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Abstract

An optimal design theory for structures implemented with tuned mass dampers (TMDs) is proposed in this paper. Full state
dynamic system of multiple-degree-of-freedom (MDOF) structures, multiple TMDs (MTMDs) installed at different stories of the bu
and the power spectral density (PSD) function of environmental disturbances are taken into account. This proposed method allows
extensive application and successfully releases the limitations based on simplified models. The optimal design parameters of TMD
of the damping coefficients and spring constants corresponding to each TMD are determined through minimizing a performance
structural responses defined in the frequency domain. Moreover, a numerical method is also proposed for searching for the optim
parameters of MTMDs in a systematic fashion such that the numerical solutions converge monotonically and effectively toward t
solutions as the number of iterations increases. The feasibility of the proposed optimal design theory is verified by using a SDOF
with a single TMD (STMD), a five-DOF structure with two TMDs, and a ten-DOF structure with a STMD.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A tuned mass damper, consisting of a mass, dampi
and a spring, is an effective and reliable structural vibrati
control device commonly attached to a vibrating prima
system for suppressing undesirable vibrations induced
winds and earthquake loads. The natural frequency of
TMD is tuned in resonance with the fundamental mo
of the primary structure, so that a large amount of t
structural vibrating energy is transferred to the TMD an
then dissipated by the damping as the primary structure
subjected to external disturbances. Consequently, the sa
and habitability of the structure are greatly enhanced. T
TMD system has been successfully installed in slend
skyscrapers and towers to suppress the wind-indu
structural dynamic responses [1,2]; such structures include
∗ Corresponding author. Tel.: +886 3 5731936; fax: +886 3 5713221.
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the CN Tower (535 m) in Canada, the John Hanco
Building (sixty stories) in Boston, Center-Point Towe
(305 m) in Sydney, and the tallest building in the world
Taipei 101 Tower (101 stories, 504 m) [3] in Taiwan. From
the field vibration measurements, it has been proved tha
TMD is an effective and feasible system to use in structu
vibration control against high wind loads.

Frahm [4] proposed the TMD system in 1909 fo
reducing the mechanical vibration induced by monoton
harmonic forces. It is found that if a secondary syste
composed of a mass, a damping device, and a spring
implemented on a primary structure and its natural frequen
is tuned to be very close to the dominant mode of the prima
structure, a large reduction in the dynamic responses of
primary structure can be achieved. Although the basic des
concept of the TMD is quite simple, the parameters (ma
damping, and stiffness) of the TMD system must be obtain
through optimal design procedures to attain a better con
performance. Therefore, the determination of optimal des
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Nomenclature

ai location vector of the mass for thei -th TMD
bi location vector of the damping and stiffness

for thei -th TMD
C damping matrix of the passive controlled

structure
Cs damping matrix of the structure
cdi damping of thei -th TMD
cs damping of the SDOF structure
D location matrix of the partial responses
d difference of the upper bound and lower bound

of the incremental step
E the location matrix of the external distur-

bances (with a TMD)
Es location matrix of the external disturbances
e the location matrix of the external distur-

bances for the SDOF structure
f frequency (Hz)
fopt optimal frequency ratio of the TMD (TMD’s

frequency/structure’s frequency)
H(ω) frequency response function (transfer func-

tion)
I identity matrix
J performance index
j

√−1
K stiffness matrix of the passive controlled

structure
Ks stiffness matrix of the structure
kdi stiffness of thei -th TMD
ks stiffness of the SDOF structure
M mass matrix of the passive controlled structure
Ms mass matrix of the structure
mdi mass of thei -th TMD
n degrees of freedom of the structure
p total number of TMDs
pkk(ω) the k-th diagonal elements of the square

matricesP(ω)

q total number of external disturbances
qkk(ω) the k-th diagonal elements of the square

matricesQ(ω)

SWW(ω) PSD function matrix of the external distur-
bance vectorw(t)

SYY (ω) PSD function matrix of the partial response
vectory(t)

