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Abstract

Level-of-detail modeling is a vital representation for real-time applications. To support texture mapping progres-
sive meshes (PM), we usually allow the whole PM sequence to share a common texture map. Although such a
common texture map can be derived by using appropriate mesh parameterizations that consider the minimization
of geometry stretch, texture stretch, or even the texture deviation introduced by edge collapses, we have found
that even with a well parameterized texture map, the texture mapped PM still reveals apparent texture distortion
due to geometry changes and the nature of linear interpolation used by texture mapping hardware. In this paper,
we propose a novel, simple, and efficient approach that adapts texture content for each edge collapse, aiming to
eliminate texture distortion. A texture adaptation and its inverse are local and incremental operations that can
be fully supported by texture mapping hardware, the render-to-texture feature, and the fragment shader. Once the
necessary correspondence in the partition of texture space is built during the course of PM construction, the tex-
ture adaptation or its inverse can be applied on the fly before rendering the simplified or refined model with texture
map. We also propose the mechanism of indexing mapping to reduce blurred artifacts due to under-sampling that
might be introduced by texture adaptation.

Keywords: texture mapping progressive meshes, mesh simplification, mesh parameterization, texture distortion
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1. Introduction

Mesh simplification has been an active area of research in
real-time graphics. The ultimate goal of mesh simplification
is to generate a simplified mesh of low polygon count that
preserves the fidelity of the original mesh. Texture mapping
has been very useful in enhancing shaded images with more
surface or color detail. For a given mesh and its associated
texture map, there are several possibilities of applying the
texture map to the simplified meshes. One way is to have a
texture map for each simplified mesh, which requires more
artist work on texture design and more storage, especially
for progressive meshes (PM). A more practical way is to
have the entire PM sequence share a common texture map;
however, when applying texture mapping to PMs, serious
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texture distortions are often observed. To reduce texture dis-
tortion, several schemes have been proposed. One is to con-
sider texture deviation as an error metric, implying that edge
collapses with higher texture deviation are more likely to be
retained. This, however, cannot prevent texture distortion in-
troduced by edge collapses that have been performed. In ad-
dition to using the metric of texture deviation, the texture
map can be derived by using appropriate parameterizations
that take into account the minimization of geometry and tex-
ture stretch, as well as the texture deviation introduced by
edge collapses. It is observed that even with a very well pa-
rameterized texture map, the texture mapped PM still reveals
significant texture distortion due to geometry changes and
the nature of linear interpolation employed by texture map-
ping hardware.

Let’s consider the 2D case shown in Figure 1, where edges
AC and BC are simplified to AB. At the bottom, T is the
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texture map on which A maps to 0, B maps to 1, and C
maps to 0.3. On the textured image of AB, we see the blue
color shares a portion of AB that is much smaller than ex-
pected. Figure 2 shows a planar polygonal mesh M = M2

and the texture map T associated with it. The textured im-
ages of simplified meshes M1 and M0 reveal serious texture
distortion, as shown in the bottom row of the figure. In this
example, geometry remains the same, but the nature of linear
interpolation for texture mapping affects the textured image.
Essentially, the texture coordinate within a triangle is piece-
wise linear but is no longer linear when crossing edges of the
triangle. Such texture distortion has been routinely observed
for texture mapping PMs using any existing technique.

A B

C

T

0 10.3

Figure 1: Texture distortion introduced by geometry simpli-
fication.

We present a novel, simple, and efficient approach that
adapts texture content for each edge collapse, aiming to ef-
fectively eliminate the texture distortion introduced by ge-
ometry changes and the nature of linear interpolation em-
ployed by texture mapping hardware. The texture adaptation
applied for each edge collapse is local to the region affected
by the edge collapse and is applied to the adapted texture re-
sulting from the previous edge collapse. The texture adapta-
tion is invertible, that is, the backward texture adaptation can
be performed for a vertex split. Both texture adaptation and
backward texture adaptation can be fully supported by tex-
ture mapping hardware. Once the necessary correspondence
in the partition of texture space is built during the course of
PM construction, the texture adaptation or its inverse can be
applied on the fly before rendering the simplified or refined
model with texture map. We have observed that the proposed
texture adaptation is capable of eliminating texture distor-
tion in a time that is almost negligible. Figure 3 depicts that
the textured images of M1 and M0 with texture adaptation
are indistinguishable from the textured image of the original
mesh.

