive controlle
structure

stiffness matrix of the structure

stiffness of theé-th TMD

stiffness of the SDOF structure

mass matrix of the passive controlled structy
mass matrix of the structure

mass of thé-th TMD

degrees of freedom of the structure

total number of TMDs

the k-th diagonal elements of the squa
matricesP(w)

total number of external disturbances

the k-th diagonal elements of the squal
matriceQ (w)

bance vectow(t)
PSD function matrix of the partial respons
vectory(t)

Davenport along-wind speed spectrum
step of the increments for the parameigjis
step of the increments for the parameteyis
lower bound of the incremental step
upper bound of the incremental step
constant PSD function of a white noise signi
transpose of a matrix or vector (or transpo
and complex conjugate of a matrix or vector

(¢}

=

w(t) external disturbance vector

W (w) Fourier transform of the external disturbance
vector

X(w)  Fourier transform of the displacement vectpr
of the passive controlled system

X(t) displacement vector of the passive controlled
structure

Xs(t)  displacement vector of the structure

X4(t)  stroke of the TMD

y(t) the partial response vector of the structure

) prescribed tolerance

Eopt optimal damping ratio of the TMD

m mass ratio (TMD’s mass/main structure’s total
mass)

10) circular frequency of the passive controllgd
system

P golden ratio

parameters of the TMD to enhance the control effectiveness
has become very crucial.

Since Den Hartogq] first proposed an optimal design
theory for the TMD for an undamped single-degree-of-
freedom (SDOF) structure, many optimal design methods
for the TMD have been developed to control the structural
vibration induced by various types of excitation source
[6-10. Crandall and MarkT] adopted the random vibration
theory to analyze a SDOF structure implemented with
a single TMD (STMD) subjected to white noise base
excitation. The results demonstrated that the TMD could
effectively reduce the vibration of the base-excited structure.
Warburton et al. 8,9] further proposed optimal design
formulas for the TMD system under different types of load,
such as harmonic forces, wind loads, and seismic loads.
However, the control effectiveness is highly sensitive to the
design parameters of the TMD relative to the parameters
of the primary structure. If the design parameters of the
TMD deviate from the optimal design values or error
exists in the identification of the natural frequency of the
primary structure, a detuning effect will occur and the
control effectiveness may deteriorate. Hence, the adoption
of multiple tuned mass dampers (MTMDs)(—23 with
distributed natural frequencies around the controlled modes
(horizontal or torsional motions) of the primary structure has
been proposed to alleviate the detuning effect or to enhance
the control performance.

In the above-mentioned studies, the design parameters
of MTMDs are determined through parametric studies or
by their proposed optimal design methods. Moreover, the
external disturbances considered in these studies are limited
to white noise and harmonic force over a frequency range,
or random signals, such as earthquake excitations as studied
by Li et al. [15-19. In addition, Stech22] adopted a H-
based approach for optimally tuning the passive vibration
absorbers to control both the torsional mode and the bending
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mode of a mass reactive T (MRT) structure. Zuo et 28 [
proposed a minimax optimal design method for vibration
control of a free—free beam implemented with a 3-DOF
TMD or with three SDOF TMDs.

In this paper, an optimal design theory with a systematic
and efficient procedure for searching for the optimal
design parameters for the TMD is proposed. Full states
of the dynamic system of MDOF structures, multiple
TMDs installed at different stories of the building, and
the PSD function of environmental disturbances are taken

into account. Since the sufficient and necessary conditions

are highly nonlinear simultaneous equations, a numerical
method for the optimal design theory of the TMD is
proposed in this paper such that the solution of the optimal

design parameters converges monotonically toward the exact

solutions as the number of iterations increases. Finally,
the feasibility of the proposed optimal design theory and
the numerical scheme is verified through the numerical
simulations of a full-order five-DOF structure and a ten-
DOF structure installed with two TMDs and a STMD,
respectively.