Su(ω) Davenport along-wind speed spectrum
sci step of the increments for the parameterscdi

ski step of the increments for the parameterskdi

sl lower bound of the incremental step
su upper bound of the incremental step
S0 constant PSD function of a white noise signal
T transpose of a matrix or vector (or transpose

and complex conjugate of a matrix or vector)
w(t) external disturbance vector
W(ω) Fourier transform of the external disturbance

vector
X(ω) Fourier transform of the displacement vector

of the passive controlled system
x(t) displacement vector of the passive controlled

structure
xs(t) displacement vector of the structure
xd(t) stroke of the TMD
y(t) the partial response vector of the structure
δ prescribed tolerance
ξopt optimal damping ratio of the TMD
µ mass ratio (TMD’s mass/main structure’s total

mass)
ω circular frequency of the passive controlled

system
ρ golden ratio

parameters of the TMD to enhance the control effectiven
has become very crucial.

Since Den Hartog [5] first proposed an optimal design
theory for the TMD for an undamped single-degree-o
freedom (SDOF) structure, many optimal design metho
for the TMD have been developed to control the structu
vibration induced by various types of excitation sour
[6–10]. Crandall and Mark [7] adopted the random vibration
theory to analyze a SDOF structure implemented w
a single TMD (STMD) subjected to white noise bas
excitation. The results demonstrated that the TMD cou
effectively reduce the vibration of the base-excited structu
Warburton et al. [8,9] further proposed optimal design
formulas for the TMD system under different types of loa
such as harmonic forces, wind loads, and seismic loa
However, the control effectiveness is highly sensitive to t
design parameters of the TMD relative to the paramet
of the primary structure. If the design parameters of t
TMD deviate from the optimal design values or erro
exists in the identification of the natural frequency of th
primary structure, a detuning effect will occur and th
control effectiveness may deteriorate. Hence, the adop
of multiple tuned mass dampers (MTMDs) [10–23] with
distributed natural frequencies around the controlled mo
(horizontal or torsional motions) of the primary structure h
been proposed to alleviate the detuning effect or to enha
the control performance.

In the above-mentioned studies, the design parame
of MTMDs are determined through parametric studies
by their proposed optimal design methods. Moreover,
external disturbances considered in these studies are lim
to white noise and harmonic force over a frequency ran
or random signals, such as earthquake excitations as stu
by Li et al. [15–19]. In addition, Stech [22] adopted a H2-
based approach for optimally tuning the passive vibrati
absorbers to control both the torsional mode and the bend
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mode of a mass reactive T (MRT) structure. Zuo et al. [23]
proposed a minimax optimal design method for vibratio
control of a free–free beam implemented with a 3-DO
TMD or with three SDOF TMDs.

In this paper, an optimal design theory with a systema
and efficient procedure for searching for the optim
design parameters for the TMD is proposed. Full stat
of the dynamic system of MDOF structures, multipl
TMDs installed at different stories of the building, an
the PSD function of environmental disturbances are tak
into account. Since the sufficient and necessary conditio
are highly nonlinear simultaneous equations, a numeri
method for the optimal design theory of the TMD i
proposed in this paper such that the solution of the optim
design parameters converges monotonically toward the ex
solutions as the number of iterations increases. Fina
the feasibility of the proposed optimal design theory an
the numerical scheme is verified through the numeric
simulations of a full-order five-DOF structure and a ten
DOF structure installed with two TMDs and a STMD
respectively.

2. Derivation of optimal design theory

When a structure withn degrees of freedom (DOF) is
subjected to external disturbances,w(t), its equation of
motion can be described as

Ms ẍs(t) + Cs ẋs(t) + Ksxs(t) = Esw(t) (1)

wherexs(t) is then×1 displacement vector,w(t) is theq×1
external disturbance vector,q is the number of disturbances
Ms , Cs and,Ks are then × n mass, damping, and stiffnes
matrices, respectively, andEs is then × q location matrix
of external disturbances. If MTMDs are implemented in th
MDOF structure to suppress the structural vibration induc
by the external disturbances, the governing equation of
passive controlled system can be taken as

Mẍ(t) + Cẋ(t) + Kx(t) = Ew(t) (2)

where x(t) =
[

xs (t)
xd (t)

]
is the (n + p) × 1 displacement

vector of the passive controlled system,M =
[

Ms 0
0 0

]
+∑p

i=1 mdi ai aT
i , C =

[
Cs 0
0 0

]
+ ∑p

i=1 cdi bi bT
i and K =[

Ks 0
0 0

]
+ ∑p

i=1 kdibi bT
i are, respectively, the(n + p) ×

(n + p) mass, damping and stiffness matrices of the pass
controlled system,p is the total number of TMDs installed
in the structure,mdi , cdi , kdi are the mass, damping an
stiffness of thei -th TMD, respectively,ai is the(n + p) × 1
location vector of the mass for thei -th TMD, bi is the
(n + p) × 1 location vector of the damping and stiffnes
for the i -th TMD, E is the(n + p) × q location matrix of
the external disturbances and the superscript T denotes
transpose of a matrix or vector.