2. Related work

Luebke et al. [LWC∗02] already gave a complete and inten-
sive review of model simplification. Here, we review the
works that address the reduction of texture distortion re-
sulting from model simplification. Hoppe [Hop96] proposed
an continuous level-of-detail representation, called progres-
sive mesh (PM). Garland and Heckbert [GH98] introduced

a quadric error metric for measuring vertex-to-plane dis-
tances, which works for meshes with attributes. Bajaj and
Schikore [BS96] presented a method to simplify meshes
with multivariate data to within a given error bound. Cohen
et al. [COM98] presented texture deviation to measure ge-
ometric accuracy when simplifying textured meshes. Lind-
strom and Turk [LT00] proposed the image-based metrics
that compare images of the original model with images of
the simplified model. Xu et al. [XSX05] proposed a texture
information driven simplification in which texture image fre-
quency distribution and texture mapping distortion energy
are combined to present the simplification error.

Cignoni et al. [CMR∗99] presented a method to preserve sur-
face attributes onto texture maps for each level of detail. Re-
quiring a dedicated texture map for each level of detail im-
plies the need for large storage space and long processing
time. Sander et al. [SSGH01] proposed TMPM to parame-
terize the input mesh by taking into account the geometry
and texture stretch as well as texture deviation introduced by
edge collapses. The texture map derived from such a param-
eterization is then shared by the entire PM sequence. Kim
and Wohn [KW01] proposed a method to minimize texture
distortion by generating a texture map that can be mapped
to all levels of detail in a pre-processing stage. A distortion
metric is then used to guide the mesh simplification. Sander
et al. [SGSH02] proposed a signal-specialized parameteri-
zation to minimize texture stretch by allocating more texture
samples for areas of higher signal frequency. Khodakovsky
et al. [KLS03] proposed a globally smooth parameterization
with low distortion.

Several papers have been proposed to minimize texture
distortion problem in a coarse-to-fine process. Eckstein et
al. [ESG01] proposed a coarse-to-fine optimization to gen-
erate a proper texture coordinate for a newly refined vertex
for supporting texture mapping multi-resolution meshes, and
it always guarantees a solution by adding Steiner vertices.
Zhou et al. [ZWT∗05] proposed a technique called Texture-
Montage to seamlessly map multiple texture images onto
an arbitrary 3D model. One part of their work is to derive
texture coordinates through optimization for all the vertices
of the original mesh from the coarse texture coordinate as-
signments on the base mesh. Both texture stretch and texture
color continuity are taken into account in this process.

3. Texture adaptation

3.1. Overview

For a given polygon model M with a texture map T , the tex-
ture adaptation locally and incrementally adapts the texture
map in the course of edge collapses that construct a PM of
M. The goal is to eliminate the texture distortion introduced
by the edge collapses. For a PM sequence, we then have a
texture map T i associated with each reduced model Mi, that
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M2 = M M1 M0T TT

Figure 2: Texture distortion introduced by edge collapses.

M2 = M M1 M0T 2 = T T 1 T 0

Figure 3: Texture mapping progressive meshes with texture adaptation.

is,

M = Mn

T = T n
ecoln−1−→ ·· · ecol1−→ M1

T 1
ecol0−→ M0

T 0 .

The texture adaptation operation from T i to T i−1 is invert-
ible, that is, for a T i−1 associated with Mi−1, T i of Mi can
be derived by doing the inverse of the texture adaptation that
brings T i−1 to T i, which we call backward texture adapta-
tion. Consequently, for the sequence of vertex splits from
M0, we have

M0

T 0
vsplit0−→ M1

T 1
vsplit1−→ ·· · vsplitn−1−→ Mn = M

T n = T
.

We will see that the texture adaptation and its inverse, back-
ward texture adaptation, involve the same operations, which
can be done very efficiently by graphics hardware. And the
texture adaptation or its inverse is applied to texture map and
is performed on the fly while the model is simplified or re-
fined, respectively.

For an edge collapse ecoli−1 that reduces Mi to Mi−1, the
texture adaptation is local to the region Ri that is the neigh-
borhood of the collapsed edge in texture space and is per-
formed incrementally from T i. Since the boundary of Ri re-
mains fixed, what the texture adaptation does is basically

find an appropriate texel of T i for each texel of T i−1, all
in the region Ri. We will see in the next subsection that the
region Ri can be respectively partitioned into the same num-
ber of cells for T i and T i−1, and within each of these cells,
the texture coordinates are piecewise linear. The correspon-
dence between texels of T i and T i−1 is then simplified to the
correspondence between cells of T i and T i−1. Once all pairs
of corresponding cells are found, the texture adaptation can
be performed by hardware texture mapping the cell of T i to
the corresponding cell in T i−1. Since cell correspondence is
identical for each texture adaptation and its inverse, back-
ward texture adaptation texture maps the cell of T i−1 to the
corresponding cell in T i.