2. Derivation of optimal design theory

When a structure witm degrees of freedom (DOF) is
subjected to external disturbancest), its equation of
motion can be described as

MsXs(t) + CsXs(t) + KsXs(t) = Esw(t) 1)

wherexs(t) is then x 1 displacement vectom(t) is theq x 1
external disturbance vectar,s the number of disturbances,
Ms, Cs and,Ks are then x n mass, damping, and stiffness
matrices, respectively, ariek is then x g location matrix

of external disturbances. If MTMDs are implemented in this
MDOF structure to suppress the structural vibration induced
by the external disturbances, the governing equation of the
passive controlled system can be taken as

MX(t) 4+ CX(t) + Kx(t) = Ew(t) 2)
where x(t) = [:zﬁ;] is the (n + p) x 1 displacement
vector of the passive controlled systeM, = ['V(',S 8] +

Y imaaal, © =[G 0] + XPicabibl andk =

[KS 0

N 0] + 3P kaibib[ are, respectively, thén + p) x
(n 4+ p) mass, damping and stiffness matrices of the passive
controlled systemp is the total number of TMDs installed

in the structuremygi, Cgi, Kgi are the mass, damping and
stiffness of the-th TMD, respectivelyg; is the(n+ p) x 1
location vector of the mass for theth TMD, b; is the

(n + p) x 1 location vector of the damping and stiffness
for thei-th TMD, E is the(n + p) x g location matrix of
the external disturbances and the superscript T denotes th

transpose of a matrix or vector.
To derive the optimal design parameters of the TMD
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of the structure instead of using the full ones as
yt) = 3

wherey(t) is ther x 1 partial response vector of the structure
andD is ther x (n + p) location matrix of these partial
responses. If the location matfix= [In 0] is adopted, the
partial response vectont) becomes the full displacement
vector of the structurgs(t).

Taking a Fourier transform to both sides of the passive
control Eg. @), the relation of the system response vector
Xx(t) and the external disturbance vectwr(t) in the
frequency domain takes the form

Dx(t)

X(®) = [-0°M + joC + K] EW (w)

= H(w)EW (w) 4)

whereH(w) = [-»?M + jwC + K] 1is the(n + p) x

(n + p) frequency response function and = +/—1.
Similarly, the relation between the partial response vector
of the structure/(t) and the external disturbance vectat)

in the frequency domain can be expressed as

Y (w) = DX(w) = DH(w)EW (w). (5)

If the external disturbance vecton(t), is a random
signal, the partial response of the structyie) is also a
random one, and their PSD functions can be written as

(6)

where Syy (w) is ther x r PSD function matrix of the
partial response vectoy(t), Sww(w) is theq x q PSD
function matrix of the external disturbance vecigit) and

the superscript T denotes the transpose or the complex
conjugate of a matrix or vector. Since the integral of the PSD
function of the structural response with respect to frequency
is the mean square value of the structural response, the
performance index for the optimization of the TMD design
parameters in this study is therefore defined as

Syy (@) = DH(0)ESww(w)ETHT ()DT

- tr{Syy (w)}dw

=/

o]

/

where tfe} is the trace of a square matrix.

Because the frequency response funchigmw) expressed
in Eg. @) is a function of the dampin¢tqi ) and the stiffness
(kgi) of the TMD, the partial differentials of the frequency
response function with respect to each design parameter are
represented, respectively, as

tr{DH () ESww (@)ETHT (w)D"}dw

oo

()

T joH@BbIH@), P=12...p ()
Cdi
H(w) _ —H(a))bibiTH(a))v i=12...,p (8b)