To derive the optimal design parameters of the TM
more generally, this study may consider the partial respon
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of the structure instead of using the full ones as

y(t) = Dx(t) (3)

wherey(t) is ther ×1 partial response vector of the structur
and D is the r × (n + p) location matrix of these partial
responses. If the location matrixD = [

In 0
]

is adopted, the
partial response vectory(t) becomes the full displacemen
vector of the structurexs(t).

Taking a Fourier transform to both sides of the passi
control Eq. (2), the relation of the system response vect
x(t) and the external disturbance vectorw(t) in the
frequency domain takes the form

X(ω) = [−ω2M + jωC + K]−1EW(ω)

= H(ω)EW(ω) (4)

whereH(ω) = [−ω2M + jωC + K]−1 is the (n + p) ×
(n + p) frequency response function andj = √−1.
Similarly, the relation between the partial response vec
of the structurey(t) and the external disturbance vectorw(t)
in the frequency domain can be expressed as

Y(ω) = DX(ω) = DH(ω)EW(ω). (5)

If the external disturbance vector,w(t), is a random
signal, the partial response of the structurey(t) is also a
random one, and their PSD functions can be written as

SYY (ω) = DH(ω)ESWW(ω)ETHT(ω)DT (6)

where SYY (ω) is the r × r PSD function matrix of the
partial response vectory(t), SWW(ω) is the q × q PSD
function matrix of the external disturbance vectorw(t) and
the superscript T denotes the transpose or the comp
conjugate of a matrix or vector. Since the integral of the PS
function of the structural response with respect to frequen
is the mean square value of the structural response,
performance index for the optimization of the TMD desig
parameters in this study is therefore defined as

J =
∫ ∞

−∞
tr{SYY(ω)}dω

=
∫ ∞

−∞
tr{DH(ω)ESWW(ω)ETHT(ω)DT}dω (7)

where tr{•} is the trace of a square matrix.
Because the frequency response functionH(ω) expressed

in Eq. (4) is a function of the damping(cdi) and the stiffness
(kdi) of the TMD, the partial differentials of the frequenc
response function with respect to each design parameter
represented, respectively, as

∂H(ω)

∂cdi
= − jωH(ω)bi bT

i H(ω), i = 1, 2, . . . , p (8a)

∂H(ω)

∂kdi
= −H(ω)bi bT

i H(ω), i = 1, 2, . . . , p (8b)

Since the PSD function matrixSYY (ω) of the structural
responses is a positive-definite matrix, the sufficient a
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necessary conditions are

∂ J

∂cdi
= −

∫ ∞

−∞
tr{P(ω) + PT(ω)}dω

= −
∫ ∞

−∞

r∑
k=1

{pkk(ω) + p∗
kk(ω)}dω = 0,

i = 1, 2, . . . , p (9a)
∂ J

∂
kdi = −

∫ ∞

−∞
tr{Q(ω) + QT(ω)}dω

= −
∫ ∞

−∞

r∑
k=1

{qkk(ω) + q∗
kk(ω)}dω = 0,

i = 1, 2, . . . , p (9b)

where

P(ω) = jωDH(ω)bi bT
i H(ω)ESWW(ω)ETHT(ω)DT (10a)

Q(ω) = DH(ω)bi bT
i H(ω)ESWW(ω)ETHT(ω)DT (10b)

in which,HT(ω) denotes[H∗(ω)]T, pkk(ω) andqkk(ω) are,
respectively, thek-th diagonal elements of ther × r square
matrices,P(ω) andQ(ω), and the superscript * denotes the
complex conjugate of a complex number. The 2p unknown
optimal design parameters of the TMD (cdi andkdi ) can be
solved from the 2p simultaneous equations (Eqs. (9a) and
(9b)) by the proposed numerical method as will be discuss
later.