Essentially, texture adaptation is a re-sampling process that
might pose problems of under sampling and introduce
blurred artifacts. Indexing mapping is proposed to minimize
these blurred artifacts. Indexing mapping involves an addi-
tional texture map, called the indexing map, that stores tex-
ture coordinates to the original texture map. During edge col-
lapsing, texture adaptation is applied to this indexing map,
leaving the original texture map alone. Only during render-
ing, the original texture map is mapped to the model via tex-
ture coordinates derived from the indexing map.
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The cell partition and cell correspondence are derived while
constructing the progressive meshes. The cell partition and
cell correspondence are stored along with the information
for each edge collapse and vertex split. In rendering the pro-
gressive meshes, the texture adaptation or backward texture
adaptation is performed on the fly while the model is simpli-
fied or refined, respectively.

In the following sections, half-edge collapse is used in the
illustration of the proposed method. Extension to the full-
edge collapse is straightforward.

3.2. Cell correspondence between two consecutive levels

For a given mesh M, its texture map T is obtained by param-
eterizing M onto the texture plane. The parameterization of
M is a one-to-one mapping F that maps each vertex V of M
to a point v on the texture plane. For a PM using half-edge
collapse, the parameterization of Mi is a subset of that for M.
Figure 4 depicts the mapping of the neighborhood of an edge
UV on the texture plane, before and after UV is collapsed.

Mi Mi−1

U
VV

u

v

Fi Fi−1

T
Ri

ecoli−1

Figure 4: Mesh parameterizations before and after an edge
collapse.

When we overlay the edges in the region Ri before and after
edge collapse ecoli−1 that reduces Mi to Mi−1, edges on the
overlay may intersect each other and hence partition Ri into
cells, as shown in Figure 5, where un intersects vw at a and
another pair of edges intersect at b and Ri is partitioned into
9 cells. However, the two intersecting edges on the texture
plane are generally not coplanar in 3D space. Nevertheless,
for each pair of intersecting edges we can compute the pair
of nearest points, one on an edge and one on another edge.
Taking the mesh in Figure 5 as an example, we compute the
pair of the nearest points Ai and Ai−1, where Ai is on UN of
Mi and Ai−1 on VW of Mi−1. The points Ai and Ai−1 can
be derived by minimizing the distance of points on the two
edges, which amounts to solving the linear system[

�u ·�u −�v ·�u
�u ·�v −�v ·�v

][
αi

αi−1

]
=

[
(V−U) ·�u
(V−U) ·�v

]
,

where

�u = N−U,
�v = W−V.

The solution of the above system are the parameters αi and
αi−1, 0 < αi,αi−1 < 1. The texture coordinate of Ai, denoted
as ai, is derived by interpolating u and n, while the texture
coordinate of Ai−1, denoted as ai−1, is derived by interpo-
lating v and w, as follows:

ai = u + αi(n−u),
ai−1 = v + αi−1(w−v). (1)

It is apparent that ai is generally not equal to ai−1. Note that
v j represents the texture coordinate of vertex V on M j, for
j = n, . . . ,1,0, and since every vertex V of M remains fixed
in the course of half-edge collapsing, v j remains the same
for all V of M. Since U is collapsed to V, we need to find
its texture coordinate ui−1 on T i−1. First, we find the point
Ui−1 on Mi−1 that is nearest to U and identify the triangle
containing Ui−1. Then we compute the barycentric coordi-
nates of Ui−1 with respect to the triangle and finally derive
the texture coordinate ui−1 from the texture coordinates of
triangle vertices using the barycentric coordinates.

u

v

a
b

n

w

Figure 5: Edges overlay in the one-ring neighborhood of u
(left), and the edges partition the neighborhood into 9 cells
(right).