oKgi
Since the PSD function matri®yy (w) of the structural

more generally, this study may consider the partial responsesesponses is a positive-definite matrix, the sufficient and
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necessary conditions are Let %ﬁ:) = —dc(l) nd%J—k::) = —dkéil); then Eq. 129
9] ) can be represented as
b~ / tr{P(w) + P (w)}dw
| d3® = Z[ (dc§i)? — (dk§)?]
- / 3 (Pre(@) + Pi(@)do = 0
%0 k=1 : 1,2 (D)2
i=12...p (9a) = =) [dc)? + (dkiH?] (12b)
N 00 . =t
Fk‘“ = _/_oo Q@) + Q' (w)}dw where d® is a negative. If d’ (¢ — c{') and &
oo T (k(z) ké,l)) are very small, the increments of the parameters
= /_ o ;{ql«(w) + O (@)}do = 0, dct and &’ are assumed to be, respectively, as follows:
i — D
'=L2...p (9b) dct = ¢ — ¢ = —ssj — 9 i=12....,p (13a)
acdi
where
: D _ @ _ @ 33(1) :
P(@) = joDH (@)bib/H(@)ESww @)E'HT (@)D" (10a)  dkji =kij’ —kj' =-S5 — 1=12....p (13b)
|
_ WT T T
Q(@) = DH(@)bibi H(®)ESww (@)E'H (@)D (10b) where s and s are, respectively, the steps of the
in which, H'(w) denotegH* (@)]", puk(w) andd () are, increments for the parameters; andkgi, and the partial

respectively, thé-th diagonal elements of threx r square differentials 33( Y and ‘”( )) in Egs. (139 and (L3b) can be
matricesP(w) andQ(w), and the superscript * denotes the obtained from Equ(a) and ©b). Substituting Eqs.1(39 and
complex conjugate of a complex number. The@hknown (13b) into Eq. (L29, the total derivative of the performance

optimal design parameters of the TMEy{ andkg;) can be index can be written as

solved from the » simultaneous equations (Eq9838( and D D\ 2 @\ 2

(9b)) by the proposed numerical method as will be discussed 431 _ _ Z |:Sci (i) + S (i) :| <0. (14)
later. — 9Cd dkKdi

From Eq. (4), one ensures that the updated vall{&
3. Numerical methodsfor optimal design theory of the performance index is always less than its initial
valueJ and the iterated results proceed toward convergent
The sufficient and necessary condition for the optimiza- values. The updated values of the TMD design parameters
tion of the TMD parameters is a set of highly nonlinear si- (cgi andkgi) can be further represented as
multaneous equations (Eq®d and @b)). As a result, the

exact solutions of the optimal design parameters are diffi- (f) Cé}) + dcé}) - Cé? Soi &(1)

cult to obtain, except for the simple systems, such as the un- 9Cai

damped SDOF structure implemented with a STMD. This i=12....p (15a)

paper proposes a numerical method for determining the op- K@ _ k(l) + dk(l) k(l) i(l)

timal design parameters for the TMD in a systematic fashion "di S aKgi

by which the results converge monotonically toward the ex- i=12...,p. (15b)

act solutions with each iteration. Firstly, a set of initial val- o . X ?

ues, Cc(j:|L) and kéil), i — 1,2,...,p, is guessed and in turn Substituting the updated design parametyé?; andkqi

substituted into Eq.7) to obtain the initial valug)® of the m(tg Eg. (7), the updated value of thﬁ perfo(rzr)narltlz)e index,

performance index. Leti? be the difference between the 7. » ¢an be calculated. Again, i) = cg ke =

updated valug)@ and the initial valuel @ of the perfor- ki’ and J@ = J® 4 dJ®, and the above- mentloned

mance index; their relation can then be represented as procedures are repeated until the convergence of the design
@ _ 1) @ parameters is achieved. In other words, the optimal design

JT=3"+d (11) parameters of the TMD can be obtained from this step-

In order to make the updated value of each iteration by-step iterative method in which the performance index
approach the solution, the updated valli® must be less J in the current iteration is always smaller than the one
than the initial valueJ@, that is d® < 0. Since the in the previous iteration. That is, the larger the number of
performance index is a function of the p independent iterations, the closer the results approach the exact solutions.
variables (:(1) andkéil),i =1,2,..., p), its total derivative ~ However, in order to take both the accuracy and the
can be taken as computation efficiency into account, iteration processes will

be terminated as the error between two consecutive iterated
P la® 3J@ ht ;
dJ® :Z|: dcé}) o dk(il):|. (12a) performance indices becomes less than the prescribed

— | 9cd tolerance. The flowchart of the proposed numerical method
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Give initial values, ¢ and kY (i=12,...p)

Calculate initial performance index , j®

Y

)

o (1 (€]
Calculate %0 using ¢,/ and k,
—l di =

Calculate optimal incremental step s to obtain cir’

.