3. Numerical methods for optimal design theory

The sufficient and necessary condition for the optimiz
tion of the TMD parameters is a set of highly nonlinear s
multaneous equations (Eqs. (9a) and (9b)). As a result, the
exact solutions of the optimal design parameters are di
cult to obtain, except for the simple systems, such as the
damped SDOF structure implemented with a STMD. Th
paper proposes a numerical method for determining the o
timal design parameters for the TMD in a systematic fashi
by which the results converge monotonically toward the e
act solutions with each iteration. Firstly, a set of initial val
ues,c(1)

di andk(1)
di , i = 1, 2, . . . , p, is guessed and in turn

substituted into Eq. (7) to obtain the initial valueJ (1) of the
performance index. Let dJ (1) be the difference between the
updated valueJ (2) and the initial valueJ (1) of the perfor-
mance index; their relation can then be represented as

J (2) = J (1) + dJ (1). (11)

In order to make the updated value of each iteratio
approach the solution, the updated valueJ (2) must be less
than the initial valueJ (1), that is dJ (1) < 0. Since the
performance indexJ is a function of the 2p independent
variables (c(1)

di andk(1)
di , i = 1, 2, . . . , p), its total derivative

can be taken as

dJ (1) =
p∑

i=1

[
∂ J (1)

∂cdi
dc(1)

di + ∂ J (1)

∂kdi
dk(1)

di

]
. (12a)
d

-

-
n-

-

-

Let ∂ J (1)

∂cdi
= −dc(1)

di and ∂ J (1)

∂kdi
= −dk(1)

di ; then Eq. (12a)
can be represented as

dJ (1) =
p∑

i=1

[−(dc(1)
di )2 − (dk(1)

di )2]

= −
p∑

i=1

[(dc(1)
di )2 + (dk(1)

di )2] (12b)

where dJ (1) is a negative. If dc(1)
di (c(2)

di − c(1)
di ) and dk(1)

di

(k(2)
di − k(1)

di ) are very small, the increments of the paramete

dc(1)
di and dk(1)

di are assumed to be, respectively, as follows

dc(1)
di = c(2)

di − c(1)
di = −sci

∂ J (1)

∂cdi
, i = 1, 2, . . . , p (13a)

dk(1)
di = k(2)

di − k(1)
di = −ski

∂ J (1)

∂kdi
, i = 1, 2, . . . , p (13b)

where sci and ski are, respectively, the steps of th
increments for the parameterscdi and kdi , and the partial

differentials (∂ J (1)

∂cdi
and ∂ J (1)

∂kdi
) in Eqs. (13a) and (13b) can be

obtained from Eqs. (9a) and (9b). Substituting Eqs. (13a) and
(13b) into Eq. (12a), the total derivative of the performance
index can be written as

dJ (1) = −
p∑

i=1


sci

(
∂ J (1)

∂cdi

)2

+ ski

(
∂ J (1)

∂kdi

)2

 < 0. (14)

From Eq. (14), one ensures that the updated valueJ (2)

of the performance index is always less than its initi
valueJ (1) and the iterated results proceed toward converg
values. The updated values of the TMD design paramet
(cdi andkdi ) can be further represented as

c(2)
di = c(1)

di + dc(1)
di = c(1)

di − sci
∂ J (1)

∂cdi
,

i = 1, 2, . . . , p (15a)

k(2)
di = k(1)

di + dk(1)
di = k(1)

di − ski
∂ J (1)

∂kdi
,

i = 1, 2, . . . , p. (15b)

Substituting the updated design parametersc(2)
di andk(2)

di
into Eq. (7), the updated value of the performance inde
J (2), can be calculated. Again, letc(1)

di = c(2)
di , k(1)

di =
k(2)

di and J (2) = J (1) + dJ (1), and the above-mentioned
procedures are repeated until the convergence of the de
parameters is achieved. In other words, the optimal des
parameters of the TMD can be obtained from this ste
by-step iterative method in which the performance ind
J in the current iteration is always smaller than the on
in the previous iteration. That is, the larger the number
iterations, the closer the results approach the exact solutio
However, in order to take both the accuracy and t
computation efficiency into account, iteration processes w
be terminated as the error between two consecutive itera
performance indices becomes less than the prescri
tolerance. The flowchart of the proposed numerical meth