After deriving ai, ai−1, bi, bi−1, and ui−1, we move a to ai
and b to bi to form the partition for Mi and, similarly, move
a to ai−1, b to bi−1, and u to ui−1 to form the partition for
Mi−1. See Figure 6. Two cells in these two region partitions
are said to be in correspondence if they correspond to the
same cell before moving the points a, b, and u to designated
texture coordinates. For example, �aivn and �ai−1vn are
in correspondence.

u
ui−1

v v

w w

n n

ai
ai−1

bi bi−1

ecoli−1

vspliti−1

Figure 6: Cell correspondence between partitions of T i

(left) and T i−1 (right).
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3.3. Texture adaptation

After cell correspondences for all cells in Ri are found,
the texture adaptation from T i to T i−1 is performed for
each pair of corresponding cells. To adapt the texture from
cell �aibici of T i to cell �ai−1bi−1ci−1 of T i−1, we let
the former be the source texture, the latter be the target
polygon, and then apply hardware texture mapping. Sim-
ilarly, for the backward texture adaptation from T i−1 to
T i, �ai−1bi−1ci−1 is the source texture, and �aibici is
the target polygon. Care must be taken to prevent the so
called parametric folding in the process of texture adap-
tation by ensuring that areas of both cells �aibici and
�ai−1bi−1ci−1 are positive. Note that, since we maintain all
Ti, i = n, . . . ,1,0, in a single physical texture map, we need
a temporary map to support the texture adaptation.

It is worth mentioning that the texture adaptation for all pairs
of corresponding cells can be accelerated by using triangle-
fan and triangle strip setups, as shown in Figure 7. It’s cost
can be further minimized by packing triangle fans and strips
into arrays and using draw array commands, such as gl-
DrawArrays() or glDrawElements(). Moreover, it can be run
in parallel with the edge collapse operation.

uu

vv

virtual edge

Figure 7: Accelerate texture adaptation by triangle-fan and
triangle strip setups.

3.4. Indexing map

Texture adaptation is basically a re-sampling process of a
texture map. When a texture area of higher frequency gets
adapted to a smaller texture area, blurred artifacts due to
under-sampling of texture samples might appear, as shown in
Figure 8. To prevent such problems, we propose the mech-
anism of indexing mapping that uses an indexing map I to
store in each texel the texture coordinate referring to the
original texture map T . All the texture adaptation opera-
tions are applied to the indexing map, leaving the original
texture map alone. Initially, the indexing map In for Mn

stores in each texel the coordinate itself, that is, In(x,y) =
( x+0.5

w , y+0.5
h ), where w× h is the resolution of the index-

ing map. For texture adaptation, we derive Ii−1 from Ii

in the same way as we do for deriving T i−1 from T i, for
i = n, . . . ,2,1.

Figure 9 illustrates an example of indexing mapping. The

Figure 8: Blurred artifacts introduced by texture adaptation
(left) and minimized by indexing mapping (right).

surface S is texture mapped with T . When S is simplified to
S′, T is adapted to T ′ and, in this example, the texels on T are
re-sampled to two texels on T ′. As a result, one gets a blurred
textured image while texture mapping T ′ onto S′. With the
proposed indexing mapping, the texel values of I′ are the
coordinates of T , and are used to access to the original texels
on T . Therefore, blurred artifacts are reduced.

T

T T ′ I′

S S′S′

Figure 9: Indexing mapping.

The use of indexing map is also advantageous when more
than one texture map, such as a combination of a color map,
a normal map, and a bump map, are associated with the
model since texture adaptation is applied to the indexing
map only, leaving all the maps untouched.

Indirect accessing of a texture map is not supported by
graphics APIs such as OpenGL. Fortunately, it can be im-
plemented using the fragment shader. Another issue is the
precision of the indexing map. In our experience, a texture
map of 16-bit precision is sufficient to deliver acceptable im-
age quality and performance for texture adaptation. See the
example shown in Figure 10.

Figure 10: Performance difference of indexing map in 8-bit
(center) and 16-bit (left) precision.
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4. Results

In our experiments, we used a P4 3.0Ghz platform with an
nVIDIA GeForce 6800 GT graphics card. All test models
are using a 1024×1024 16-bit floating indexing map.