@

Calculate o
o

2 1
using ¢ and £

Calculate optimal incremental step s to obtain k.

!

i=i+1

NO
i>p >

YES

Calculate  j@using c¢Pand £ (i=12,...p)

YES
STOP
NO
Update c§) =cP , kP =k (=12,...p)
< | a =k
JO =@
Fig. 1. Flowchart of proposed numerical method.
is shown inFig. 1 Egs. (29 and (L2 is valid only if the incremental steps2p] for the proposed numerical method

incremental step for each design parameter for the TMD in this paper. The determination of the upper bound and
is small. However, if the incremental step is too small, the the lower bound of the incremental step is described as
computation efficiency will decrease. On the other hand, follows:

if the incremental step is too large, the decrease of the o 5 o
performance indexJ with the number of iterations will (1) Set the initial upper bouney, = 107) and the initial

not be ensured. Therefore, the upper bound and the lower ~'OWer bounds = 0) of the incremental ste(s).

bound of the incremental step for each design parameter of(2) Substitutes, andg into Egs. (59 and (L5b) to obtain

the TMD must be determined first, and the golden section cés“), kés“), cés”, and kéS) which in turn are used to
search method?{] is then adopted to compute the optimal calculateJ(sy) and J(g), respectively.
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(3) If J(su) > J(9), letsy = 3 andg = 3, then go back 0.16
to step 2.

(4) If J(sy) < J(9), lety = sy ands, = 10 x s, and
calculateJ(s)) and J(5), respectively.

(5) Update the upper bound and the lower bound of the
incremental stepy = g, su = §,, and the performance
indices,J(sy) = J(8), J(8) = J(9).

o
.
|

————— Warburton

TMD's Damping Ratio £,
f=1
&
|

(6) If J(su) < J(9), go back to step 4, otherwisg, = §, Proposed
=5 0.04 —|
Once the upper bound and the lower bound of the 1
incremental step are obtained, the golden section search 0 — — T
method can be used to find the optimal incremental &gp 0 2 4 6 8 10
as follows: Mass Ratio p (%)
(1) Assign the upper boundy) and the lower bouncs) of Fig. 2. Variation of optimal damping ratio with mass ratio of the TMD.
the incremental ste(s)
(2) Letd = sy — 5, p = (3 — v/5)/2 (golden ratio), and Re e Warburton
the intervalls, s;] can be divided into three segments . Proposed

bys; = 3 + pd ands; = 5, — pd which are in turn used
to calculatel(s1) and J(sp).
(3) Calculate the relative errc{r%sf)(sl) < 8, in whichs
is the prescribed tolerance. If the relative error satisfies
the aforementioned conditios = s;; otherwises = sp.
(4) If step 3 is not satisfied, update the intervaldas=

Frequency Ratio f,,,
[=]
o
[=))
\

(1-p)d.
(5) If I(s1) < J(s), lets, = 51, J(S,)) = J(s1), and then 1
calculates; = s, — (1—2p)d and J(s)). 0.92 — T T T
(6) If I(s1) > J(s2), lets) = s, J(s)) = J(s2), and then 0 2 4 6 8 10
calculates, = s; + (1 — 2p)d andJ(s)). Mass Ratio [ (%)

(7) Update the values; = S|, = ), J(s) = J(S)),
J(s2) = J(s)), and go back to step 4.