C.-L. Lee et al. / Engineering Structures 28 (2006) 43–53 47
Fig. 1. Flowchart of proposed numerical method.
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as
is shown inFig. 1. Eqs. (12a) and (12b) is valid only if the
incremental step for each design parameter for the TM
is small. However, if the incremental step is too small, t
computation efficiency will decrease. On the other ha
if the incremental step is too large, the decrease of
performance indexJ with the number of iterations will
not be ensured. Therefore, the upper bound and the lo
bound of the incremental step for each design paramete
the TMD must be determined first, and the golden sect
search method [24] is then adopted to compute the optim
,
e

er
of
n

incremental steps [25] for the proposed numerical method
in this paper. The determination of the upper bound a
the lower bound of the incremental step is described
follows:

(1) Set the initial upper bound(su = 10−9) and the initial
lower bound(sl = 0) of the incremental step(s).

(2) Substitutesu andsl into Eqs. (15a) and (15b) to obtain
c(Su)

d , k(Su)
d , c(Sl)

d , and k(Sl)
d which in turn are used to

calculateJ (su) andJ (sl), respectively.
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(3) If J (su) > J (sl), let su = su
10 andsl = sl , then go back

to step 2.
(4) If J (su) < J (sl), let s′

l = su and s′
u = 10 × su , and

calculateJ (s′
u) andJ (s′

l ), respectively.
(5) Update the upper bound and the lower bound of t

incremental step,sl = s′
l , su = s′

u , and the performance
indices,J (su) = J (s′

u), J (sl) = J (s′
l ).

(6) If J (su) < J (sl), go back to step 4, otherwise,sl = s′
l ,

su = s′
u .

Once the upper bound and the lower bound of t
incremental step are obtained, the golden section sea
method can be used to find the optimal incremental step(s)
as follows:

(1) Assign the upper bound(su) and the lower bound(sl) of
the incremental step(s)

(2) Let d = su − sl , ρ = (3 − √
5)/2 (golden ratio), and

the interval[sl , su ] can be divided into three segment
by s1 = sl +ρd ands2 = su −ρd which are in turn used
to calculateJ (s1) andJ (s2).

(3) Calculate the relative error,
∣∣∣ J (s2)−J (s1)

J (s1)

∣∣∣ ≤ δ, in whichδ

is the prescribed tolerance. If the relative error satisfi
the aforementioned condition,s = s1; otherwise,s = s2.

(4) If step 3 is not satisfied, update the interval asd =
(1 − ρ)d.

(5) If J (s1) < J (s2), let s′
2 = s1, J (s′

2) = J (s1), and then
calculates′

1 = s′
2 − (1 − 2ρ)d andJ (s′

1).
(6) If J (s1) > J (s2), let s′

1 = s2, J (s′
1) = J (s2), and then

calculates′
2 = s′

1 + (1 − 2ρ)d andJ (s′
2).

(7) Update the values,s1 = s′
1, s2 = s′

2, J (s1) = J (s′
1),

J (s2) = J (s′
2), and go back to step 4.

4. Numerical verifications

The feasibility of using the numerical method for th
SDOF structure with a STMD and the MDOF structure wi
a STMD or MTMDs is numerically verified in this section.

4.1. SDOF structure with a STMD

The accuracy of the proposed numerical method is fi
examined for an undamped SDOF structure, since ex
solutions for the simple system exist. The exact solutio
for the optimal design parameters of a STMD for a SDO
system under white noise wind disturbance with zero me
can be obtained as follows [8,9]:

fopt =
√

1 + µ/2

1 + µ
(16a)

ξopt =
√

µ(1 + 3µ/4)

4(1 + µ)(1 + µ/2)
(16b)

where fopt is the optimal frequency ratio defined as th
ratio of the TMD’s frequency to the main structure’s natur
frequency,ξopt is the optimal damping ratio of the TMD and
e

e
ch

s

t
ct
s

n

l

Fig. 2. Variation of optimal damping ratio with mass ratio of the TMD.