We use the render-to-texture feature to avoid transferring
texture maps between graphics hardware and the host CPU.
In our experiments, we observed that the render-to-texture
setup is the most expensive operation in texture adaptation
even with the help of framebuffer objects (FBOs). To min-
imize the setup cost, we simply collect texture adaptations
that are applied to disjoint regions and perform adaptations
together. When we simplify the model from M j to Mi, where
j > i, we start with the set COLLECTION containing only
the texture adaptation from T j to T j−1 and the set R = {R j}.
We then check, in the sequence of k = j − 1, . . . , i + 1, to
see if Rk overlays with any element of R. If not, Rk is in-
serted into R and the texture adaptation from T k to T k−1

is put into COLLECTION. After doing this cycle, we per-
form all the texture adaptations collected in COLLECTION
with one common setup. We repeatedly perform the pack-
ing of texture adaptations until all the texture adaptations are
done. A similar approach is applied to the refinement pro-
cess. We have observed that 13.73 and 20.20 texture adap-
tations on average are packed to share a common setup for
the parasaur head and bunny head, respectively, and such a
simple approach achieves about a 13.66× speedup factor for
the parasaur head model and 17.51× for bunny head model,
as depicted in Table 1, and the entire run-time cost is also
listed in Table 1. Moreover, the setup can be further shared
among objects in an environment with multiple objects.

Experimental tests have been done on several models. For
PM construction, a quadric error metric (QEM) of five di-
mensions [GH98] is applied to all tested models. Figure 11
demonstrates the power of texture adaptation on the parasaur
head at bottom row. A comparison with QEM of 5D with-
out texture adaptation and APS [COM98] without texture
adaptation is shown at top and middle row, respectively. The
texture map for the parasaur head is derived using signal-
specialized parameterization [SGSH02]. Texture distortion
becomes noticeable when the mesh is simplified to 2000
polygons and becomes obvious for meshes of 1000 and 499
polygons. We have observed that texture distortion is almost
eliminated by texture adaptation even in the textured im-
age of the simplified model with 499 polygons. A normal
mapped parasaur head is also greatly improved by texture
adaptation in Figure 12.

The horse model shown in Figures 13 is parameterized by
geometric-stretch-minimizing parameterization [SSGH01].
Texture distortion is perceivable in the simplified meshes and
is almost eliminated by using texture adaptation.

Figure 14 depicts the performance of texture adaptation
on a bunny head model with color map parameterized by
geometric-stretch-minimizing parameterization. The bottom

Figure 12: Normal mapped parasaur head. left: 7685 poly-
gons, center: 499 polygons, and right: 499 polygons with
texture adaptation.

Figure 13: Textured images of horse model. Left: original
model of 8160 polygons with parameterized texture map,
center: simplified model of 800 polygons without texture
adaptation, right: simplified model of 800 polygons with tex-
ture adaptation.

row shows the parameterization and texture map. The tex-
ture distortion is visualized by texture mapping the check
board onto the model. For the textured image without texture
adaptation, texture distortion is apparent inside the enlarged
image. On the other hand, texture distortion is not noticeable
in the textured image with texture adaptation.

Our last tested model is a swirl model represented by swirled
texture coordinates on a curved surface. Texture distortion is
also perceived on the simplified swirl model. See Figure 15.
The swirl lines get straightened on the simplified mesh but
are well preserved by using texture adaptation.

5. Conclusion

We have presented a texture adaptation for progressive
meshes, aiming to eliminate texture distortion introduced by
edge collapses. The proposed scheme adapts the texture for
each edge collapse, but only one single texture map is re-
quired for entire PM sequence since the actual texture adap-
tation operation is performed when simplifying or refining
the model. The texture adaptation operation is local, incre-
mental, invertible, and can be accelerated by graphics hard-
ware. We have also proposed the mechanism of indexing
mapping to reduce blurred artifacts due to under-sampling
that might be introduced by texture adaptation. The experi-
ment results have revealed that the texture adaptation scheme
is capable of eliminating texture distortion in a very efficient
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w/o packing w/ packing run-time cost (ms)

original model simplified model # of texture avg. time # of # of texture avg. time speedup w/ texture w/o texture
model (polygons) (polygons) adaptations (ms) packs adaptations/pack (ms) factor adaptation adaptation

parasaur head 7,835 499 3,611 0.7581 263 13.73 0.0555 13.66× 253.42 52.99
bunny head 17,483 500 8,545 0.7616 423 20.20 0.0435 17.51× 508.87 137.16

Table 1: Speedup by packing texture adaptations, and the entire run-time cost of simplifying PM w/ and w/o texture adaption.

(a) Original (7685
polygons)

(b) 2000 polygons (c) 1000 polygons (d) 499 polygons

Figure 11: Textured images of parasaur head model. Top row of (b),(c),(d): simplified by QEM of 5D without texture adaptation,
middle row: by APS without texture adaptation, bottom row: by QEM of 5D with texture adaptation.

manner. As a future work, one may investigate how to de-
sign a meaningful error metric for PM construction in the
presence of the proposed texture adaptation.
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