Fig. 3. Variation of optimal frequency ratio with mass ratio of the TMD.

u is the mass ratio defined as the ratio of the TMD’s mass
4. Numerical verifications to the main structure’s mass. The numerical solutions for
these parameters can be obtained by the numerical methods
The feasibility of using the numerical method for the proposed in this paper. As the mass ratiof the TMD to
SDOF structure with a STMD and the MDOF structure with  the structure increases, the optimal damping ragieof the
a STMD or MTMDs is numerically verified in this section.  TMD increases Fig. 2), while the optimal frequency ratio
] fopt decreasedHig. 3). The numerical results for the optimal
4.1. SDOF structure with a STMD damping ratio and frequency ratio are very consistent with
) ~ the exact solutions as represented, respectivelyigs. 2
The accuracy of the proposed numerical method is first 5nq 3. Furthermore, the performance inde not only
examined for an undamped SDOF structure, since exactgecreases monotonically but also converges very fast when
solutions for the simple system exist. The exact solutions the number of iterations is larger than 5 as shown in
for the optimal design parameters of a STMD for a SDOF Fig 4 where a SDOF system witts = 100 kg, cs =
system under white noise wind disturbance with zero meangy416 N gm (&5 = 5%), ks = 98 6965 N/m (fs = 5 Ha),

can be obtained as follows,p]: and a TMD system witims = 10 kg, initial guess values
14+ u/2 Cél) = 0.1cs and kél) = 0.1ks, are used in this numerical
fopt = 1. (16a) simulation.
w(L+ 3u/4) 4.2. MDOF structure with a STMD
o=\ A 0@+ 2 (16b)
The MDOF structure implemented with a STMD is

where fop is the optimal frequency ratio defined as the used as a further illustration of the feasibility of using
ratio of the TMD’s frequency to the main structure’s natural the proposed numerical method. The objective structure
frequencyopt is the optimal damping ratio of the TMD and  considered in this study is a scaled-down five-story steel
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Table 1

System parameters of the five-story structure
Mode 1 2 3 4 5
Frequency (Hz) 2.79 9.58 17.83 27.21 36.09
Damping ratio (%) 0.34 3.44 2.63 291 3.21

Mode shapes

5f 0.5667 —0.4994 0.4455 —0.0868 —0.4943
4f 0.6314 —0.1747 —0.1903 0.0275 0.7257
3f 0.3580 0.2274 —0.7430 —0.2589 —0.4423
2f 0.3247 0.7856 0.4600 —0.2422 0.0356
1f 0.2159 0.2266 —0.0408 0.9306 —0.1794

System matrices

804.71 0 0 0 0
0 827.18 0 0 0
Mass matrix (kg) 0 0 827.18 0 0
0 0 0 827.18 0
0 0 0 0 830.71
12823632 —15513534 5989 005 736731 1318464
—15513534 23139828 —12499902 —329616 —4979556
Stiffness matrixN/m) 5989 005 —12499902 15943212 —-2163105 —1927 665
736731 —329616 —-2163105 5565213 —5369013
1318 464 —4979556 —1927 665 —5369013 22626 765
4626.89 —4325.23 818.45 —359.93 —53.37
—4325.23 6713.18 —3369.74 —622.35 —1457.96
Damping matrix(N s/m) 818.45 —3369.74 5817.92 —724.08 —684.05
—359.93 —622.35 —724.08 3671.98 —1403.12
—53.37 —1457.96 —684.05 —1403.12 7750.00
21100 — In the processes of optimization, only the suppression
. 21000 of structural responses is involved. Therefore, the location
x : matrix of the partial responses of the structure can be
2 20900 represented as
(5]
2 20800 — _
g 20700 | o= [I O]SXB.
j:i i Moreover, the weight of the TMD is 123.51 kgf, which is
£ 20600 3% of the structure’s total weight.
— As the structure is subjected to the earthquake load, the
T T T T T . .
o ) ; . . o location vector of the external disturbances becomes
Numbers of Interaction Ms
= |: 0 0i| 1+ mga
Fig. 4. Convergency of performance index.