Fig. 3. Variation of optimal frequency ratio with mass ratio of the TMD.

µ is the mass ratio defined as the ratio of the TMD’s ma
to the main structure’s mass. The numerical solutions
these parameters can be obtained by the numerical meth
proposed in this paper. As the mass ratioµ of the TMD to
the structure increases, the optimal damping ratioξopt of the
TMD increases (Fig. 2), while the optimal frequency ratio
fopt decreases (Fig. 3). The numerical results for the optima
damping ratio and frequency ratio are very consistent w
the exact solutions as represented, respectively, inFigs. 2
and 3. Furthermore, the performance indexJ not only
decreases monotonically but also converges very fast w
the number of iterations is larger than 5 as shown
Fig. 4 where a SDOF system withms = 100 kg, cs =
314.16 N s/m (ξs = 5%), ks = 98 696.5 N/m ( fs = 5 Hz),
and a TMD system withms = 10 kg, initial guess values
c(1)

d = 0.1cs andk(1)
d = 0.1ks, are used in this numerica

simulation.

4.2. MDOF structure with a STMD

The MDOF structure implemented with a STMD i
used as a further illustration of the feasibility of usin
the proposed numerical method. The objective struct
considered in this study is a scaled-down five-story st
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Table 1
System parameters of the five-story structure

Mode 1 2 3 4 5

Frequency (Hz) 2.79 9.58 17.83 27.21 36.09

Damping ratio (%) 0.34 3.44 2.63 2.91 3.21

Mode shapes

5f 0.5667 −0.4994 0.4455 −0.0868 −0.4943
4f 0.6314 −0.1747 −0.1903 0.0275 0.7257
3f 0.3580 0.2274 −0.7430 −0.2589 −0.4423
2f 0.3247 0.7856 0.4600 −0.2422 0.0356
1f 0.2159 0.2266 −0.0408 0.9306 −0.1794

System matrices

Mass matrix (kg)

804.71 0 0 0 0
0 827.18 0 0 0
0 0 827.18 0 0
0 0 0 827.18 0
0 0 0 0 830.71

Stiffness matrix(N/m)

12 823 632 −15 513 534 5989 005 736 731 1318 464
−15 513 534 23 139 828 −12 499 902 −329 616 −4979 556
5989 005 −12 499 902 15 943 212 −2163 105 −1927 665
736 731 −329 616 −2163 105 5565 213 −5369 013
1318 464 −4979 556 −1927 665 −5369 013 22 626 765

Damping matrix(N s/m)

4626.89 −4325.23 818.45 −359.93 −53.37
−4325.23 6713.18 −3369.74 −622.35 −1457.96
818.45 −3369.74 5817.92 −724.08 −684.05
−359.93 −622.35 −724.08 3671.98 −1403.12
−53.37 −1457.96 −684.05 −1403.12 7750.00
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Fig. 4. Convergency of performance index.

frame model. The system parameters of the model struc
are summarized inTable 1[26].

Assuming that a STMD is placed on the roof o
the structure for suppressing the vibration induced
earthquakes, and the strokexd(t) of the TMD is defined as
the displacement relative to the roof, the location vector
the mass for the TMD can be expressed as

a = [
1 0 0 0 0 1

]T
while the location vector of the stiffness and damping for t
TMD can be written as

b = [
0 0 0 0 0 1

]T
.

re

f

In the processes of optimization, only the suppress
of structural responses is involved. Therefore, the locat
matrix of the partial responses of the structure can
represented as

D = [
I 0

]
5×6 .

Moreover, the weight of the TMD is 123.51 kgf, which i
3% of the structure’s total weight.

As the structure is subjected to the earthquake load,
location vector of the external disturbances becomes

E =
[

Ms 0
0 0

]
1 + mda

where1 = [
1 1 1 1 1 1

]T. Assuming that the earthquak
excitationw(t) is a stationary excitation that can be model
as a white noise signal with constant spectral density,S0,
filtered through the Kanai–Tajimi model [27,28], the PSD
function is given by

SWW( f ) = 1 + 4ξ2
g ( f/ fg)2

[1 − ( f/ fg)2]2 + (2ξg f/ fg)2
S0 (17)

where ξg and fg are the ground damping and frequenc
respectively. In this paper,ξg = 0.6 and fg =
2.39 Hz (15 rad/s) are used for numerical simulations
The PSD function and the time history [29] of the
Kanai–Tajimi earthquake excitation are shown inFigs. 5a
and 5b, respectively. Through the optimization process
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Fig. 5a. Kanai–Tajimi earthquake excitation spectrum.