wherel=[1 1111 ]]T. Assuming that the earthquake
; del. Th  th del excitationw(t) is a stationary excitation that can be modeled
rame model. The system parameters of the mode Structure,q a4 white noise signal with constant spectral den§jy,

are summarized ifable 1[26]. ; i T

Assuming that a STMD is placed on the roof of ;ﬁféggnt?sr%lij\?ehntgi Kanai-Tajimi mode2{,28], the PSD
the structure for suppressing the vibration induced by
earthquakes, and the strokg(t) of the TMD is defined as 1+ 485(f/1g)?
the displacement relative to the roof, the location vector of Sww (f) = [1— (f/Tq)212 + (264 /T )250 17)
the mass for the TMD can be expressed as 9 9’/e

T where&g and fg are the ground damping and frequency,
a=[100001 respectively. In this papersgy = 06 and f; =
2.39 Hz (15 rads) are used for numerical simulations.
The PSD function and the time history29 of the
Kanai—Tajimi earthquake excitation are shownFigs. 5a
b=[0 0000 J]T. and 5b, respectively. Through the optimization processes,

while the location vector of the stiffness and damping for the
TMD can be written as
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20— 1E+000 =
3 y n=3%
T b W 0002020 mwmem= s w/o STMD
7 I w/ STMD
15— 1E-001 — "
& = ]
< 10— 1E-002 =
: -
A | 3
05— 1E-003 I I T | T T ‘ ‘
0 1 2 3 4 5 6
- Frequency (Hz)
0.0 T \ \ \ T \ \ Fig. 6. Roof displacement frequency response function (STMD,
0 2 4 6 8 10 Kanai—Tajimi earthquake force).
Frequency (Hz)
) S o 10.0
Fig. 5a. Kanai—Tajimi earthquake excitation spectrum. e
E b wlo STMD
= 5.0
0.50 — 3 i
5
= 9 00—
PGA=0.3g = i
0.25 — A
= = -5.0—
\; | o =
g a
S 0.00 I ‘ ‘ [ -10.0 ‘ ‘ | : :
3 | 0 10 20 30 40 50
3 . Time (sec)
< 10.0
-0.25 — -~
= b w/ STMD
)
=
2 i
-0.50
T | 1 8 00—
0 10 20 30 40 50 =
Time (sec) A 7
8 50
Fig. 5b. Kanai-Tajimi earthquake excitation time history. g o
-100 \ \ \ T
. . . . 0 10 20 30 40 50
the optimal natural frequency ratifapt is 0.938, the optimal Time (ed)

damping ratioqpt is 10.84% and the minimal performance

index Jmin reduces to 6.61% of the original performance Fig. 7. Comparison of roof displacement response (STMD, Kanai—Tajimi

index Jorg Which is the mean square value of the structural €arthquake force).

responses before the implementation of the TMD. The

frequency ratio is defined as the ratio of the TMD’s natural ~ The roof displacement of the structure with and without

frequency and the fundamental frequency of the structure. the TMD is illustrated irFig. 7. Good reduction in structural
The equivalent natural frequencies and damping ratios of response has been achieved if the parameters of the TMD are

the 6-DOF system are obtained from the eigenvalue analysisadopted through the optimal design procedures.

as For further numerical verification of the proposed
_ method, a ten-story shear building implemented with a

f=[245 298 959 1784 2722 3610] (H) STMD (on the roof) under the El Centro earthquake is

§= [6‘14 519 356 268 291 324] (%). also analyzed in this paper, and the results are compared

Itis observed that the natural frequencies of the structure With those studied by Hadi et al2] using the genetic
are only slightly changed as the TMD is implemented, while algorithm (GA) to minimize the bl norm of the transfer

the equivalent damping ratios are enhanced, especially forfunction of the system. The fundamental frequency and
the first two coupled modes. damping ratio of the building are 1.011 Hz and 3.03%,

The effectiveness of the TMD is also revealed from respectively. In addition, the mass of the STMD is specified
the frequency response function of the roof displacementto be 3% of the structure’s total mass and the initial guess
(Fig. 6) where the peak frequency response at 2.79 Hz vaIuescfjl) = 0.001c; andkél) = 0.000Xk; for the STMD
without the TMD is greatly suppressed as the TMD are adopted in this simulation. Through the optimization
is installed. The result is consistent with that from the processes, the optimal natural frequency rdtjg is 0.973
eigenvalue analysis. (kg = 412693 kN/m) and the optimal damping ratigyt is
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Table 2
Peak response of the roof for ten-story building under El Centro earthquake
Floor Genetic algorithm (Hadi) Proposed method
Displacement (m) Acceleratiogn/s%) Displacement (m) Acceleratiofm/s?)

1 0.019 2.698 0.020 2.672

2 0.037 3.025 0.039 3.097

3 0.058 3.528 0.057 3.638

4 0.068 3.944 0.073 3.989

5 0.082 4.079 0.087 4.122

6 0.094 3.826 0.099 4.139

7 0.104 4.390 0.108 4.262

8 0.113 5.051 0.117 4.951

9 0.119 5.534 0.123 5.438
10 0.122 5.812 0.126 5.720
TMD 0.358 13.942 0.282 11.659

0.20 4.3. MDOF structure with MTMDs

g 015+ w/o STMD

g The feasibility of the proposed numerical method for the
g MDOF structure implemented with two TMDs on the roof
& and the third floor to suppress the vibration against wind load
a is further illustrated. If the structure is subjected to the wind
é load, the external disturbance profile against the floor height

of the structure is determined by the power |&80][as

0 5 10 15 20 T
Time (sec) e= [1.00 094 086 Q77 0.64]

where the element of the profile for the roof is normalized to
1.0. Moreover, the system parameters shown in Bycdn
be expressed as

0.15 — w/ STMD

2
Ms O T .
M = [ 05 O} + ;—1 mgi&a, is the 7x 7 mass matrix

Roof Displacement (m)

0o0

0 5 10 15 20
Time (sec)

2
C= [CS 0} + Z caibib] is the 7x 7 damping matrix
=)

2
KS 0 T . -
Fig. 8. Comparison of roof displacement response (STMD, El Centro K= |: 0 Oi| + § Kai bi bi is the 7x 7 stiffness matrix
earthquake force). i=1

in which

_ as=[1000014Q", a=[001000 7,
20.36% €g = 27179 kN §m), while fopt = 0.928 (kg = . .
3750 kN/m) andéop; = 11.9% (cg = 1515kN symyare  bs=[0 00001 G, b3=[000000 },
obtained by the GA method under the predefined restraint
conditions kg = 0-4000 kN'm andcq = 0-1000 kN $m. E = I:(I)E;;Z:I is the 7x 5 location matrix of external wind
The peak responses of the roof for the ten-story building loads and the PSD function of external wind loads can be
installed with a STMD on the roof are summarized in represented aSyw(@) = SSu(w) Where §(w) is the
Table 2 where the peak structural responses obtained by Davenport along-wind speed spectrum as showFign 9(a)
the proposed method are close to those obtained from theand its time history is shown ifFig. 9(b) Through the
GA method, except as regards the peak responses of theyptimization processes, the optimal natural frequency ratio
TMD which are smaller than Hadi’s results due to the large f,,; and the optimal damping ratig for the TMD on the
damping ratio obtained by the proposed method. The roof roof are 1.027% and 7.94%, respectively, and those on the
displacement of the ten-story structure with and without a third floor are 0.958% and 4.07%, respectively.
STMD is illustrated inFig. 8 where the peak displacement The equivalent natural frequencies and damping ratios of
reduction of 33% has been achieved. the 7-DOF passive controlled system are obtained from the
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0.01 0.1 1 10 Fig. 10. Roof displacement frequency response function (two TMDs,
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Fig. 9(a). Davenport along-wind speed spectrum. 1E-003
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Fig. 11. Third-floor displacement frequency response function (two TMDs,
=2 ! [ y \ \ ! [ Davenport along-wind force).