Fig. 5b. Kanai–Tajimi earthquake excitation time history.

the optimal natural frequency ratiofopt is 0.938, the optimal
damping ratioξopt is 10.84% and the minimal performanc
index Jmin reduces to 6.61% of the original performanc
index Jorg which is the mean square value of the structur
responses before the implementation of the TMD. T
frequency ratio is defined as the ratio of the TMD’s natur
frequency and the fundamental frequency of the structure

The equivalent natural frequencies and damping ratios
the 6-DOF system are obtained from the eigenvalue analy
as

f = [
2.45 2.98 9.59 17.84 27.22 36.10

]
(Hz)

ξ = [
6.14 5.19 3.56 2.68 2.91 3.24

]
(%).

It is observed that the natural frequencies of the structu
are only slightly changed as the TMD is implemented, whi
the equivalent damping ratios are enhanced, especially
the first two coupled modes.

The effectiveness of the TMD is also revealed from
the frequency response function of the roof displaceme
(Fig. 6) where the peak frequency response at 2.79
without the TMD is greatly suppressed as the TM
is installed. The result is consistent with that from th
eigenvalue analysis.
l

l

f
is

e

r

t
z

Fig. 6. Roof displacement frequency response function (STM
Kanai–Tajimi earthquake force).

Fig. 7. Comparison of roof displacement response (STMD, Kanai–Taji
earthquake force).

The roof displacement of the structure with and witho
the TMD is illustrated inFig. 7. Good reduction in structural
response has been achieved if the parameters of the TMD
adopted through the optimal design procedures.

For further numerical verification of the propose
method, a ten-story shear building implemented with
STMD (on the roof) under the El Centro earthquake
also analyzed in this paper, and the results are compa
with those studied by Hadi et al. [21] using the genetic
algorithm (GA) to minimize the H2 norm of the transfer
function of the system. The fundamental frequency a
damping ratio of the building are 1.011 Hz and 3.03%
respectively. In addition, the mass of the STMD is specifi
to be 3% of the structure’s total mass and the initial gue
valuesc(1)

d = 0.001c1 andk(1)
d = 0.0001k1 for the STMD

are adopted in this simulation. Through the optimizatio
processes, the optimal natural frequency ratiofopt is 0.973
(kd = 4126.93 kN/m) and the optimal damping ratioξopt is
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Table 2
Peak response of the roof for ten-story building under El Centro earthquake

Floor Genetic algorithm (Hadi) Proposed method
Displacement (m) Acceleration(m/s2) Displacement (m) Acceleration(m/s2)

1 0.019 2.698 0.020 2.672
2 0.037 3.025 0.039 3.097
3 0.058 3.528 0.057 3.638
4 0.068 3.944 0.073 3.989
5 0.082 4.079 0.087 4.122
6 0.094 3.826 0.099 4.139
7 0.104 4.390 0.108 4.262
8 0.113 5.051 0.117 4.951
9 0.119 5.534 0.123 5.438

10 0.122 5.812 0.126 5.720
TMD 0.358 13.942 0.282 11.659
tr
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Fig. 8. Comparison of roof displacement response (STMD, El Cen
earthquake force).

20.36% (cd = 271.79 kN s/m), while fopt = 0.928 (kd =
3750 kN/m) andξopt = 11.9% (cd = 151.5 kN s/m) are
obtained by the GA method under the predefined restra
conditions,kd = 0–4000 kN/m andcd = 0–1000 kN s/m.
The peak responses of the roof for the ten-story build
installed with a STMD on the roof are summarized
Table 2 where the peak structural responses obtained
the proposed method are close to those obtained from
GA method, except as regards the peak responses of
TMD which are smaller than Hadi’s results due to the lar
damping ratio obtained by the proposed method. The r
displacement of the ten-story structure with and withou
STMD is illustrated inFig. 8 where the peak displacemen
reduction of 33% has been achieved.
o

nt
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4.3. MDOF structure with MTMDs

The feasibility of the proposed numerical method for t
MDOF structure implemented with two TMDs on the roo
and the third floor to suppress the vibration against wind lo
is further illustrated. If the structure is subjected to the wi
load, the external disturbance profile against the floor he
of the structure is determined by the power law [30] as

e = [
1.00 0.94 0.86 0.77 0.64

]T
where the element of the profile for the roof is normalized
1.0. Moreover, the system parameters shown in Eq. (2) can
be expressed as

M =
[

Ms 0
0 0

]
+

2∑
i=1

mdiai aT
i is the 7× 7 mass matrix,

C =
[

Cs 0
0 0

]
+

2∑
i=1

cdi bi bT
i is the 7× 7 damping matrix,

K =
[

Ks 0
0 0

]
+

2∑
i=1

kdi bi bT
i is the 7× 7 stiffness matrix,

in which

a5 = [
1 0 0 0 0 1 0

]T
, a3 = [

0 0 1 0 0 0 1
]T

,

b5 = [
0 0 0 0 0 1 0

]T
, b3 = [

0 0 0 0 0 0 1
]T

,

E =
[

I5×5
02×5

]
is the 7× 5 location matrix of external wind

loads and the PSD function of external wind loads can
represented asSWW(ω) = S0Su(ω) where Su(ω) is the
Davenport along-wind speed spectrum as shown inFig. 9(a)
and its time history is shown inFig. 9(b). Through the
optimization processes, the optimal natural frequency ra
fopt and the optimal damping ratioξopt for the TMD on the
roof are 1.027% and 7.94%, respectively, and those on
third floor are 0.958% and 4.07%, respectively.

The equivalent natural frequencies and damping ratio
the 7-DOF passive controlled system are obtained from
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Fig. 9(a). Davenport along-wind speed spectrum.

Fig. 9(b). Davenport along-wind force time history.

eigenvalue analysis as

f = [
2.59 2.75 3.00 9.58 17.84 27.22 36.09

]
(Hz)

ξ = [
3.02 4.75 5.12 3.48 2.66 2.91 3.22

]
(%).

It is observed that the natural frequencies of the struct
are only slightly changed, while the equivalent dampi
ratios are enhanced, especially for the first three coup
modes.

The effectiveness of the TMD is also revealed from t
displacement frequency response functions of the roof
the third floor, respectively, inFigs. 10and 11 where the
peak frequency response at 2.79 Hz without TMD cont
is greatly suppressed as two TMDs are installed. The re
is also consistent with that from the eigenvalue analysis.

The roof acceleration of the structure with and witho
two TMDs is illustrated inFig. 12where good reductions o
the structural responses has been achieved as the struct
implemented with two TMDs.

5. Concluding remarks

In this paper, an optimal design theory for the TM
is developed, and the feasibility of the proposed meth
has been verified via numerical simulations. During t
process of deriving the optimal design, the proposed met
e

d

d

l
lt

e is

d

d

Fig. 10. Roof displacement frequency response function (two TMD
Davenport along-wind force).

Fig. 11. Third-floor displacement frequency response function (two TMD
Davenport along-wind force).

Fig. 12. Comparison of roof acceleration response (two TMDs, Davenp
along-wind force).

takes into account various conditions, such as full sta
of the dynamic system of MDOF structures, MTMDs, an
the frequency distribution and allocation of environmen
disturbances. Consequently, the proposed method allows
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more extensive applications of the TMD. The optimal desig
parameters of the TMD are systematically determined
minimize the mean square value of the structural respon
in the frequency domain. Since the sufficient and necess
conditions for the optimization of the TMD parameters a
a set of highly nonlinear simultaneous equations, the ex
solution of the optimal design parameters is difficult t
obtain, except for the undamped SDOF structure with
STMD. Therefore, this study introduces a numerical meth
to search for the optimal design parameters of the TMD
a systematic fashion. With the proposed numerical meth
the numerical solution converges monotonically and ve
effectively toward the exact solutions as the number
iterations increases. Moreover, the proposed optimal des
theory is derived by using full states of the dynamic syste
without any model order reduction. Therefore, the err
introduced by the mathematical model can be reduced,
the control effectiveness of the TMD can also certainly b
guaranteed.
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