50 100

Time (sec)

150 200

Fig. 9(b). Davenport along-wind force time history.

eigenvalue analysis as

f =[259 275 300 958 1784 2722 3609 (Hz)
£ =[3.02 475 512 348 266 291 322] (%).

It is observed that the natural frequencies of the structure
are only slightly changed, while the equivalent damping
ratios are enhanced, especially for the first three coupled
modes.

The effectiveness of the TMD is also revealed from the
displacement frequency response functions of the roof and
the third floor, respectively, ifrigs. 10and 11 where the
peak frequency response at 2.79 Hz without TMD control
is greatly suppressed as two TMDs are installed. The result
is also consistent with that from the eigenvalue analysis.

The roof acceleration of the structure with and without
two TMDs is illustrated inFig. 12where good reductions of
the structural responses has been achieved as the structure
implemented with two TMDs.

5. Concluding remarks

1.0

w/o Two TMDs

Roof Acceleration (g)

T T

I
80 120

Time (sec)

200

w/ Two TMDs

Roof Acceleration (g)

-1.0

\ [
0 40 80 120 160 200

Time (sec)

is

Fig. 12. Comparison of roof acceleration response (two TMDs, Davenport
along-wind force).

In this paper, an optimal design theory for the TMD takes into account various conditions, such as full states
is developed, and the feasibility of the proposed method of the dynamic system of MDOF structures, MTMDs, and
has been verified via numerical simulations. During the the frequency distribution and allocation of environmental
process of deriving the optimal design, the proposed methoddisturbances. Consequently, the proposed method allows for
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more extensive applications of the TMD. The optimal design for torsionally coupled system. Earthquake Engineering and Structural

parameters of the TMD are systematically determined to Dynamics 1997;26:307-17. o _ .

minimize the mean square value of the structural responseéml Xu K, Igusa T. Dynamic c_haracterlstlcs ofmult|p|e st_Jbstructures with

. . . . . closely spaced frequencies. Earthquake Engineering and Structural

in thg frequency domglq. S|.nce the sufficient and necessary Dynamics 1992:21:1059—70.

conditions for the optimization of the TMD parameters are [14] Gu M, Chen SR, Chang CC. Parametric study on multiple tuned mass

a set of highly nonlinear simultaneous equations, the exact  dampers for buffeting control of Yangpu bridge. Journal of Wind and

solution of the optimal design parameters is difficult to Areodynamics 2001;89(11-12):987-1000. o

obtain, except for the undamped SDOF structure with a [15] Park J, Reed D. AnaIyS|s_ of uniformly and Ilnearl_y d_lstnbuted_ mass
. . . dampers under harmonic and earthquake excitation. Engineering

STMD. Therefore, th!s study mtroduces a numerical methqd Structures 2001:23(7):802—-14.

to search for the optimal design parameters of the TMD in [16] Li C. Performance of multiple tuned mass dampers for attenuating

a systematic fashion. With the proposed numerical method, undesirable oscillations of structures under the ground acceleration.

the numerical solution converges monotonically and very Earthquake Engineering and Structural Dynamics 2000;29(9):

effectively toward the exact solutions as the number of __ 1405-2L _ . .

. . . . . [17] Li C, Liu Y. Ground motion dominant frequency effect on design

|terat|ons |nc.reases. Moreover, the proposed optlmal design of multiple tuned mass dampers. Journal of Earthquake Engineering

theory is derived by using full states of the dynamic system 2004:8:89-105.

without any model order reduction. Therefore, the error [18] Li C. Optimal multiple tuned mass dampers under the ground

introduced by the mathematical model can be reduced, and  acceleration based on DDMF and ADMF. Earthquake Engineering

the control effectiveness of the TMD can also certainly be and Structural Dynamics 2002;31(4):897-919.
[19] Li C, Liu Y. Optimal multiple tuned mass dampers under the ground

guaranteed. acceleration based on the uniform distribution of system param-
eters. Earthquake Engineering and Structural Dynamics 2003;32:
671-90.
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